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Bbstract. We give some extensions of our duality theorems 05'113}«
= BS], to the optimization problems (P)a=sup h(G) and (P)a«=sup (h-f) (F),
~where G is a subset of a set F, h:F— R=[~w,+»] is a W-quasi-convex
({51, [211) or a W-convex [4] functional, W being a subset of ?Fﬁ.and

f:F —R is arbitrary.

gl. Fntroduction” < e S

Given a set F, a subset G of F (assumed to be non-empty, through-
out the sequel) and a functional h:F — R=[-w,+w], we shall consider the

following (global, scalar) hrimal supremization problem:

(P)=(Pg p) x=x. ,=sup h(G). - . (L1

In the paper [13] (see also [6]) we have proved some theorems of
"unperturbational surrogate duality" type (in a:.sense similar to [20],.
[22]) for the particular case of problem (}.1), in which F is a local=
ly convex space, G is a bounded subset of F and h is convex and lower
semi-continuous, with values in.RU{-w} (where R=(-o, +®)). Furthermore,
in_[lS] we have proved some theorems of "unperturbational Lagrangian
duality" type (in & sense similar. to [29)) for (L1 )oiehiw o locally
convex space, G a bounded subset of F and h:F-—R a proper lower semi-
- —continuous eonvex functional. In [14] we have extended the main dua-
'lity thicorem. of 15 ] toita duality theorem for the problem of supremiza-
tion of the difference hl—h2 on a locally convex space F, where
hl:F—“%R is a proper lower semi-continuous convex functional on F and
hZ:F->§ is arbitrary., with the convention +oo - (+e)=-00 (thus, taking
h2=the indicator functional of a bounded subset G of F, i.e., hz(y)=0
for yeG and hz(y)=+a>for VEENG, we_obtain the case of [15]). The result
of [14] has been also obtained, independently, in an equivalent form
(namely, as a duality theorem for the infimization problem
inf(hl—hz)(F), where hle-—>§“iS'arbitrary and h2:F—+§ is proper lower
semi-continuous, with +ce~ (+e)=+0), and from a different starting point
(namely, some non-linear problems in the calculus of variations, which
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- “arise in mechanics, such as the analysis of a steadily rotating heavy -
' chain) by Toland [25] ; moreover, Toland has developed, in [24], a theo-
.ry of "perturbational Lagrangian duality" type (in a sense similar to
[22] ), which contains, as a special case, the duality theeory of [25],
‘The importance of problem (1.1) with F=Rn, G a closed convex (possibly
unbounded) subset of Rn and h:I ~—+R a finite convex functional, has

been stressed by Tuy [26]) , who has shown that it 1ncludes a wide class

‘uvﬂof mathematical programmlng problems (such as linear and convex pro-

' gramming, 0-1 integer programming, bilinear programming, linear and
- convex comblementarity broblems,,and "convex~difference" programming) .
Motivated by the above mentioned results of [13] . [15} (see e.qg.
corollary 3.2 and remark: 5.3 below), we 1ntroduce here the following

-~ conecept of "dual problem" to (P) of (1.1) (without any assumptions on
FGh) Al '

Definition 1.1, Bya dual problem to AP) we shall mean any supre-

mization problem of the form

(@)=t p=pC P =sup A(w), o ' ' @2}

‘where W= WG’h is a set (assumed non- empty,_ without loss of generality)

and A= XG :tW—1R is a functional.

Remark l.l. a) We assume no relation between = and ﬁ

. b) There is a marked difference between the above dual problems
(Gl 2) and the "uswal" dual problems [22] to ' (P) (extending the usual
dual problems for concave supremization,’i.e.,for (Plnof (1. 1) mith P
a llnear space, h concave and G convex), in which p=ianX(W), oL,
equivalently (see e.g. [8]), P=-sup A(W). Therefore, as in (23], we
shall call the dual problems (1.2) "unusual" dual problems to (P).

'We shall first consider "unperturbational surrogate dual problems"
ko (P), . In a sende similar to [22] - (see also [20] ), namely, the case
when A of (1.2) is of the form ' ‘ : v

) xG =nsn 0. ) . (wewW) , (13}
where AG WQF (weW) is a given family of ("surrogate conetraint") sets;
14 5
thus, by - (1.2) and {1.3), we have
p=sup inf h (A w); ; s , : : (1.4)
weW S .

Remark 1.2. If we interchange everywhere sup and inf, then (P) and

(Q) become infimization probléems and ﬁ of (1.4) will be replaced by
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p'=inf supehia. ) ' ‘ i ‘ 0 5)
weW _ ! v : . ; _
There is a marked difference between. (1.5), the values

B’ =sup iﬁf:h(AG w) of the "usual" surrogate dual problems to
weW A

(B') . «'=inf hie), o ' (1.6)
and the values ﬁ’:inf i
WEW ‘ : :

s blems ko (P*) of (1.6), studied in [23] (see also [16], ) in {23],
“the latter ones and the dual problems with ﬁ’ of (l.5)vhave been called

"unusual surrogate dual problems of the first type" and "unusual surro-

AG w) of the "unusual" surrogate dual pro-
7 :

gate dual problems of the second type", respectively.’

In. {2 we shall give some necessary and sufficient conditions for
uzﬂ,fér mgﬁ and for u:ﬁ soawdth cxeﬁla:bitrarz and @ of. Wl .4)., and some”
simultaneous charatterizations of "solutions” of (P) (gf (1.1)) and of
sweak duality" for . (P), (0) (i.e., conditiens in order te have cv=ﬁ,
wa th oo, B of (1:1), (1.4)); involving the: level: sets

A (h)={yeF|n(y)<c} : o leeRy (1:T7)

sc(h)é{yeF]h(y)sc} < . " (ceR) 4 (1.8)

of . we recall that, by definition, the "solutiens'' of (B) (of (l.i))

are the elements of the (possibly empty) set
M, (h)={g_eG|h (g )=sup h(G)}. v > (19)

In §3 we shall apply the results of §2'to d=sup h(G) and to cer-

tain families of surrogate constraint sets Aé WQF (weWw, 1=1,...,6),
where WeR' (we recall that B denotes'the_family of all functionals
w:F—TR); in the particular case when F is a localiy cbnvex s?ace and
Wer® (where r* denotes the conjugate space of F), these seks Aé o admit
:convenient geometric interprétations. ' :

In §4 we shall show how the results of surrogate duality of §3
can.be iapplied to problem (P) of - {1.X) with G=u"l(ﬁw, where u is a map-
Ding-of F into o Tparameter set" X andils a subset of X uwith

u(F)INQ#p (where @ denotes the empty set); in this case we shall take

WQRX (rather than WgﬁF) and we shall define surrogate constraint sets

Ai_l
W) w

Binally, in-. 95, eceonsidering the "Lagrangian dual problem" to (P)

ofi(l.l), Toen . problem (L, 2), with WgﬁF and X of the form

cF (weW) corresponding to those of §3.

>dw)zk§’h(w)=dup w(G)+inf {h(y)$~W(y)} T (wewW) (1103
: yer



: S (h)=¢ for some ceR, then the conditions involving these A (h)

, i+, see (5.2) and (5 5)), we shall show that the main result of

(fo
[1 can be extended to W-convex [4] functionals h on a set P, where

“

ME

WeR ;- and to drbltrdrv subsets G of F. THe usefulness of such an ex~-
tension consists in the possibility oﬁ applylng it to various choices
of W's, which permits a unified treatment of "augmented Lagrangians"
(for the corresponding theory for problem (P7) of (146 )ssee e;g. Eatye,

Also, we shall extend the main result of [14] to the W-convex case,
where WcRE .

Throughout the paper, we adopt the usual conventions
inf =+ , sup @=-o00 . ‘ - ' T - Cldl 1)

_Also, as in [17]-[19], we make the convention that e (h)=¢ or

r S (h)
(see S = (25 0) (20 2) s ek ) will be considored satisfied (vdcuously).

" By "linear sDace (with or without a topology) we shall mean: real

linear space.

§2. Surtogate duality results in the g@netal case

Let ussfirst recall

Lemma 2.1 ([19], proposition 1.1 and corollary 1.1}, Let F be a

set, AcF, h:F—R and ceR.

a) We have inf h(A)yc if and only if AnAc(h)=¢.
B) Lf inf hihlso, then AnS (h)=@.

Broof [19]. If'y €anA (h), then inf h(A)<h(y )<c The proof of b)

is similar. Flnally, lf 1n£ h(A)<ec, then there ex1sto y eN-such that

h(yo)<c, SO Yy, eAnA ()

Proppsitiontg.%. Let F, G, h, W and Ag ng (weW) be as in $1, and

r

‘et weR be atbitratyf The follow1nq statements are oqulvalent

lo. We hézg

el e i T

20; We haye

AG s h) #¢@ ". S . (weW, ceR, cr«x). (252

30. We have

3 jS sup inf h(A G w). Bl : : ' (23]
’ e %

weW



Proof. The implication 1°=52° is obvious.

"20:2530. i holds, say Y GAC w(\SC(h) then

?Jw)iinf h(AG,w)gh(yw,c)gc ' (WeW ;. cel, el

whence (b=sup A(W)ginf c=«.
>

3°=1°. 1f i holds, then for. each ceR, esw, we have

WEW G

f.'c>ﬁ :sup inf h (A w), whence, by lemma 2.1 a), we obtain (2c1) .

»

Remapk 2.1. TIn particular; if w=ipf hc) ane GQAG o (weW) , then
i 7

O

: ¢#GAA (h)gA, A (h) (weW, ceR, c>x), so we have 1°-32%. Hence, proposi-
: 4 e 1=

=tion 2.1 permits an improvement of. the results of f1ad.

Broposition 2.2. Let xeR be qrbipraryLrTbgrfolleinq statements

are equivalent:

19. For each ceR; c<of; there exists wcew such that

MNA _ (h)=0@. : : !
AG,wc . - M) =g _ | (2._4)
2°. For each ceR, o<, thepe exists chw such ﬁhét v
AG’WCASC(h)=¢ . ; e : : (2.5)

3°. We have

xgfP=sup inf h(A w)' STl o . : {2.6)
. WEW o ;
Proof. 1°=23°, 1f ¢ and M are as in lo, then,Aby letma 2.1 a).;
we have
)ch):lnf h(AG,wc)zc,

whence f=sup X(W)zsup k(wc)>sup o=
: c <o C<X

0]

snglbees 0f If 3 - holds and ceR, e<u, then och, ond bence,; by (1.4);

there exists wceW such that c<1nf h(A o ). Then, by lemma 2.1 b), we
I c -
have (2 5 3

FPinally,  the: implication 2°=51° is obvious.

Remark 2.2. For the particular case when «=inf h(G) and GgA

G,w
(weW) , whence x>, the above argument has been glven, essentiglly, in
DQ], proof of theorem 1.1.

Combining propositions 2.1 and 2.2, we obtain

Theovem 2.1, IOL «eR be arbitrary. The followiﬁg statements are

equivalent:




. of wedk duality for 4@}, (0% of (1.1}, (1.4}, let us. prove

.lo. We have (2.1); and for each c€R, c<a, there exists wcew

'“satisfyingo(2.4).

o) : : ; o ; :
27, We have (2.2), and for each ceR, c<u«, there exists wccw o

tisfying (2.5).

30. We have

]

et

a:s?p idE h(AG,W) . : : : (2e7)
WEW

Concerning simultaneous characterizations of solutions of (P) and

Theorem 2.2. For an element gOeG, and for e=sup h(G), .the follow-

~ing statements are equivalent:

rem 2.1, we have o

O

1°. We have
AG,wnAC(h)#¢ % (weW, CEB, ¢>h(go)), (2:8)

and. for each ceR, cco, there exists wCeW satisﬁving (2. 4.

20. We have

e

AG’WnSc(h)#¢ ; . : (weW, ceR, e>hi{g. )), (2.9)

and for each ceR, c«<«, there exists wccw satistfyving (2o5).

)

3°. We_have g e/t (h) and (2.7).

Proofs 10=:@30._Assume hes Then; by (2.8} and propesition 2.1

T ey

(with uzh(go)), we have h(g )zp. Furthermore, by the second condition

_ o
of 1° and by proposition 2.2, we-have (2.6}). Hence, by gOeG,_we cbtain

Pza=sup h(G)zh(g )zp. - - g an)
3O=z>lo. 1f 3° holds; then h(go):sup h(G)=«, aﬁd henee, by theo-

Finally, the proof of the’equivalence 2%¢=3° is similar.

Remark 2.3. Similarly, one can prove the following result for 1

fimization, which,extendsrll9], theorem 1.4 (and hence also the parti=
cular cases of [19], theorem 1.4, given in [18]): For an element g eG

and for «=inf h(G), the following statements are equivalent:

S e AR

1°. We have (2s1) ;oang forceach ceR, c<h(go), there exists wCeW

satisfying (Zod )
22 e wave- (2:2),. and for each CeR; c<h(go), there exists w_€ew

B

Satisfying  (2.5]),

30. we have




'h(go)=1nf h(G):;gg inf h(AG’w), : . (2. 11)

"Indeed, in the proof, the inequalities (2.10) are now replaced by

Bse=inf h(G)ch(g )< . b R e - .17

83, Applications to surrogate duality for supremization

In this section we shall assume that F is a set and WgﬁF{ Also,

as before, let GeF and h:F—R.

1) Let us define g famiiy of sets-A1

legF (weW)'by

5 ={ver|w(y)zsup w(G)} Lo ' = (wew) . Gt

Remark 3.1. a) If 0eW (whére 0 denotes the zero functional on F),

then Aé o=F: whence, by (1.3}, L0 ) =dnE h(Aé O):inf h(F). Hence,
: r : 27

Biomp e A G v ' | (3.9
OFweW Seagde ; : :

-b) If F is a locally convex space, then.for O#weFX such that
sup w(G)=+c0 , we have A =0, while for Oyfw&FX such that sup w(G)<+oo,

Aé - isd elosed shalf-space in:F; supporting the get: Galie,
{4

GaInt A

1
G,w

: =@ and the boundary of Al is a support hyperplane of G;
G,w i G,w e i e 5

for the definition of support hyﬁerplanes,'see SRS [17],‘ L. 0), and we

have
: . 1 T e | >
p=sup inf h(AG,w) x o . . . : 3.3)
s
weG
where EREh e ' e
YGS={wew‘w#O; sup w(G)<+oo} . o ak3.4)

Mhias, 1 f W=r* or W=FX\{Q}, formulea (3.3} means that

P = sup inf hi(D), St g . cosmm
DeéG

where SBC denotes the collection of all closed half—sﬁaces il g Lt wbich
support the set G. We shall omit the corresponding geometric interpre-
Eations of -the /& ococurring in the seguel; and ;. forseimplicity, we
shiall work only with -p’s written similarly to (3.2).

For a set F and functionals h,w:F"—R, w#0, let



9(c)=¢_(c)= inf h(y) ‘ | : (CeR); ' (3.6)
VeTr :
w(y)zc

Jim the particular case F=Rn, O%we(Rn)x, the non-decreasing functions

%,'R—R have been studied in (3], (2], [9]. Extending [3], p.214, we

shall say.that h is regular (or, extending “f9], p.66, one might use

che term "semi-regular™) with respeet to w, if

e (c)= sup‘é (c’j o - (oeR).. -(3;7)
glerx " :
clce

w

Remark 3.2. Lf h: R TR is convex, then, by [2], theorem 11 i),

¢, is convex, for all we( (R™) \{O} and hence, if h is convex and

_-h (RM)gR, then, by {1}, p.48 and }91;  p:66, h is regular with respect
to allowe (BY \{O} (alternatively, one can prove these statements
similarly tosl 3 - lemma D ) 'Let us also mention that, econversely,
fiF iR SR ds gquasi-convex and lower semi-continuous -and if all i

(we (R™) \do}) are convex, then, by [2], theorem 11 ii), h is convex.

Proposition 3.1, Let F be aiset, WaﬁF, G a subset @f F,-and h:

B3R a functidnal, which is reqular with respeqt torall wel\ {0} .

Then, for o=sup h(G) and [piof (3.2),.we have (0l

e v e

Proof. For any weW\{0} we have

e (wlg) )= inf - hivichlg)sx i (geG) , {3 «8]
W VeEFR -
w(y)zw(9)

whence, by (3.7) (with.c=sup w(G)) and .since S is non-decreasing,

Xl )= ' inf h{y)= (sup w(G))¥ sap o oowilel e
YeF s c’'eRr
w(y)zsup w(G) c'<sup w(G)
ssup ¢ (wighlex® 70 = : (weW\4{0})
geG .

“hence, by (3.2), we obtain [sx. 4

' We recall that, following Ky Fan 5] /- & stibset M of o set Fis
said to be W-convex, where Ws?F, if :for each y¢M there exists weW, w70,
such thét sup w(M)<w(y).: In partlcular, for a locally convex space F
and W=F" or WzFx\dO}, from the strict separation theorem it follows
that a set McF is W-convex if and only if it ds clesed and convex (see

[41)
=T

Proposition 3.2. Let F be a set, WeR . , G a subset og P, and

s s B T

Bl 2R o funetional, such. that for gach ecxX=gup h(G), the level set



H

: ‘Sc(h) i W«conveg. Then, "for h of (3.2), we have (2:6)

h o gt 3 R N e R o ¢ S e B B e e e G T P
Er A E R ACE AR AR B LS R R A e AR S R R VAL EE 38 AR RV BV R TLa R S R 1 v S

e e

Proof. For each c<a=sup h(G).there exists gCeG such that h(gc)>c,

e ]

that is, gé&Sc(h). Hence, since Sc(h) is W-convex, there exists wcew,
wC#O, such  that

w (g Y=supw (S (H)). \ : . (3.09)

Then, by gceG and (3.9), we obtain

»

sup w (C_S);wc(g )>wc (y) : (yeSc thi} ), (3.10)

(0]

“and thus wC satisfies (2.5) (with A=Al). Hence, by prdposition 2.2, we

 have (2560

Remark 3.3. The assumption of proposition 3:2 is satisfied for
each h:F — R which is "w~quasi—cdnvex" in the sense of'[2l], Loy Lor
which all level sets Sc(h) (ceR) are W-convex..In pagtienlar, 1 F Ts.a

locally convex space and W=r" or FX\ﬁO}, then h is W-quasi-convex if

‘and only if it is quasi-convex (in the usual sense).and lower.semi-con-

‘tinuous (see [21]). :

Combining propositions 3.1 and 3«2; we obtain

Thearem 3.1, Let P .be o sek, Wgﬁk, G @ subset of B, and h:F—R a

ersmoname

functional, which is reqular with respect to all weW\j0}, and such thad

for each cgsup: h(G), the level set Sc(h)'ii W-convex. Then

sup h(C)= sup inf hiy): o . S
OFweW veF : :
; w(y)zsup w(G)

From theorem 3.1 sand remarks :3.2,:3.3,; there-follows

and h:F —R a finite lower semi-continuous convexrfunctional, Thgn_wg

liawe (3. 11) with w=pF*,
2) If W=-W, then the family of sets

Aé,wz{YEF‘W(Y)<i§f w(G)} | e 1

coincides:with (3.:1), since

1 2

= (weW) . (B Bhs
G,w G,-w

A

Hence, if W=4W, then formula (3111 is equivalent to

sup h(G)= Sup inf hy) s . (304 )
0FweW yeR
w(y)<inf w(G)
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3)r Let s define a family of sets Aé WQF (WeW) by

[t

s f ‘ f - .
.AG,W*{YEF!W(Y)~Sup w(G)} S (wew). (3.35)
Remark 354, va) Tf:0eW, then Aé O:J; Hence,

: ; {
ﬁ: éup in€f h(A3 ) : ; - : (3.16)

0#weW
b). If F. is a locally convex space, .then for O%weFx smeh. that
sup w(G)=+0 we have Ag wz@, while for O#weFX such that sup w(G)<+oo,
4 2 _ S

‘AG , 1S a support hyperplane of G.
. 7

For a set F and functionals h,w:F —R, w#0, let

'74C)=Tw(0)= inf hily) : i ceR); (317
; VEF : - ,
w(y)=c
. : : ; g ; 4 '
in the particular case when F is a linear space and O#w&'FTt (the alge-
braic conjugate space of F), the functions ¥V1R->§ have been studied
in [13}. In contrast with @ (of (3.6)), the functions yw:R-»ﬁ need

not be non-decreasing. Nevertheless, we have

Proposition 3.3 Ch3l ,; lemma 2.1 and remark 2.2 o). Let B be a

linear space, h:F-—R a finite convex functional and 'w#0 a linear func-

Eional eon F. Then the function yw of =(851 7 )-=ds finite, ‘conver and cop-

tinuoué on. R, Hence, for a=sup hi(G) aﬁd pof (3.16), we have (2.3). e

From the above, we obtain

Corollary 3:2 ([13], theorem 2.1). Under the assumntions_ofvgqrol—

lary 3 we have

sup h(G)= sup _ inf hbg) e e (3.18}
OFwe " yeF e : _
w(y)=sup w(G) ' = o .

‘Prgof. By proposition 3.3 and corollary 3.1, we have

sup h(G)z sup Sdmie - hilyle
0#weF yeFR
W(y)=sup w (G)

> sup inf o by ) =sup H{G) .
OFweF™ VEFR
w(y)zsup w(G)

4) Cbnsidcring the family of sets

4

AG,w:

el i=int il = = (WeW) , (3.19)

; ; 2 K = : :
we see that (since F$:mF Joformula ~(3.18) is equivalenl o



Sup h(G)= sup. int ohily) T | (3. 20)
OFwel™ yeRr ' :
' w(y)=inf w(G)

5) Let us define a family of sets A cF (weW) by

Gy »n

v

Aé,w={yeFiw(y)>suP w(G)} : . (WeW) . e o

Remayk 3.5 a) IOl Ehen A? Ozwr'whence’ oy 180, M) =inf =
< R Iy
=too , and hence ﬁzsup'k(w)=+m pothus, inigeneral, for Bief (1.4); with

ArAb, we: peed not -have the equality. corresponding to (37 and (3:16).

One can avoid this problem by working directly with W\{0} , instead of W.

byIf F is a locally convex space, then for O#weFx such that

sup w (G)=+e0 we have Ag w=¢, while forlO#weFX such that sup w(G)<+eo ,
£ r
T . ; . : : ;

A is.an open half-space in F, supporting the set G- (io., GnAS =0
G,w : : : G,w
and the boundary of Aé o
From theorem 3.1, there follows

is a support hyperplane of ).

Coxollamy 3.3 Under the assﬁmptions of ‘theorem 3.4, 1F F is-a

e s

locally convex space, WeF" and h:F-—»R is upper semi-continuous, then

‘sup h(G)= sup inf e . ' (3900
O#weW yveF : :
 w(y)>sup w(G)

Proof. Since h is upper semi-continucus on F, for every subset M

of 'F we have inf h (M)=inf h (M) (where M is the closure of M). Thus,

observing that for each‘O#weFX we have

{yeF|lw(y)>sup w(G)}={yeF|w(y)zsup wiG)} , . (0a 20

and applying theorem 3.1, we obtain (3.22).

.Similarly, from corellary 3.1 there follows

wCorollary 3;4. Under the assumptions of corxellary 3fl"££,h is

: ; "
also continuous on F, then we have (3.22) with -W=F",

6) Considering the family -of sets

_Ag,w={yeF|w(y)<inf W(G)} . ‘ S (wew) oy

we see that if W=-W, theh formulg (3522 )anis eqpivalent (0]

sup hi€)= sup". inf h(y). : d3.28)
OFweW yeR
: w(y)<inf w(G)



§4. Applications to surrogate dual problems for systems -

¥ ! .. . u % : : 3 5
By a "system" we shall mean a triple (F—> X), consisting of two

_Sets T, rand @ mapping w of F into X. For a system By . we shall

consider now the primal supremization Hroblem

(P)=(p _, ) siebge i ied mnpe il - (4.1)
BRSO AT ot gl h yeF
; u (y)e 2

e 10 1) wikh G=u~lLQ), where h:F —»R and QecX, u@EInQFG (L is called

‘a "target set"). Furthermore, we shall assume that WcR~.

1) Let us define a family of sets Al_l
| u () W

cF (weW) by

At ={yeRlwuiy))zsup wlu(PnQ)}  (wew). o
= ,

Q) ,w

The gnain toel in-studying surrogate dualiky for (4.2}, 15 the fol=

lowing observation:

Remark 4.1. Surrogate duality for (4.2) is equivalent to surrogate

ecmald by for a family -of bype (3.0). Indeed, clearly ~(3L4) s dthe par-

E

ticular case X=F, u=I_ (the identity operator) and =G, .0f (4.2). Con=
versely, given (4.2) as above, let : :

<o i 4
V=Vw={vw]wew}gR ; ‘ (4 3)
wvhere
e : : : (WewW) . (4.4)
Phen,  for G=u“1(QJgF, we have

sup w(u(F)nQ)= sup wuly)=sup v_(G) (WeW) , o as
: yer , ' ' & i
u(y)esfd '

‘whence, by (4.2) and (3.1),A

Al =l - o (wew) . (4.6)

ufl(Q),w G’Vw

Thas, from each result of &R onLag L one can obtain a corre-

: : ]l
sponding result for (4.2), replacing G, W-and wiby U (2), v and Vot

respectively. Note that the condition w#0 of §3 will now be replaced by'

wu#0; also, the assumption occurring in some results of §3, that F is
a locally convex space, will now be replaced by the assumption that I
and X are locally convex spaces and u:F-—X is a continuous linear map-

- ; : Lk ke
ping (which will ensure that vwxwuéP for all weX"). As an example,



" let us mention that formula (3.11) will be replaced by

sup h(G)= sup A0 otic : hiyl. ; (4.7)

yer weW yel :
u (y)esd wuz0  w(u(y))esup w(u(@)nQ)

2)-6) One can defiine,similarly to {4.2),Ffamilies.of surrogate

constraint sets Az_l ,.‘.,AG

¢ (weW), where Wgﬁx, corre-
e g u -

W

. sponding to 2)-6) of §3. For these sets, again, there hold similar re-

f'marks to remark 4.1 (mutatis mutandis). We omit the details.: -

»

35 Lagrangian duality for supremization

Motivated by the results of {15] . (see e.g. remark 5.3 :below) . we
define here the "Lagrangian dual problem" to (B) of (1.1) (without any
gssumptions on ¥, G, h), as the dual preblem:  (1.2), with X\ of the Term

N(w) =sup w(G)finf{h(y)#%w(yﬂ- R (WeW) ; : (5.1).
’ yeR :

' we recall that + and 1+ denote .the "upper addition" and the "lower addi-

tion" on R, defined (see [10), -[11]) by
atb=atb=a+b if Rn{a,b}#@ or a=b=tw, : (B

_atb=+0 , atb=-e if a=-b=too. 5 % (B

Remark 5.1, In [15] we have used, for preblem (a2}, (5.1} abeve,

the term "quasi-Lagrangian dual problem”, sSince it cerresponds to. the

Lagrangian dual problem to (P') of (l1.6), defined (see - [12], [21],A[22})

s problem (1.2), with A of the form

N (w)=inf w(G)+inf {h (y)+-w (y)} Awew) ; e
: yeF :

however, in subsequent.papers we have.used the term "guasi-Lagrangian"

ina different sense, ‘and therefore, we call here problem (1.2), (5.1)

above, simply, the "Lagrangian dual problem" to (P) of.(1.1). Note

€ that, by remark 1.l bl , this is.an "unusual' dual prebilem-to (P).

Now we shall Shdw that the main results of [15]and [T4] on
Lagrangian type duality for supremization, involving proper lower semi—
~continuous convex funetionals and bounded subsets in-leoeally convex
spaces F, can be ektended to W-convex functionals on a set F, where
weR', and to arbitrary subsets of F. We recall that the "W-convex hull"

of h: BRIl s thesfunctional h. :F —R defined [4] by

u’: (W)



weW
wg<h

.hyaw)=sup W, . : : e (50 5)

and that h is said to be "W-convex" [4], if hg( W) =he The "W-conjugats"

" of h:F-— R and tho "second W- con”ugatp of h are (seesogs [11] ;. {41

the functionals h :W~->R and h —» R defined by
W 43 : ’
h™ (w)=sup {w(y)+-h(y)} _ (WewW) , (5.6)
yel : : : : S T
WW W
h™ " (y)=sup {w(ly)+-h" ()} , (YeF), (5,73
weW

~Lemma 5.1. Let F be a set, WgﬁF, yoeF, and.h:F-—»ﬁ a W-convex

e ciosal, Then

h(yo)=hm (y )i sup y Fad g {l (y 4 w(y)}} : : ' (5.8)
WCWl yeR . '

Proof. By [21], theorem 4.1, for any h:F-—E we have

hww:hg(w+R)gh, where R=(-00 ,+00) is identified with the family of all
sreal-valued constant functienals on'F; furthermore; by 5.5), 1
h%KW)éhyﬂw+R)' Hence, if h is W-convex, then
h=h, =5, o ' 3 =5

(W)\ iC(W+R)

INATY . P -
whence h:hWJ. Einally. by [21), formula (4.:26), for-amy ihi:F =K and

yoeF we have the second equality in (5.8).

<2 (W) (see [21]); the problem of

the exiutence of a concept of "conjugation': for whieh the “seeond corns=

Remark: 5:2. a) In general, h #h

jugate" of h coineides with h_ (1) raised in [22],.has been solved, in

e affirmative, in 27},

b) When F is.'a ‘locally convex space, a functional h:P-—»TR is

(FX4R) -gonvex 1f and only 1f either hs-c, or hzte , or h (F)cRUS+w}

e

and h is lower semi-continuous convex (see [4], p.279). Hence, observ-

ang that, by (5.8) we have

kot =
W E R EEE T : (510}

it-folldws.that for a loecally convex space F. and-for W=F 4R (Ehe ifamis
ly of all continuous affine functionals on F), lemma 5.1 yields again
ST lemma 2.1 :

We recall that, by [11], formula (3.2), we have

ai(b@c))(aib)@c ‘ (a,b}CEﬁ). (552210



Theorem 5.1. Let F be a set, Wedk

, G a subset of F, and H:F «»>}
a W-convex functional. Then :

sup-h(G)zsup{sup w(G) +inf {h(y)$~w(y)}}. (B 12)
weW el

Proof. Let weW and c<sup w(G). Then there exists g':gé C‘éG such
7 {
that w(g')»c, whence, by [Yil, formula - (2.1) and Bl 20y corollary, we
- have 0z-w(g’)+c. Consequently, by (5.11), ]

sup h(G)zh(g’)zh(g’)%(—W(g’)TC);

>(h(g’)+-w(g’))+cy zctinf{h (y)+-w(y)} , - (5.13)
yeF

whence, since c<sup w(G) and weW were arbitrary, we obtain

sup h (G)ysup {sup W (G)+inf {h(y);—w(y)k}; - g (5.14)
weW yek

nete that this is valid for any functional h:F —=TR.

On the other hand, if H is W=convex, then, by lemma 5.1, we havef

h (g)=sup {W(g)finf {h(y)%—w(y)}}é

wew yeF
< sup {%up w(G) +inf {h(y)+ W y)}} - (geG) . (Sedb)
weW 7 yeF -

Hence, by (5.14) and. (5515), we obtain (5,12).

Remark 5‘3 In the particular case when F is a locally. convex
space and W= F 4R by remarlk 5.1 b) we see that theorem 5.1 yields -an
improvement of [15], theorem 2.1 (namely, the assumption of bounded-
ness of G, made in [15], 'is omitted). :

We recall that, by- {11]; Fformulae (4.8) and (2.1 for any set E.

~and any k:E —TR and a,b,cc¢E we have

sup k (x) +c=sup ik (x) +c}, : ' (5.16)
. X€EE xeE : ; e :
- (atb)=-at+-b .- : : £ T : (537

Theorem 5.2, Let F be a set; Wel, hiF —sR a W-convex functional,

gnd. faF =3 K an albjtiary functlonal Then

sup {h y)l~' )}=sup {fw(w)f—hw(W)}w : ' (5518
yeFE - WEW :

Proof. Since h is W—convex) by lemma 5.1, (5 X&) 5 06) ~and

(5.17) , we obtain



sup {h(y) +-£(y)}=

yer , ;

=sup {sup[w(y)finf {h(y')in(y'S}]fmf(yX}?

_YEF ‘weW y e R

=sup {%up w(y)i~f(y)11nf {h 4—w(y’ﬁ}} =
yeF “weW yiel :
=SUp {sup[w(y)f~f(y)finf {h(y’)4“w(y’)}}}==
weW LyeF y'eF i3
=sup {sup {Wy)+-£(y)} +inf {h(y")+-w(y’ n} .
WEW “yeF *y'eF

=gup {fw(w)f—hw(w)}.

weWw.

Rema3P75.4u a) In the partlquar case when f“XG . the indicator
functional of a subset G of F (e XG(y) =0 for ye and Xc(y):+oo for
YEF\G), we have :

fw(w)zsup {w(y)f—v (y)}:sup w (G) (weW) , (5adY)

yeF -

and hence theorem 5.2 yieldsfagain theoram bl :

b). In the particular case when F is a locally. convex space: and
W= im, by remark 5.2 b) we see that theorem 5.2 yielas the main result
of [14] | '
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OPTIMIZATION BY LEVEL SET METHODS, VI: GENERALIZATIONS
OF SURROGATE TYPE PTVhRuJ CONVEX DUALITY

Ivan Singer

Department of Mathematavq, INCREST, Bd.P&cii 2?0 79622
Bucharest and Institute of Mathematlcs, Sty Academlel 14,
70109 Bucharest, Romania

We give some extenéioﬁs of our duality theorems of [9] on the
optimization problem (P) a«=inf h(G), where.G is a subset of a local-
ly convex space F such that F\G and h:F —R ﬁ[éw,+aﬂ are convex,
to the case when G is a subset of an arbitrary set F and h:F —R
is an arbitrary functional. We give some applications to the case
when G is embedded into a family of sets [(x)cF (xeX), where X is
a parameter set, - :

§1. Introduction

Given a set F, a subset G of F (assumed to be non-empty,
throughout the sequel) and a functional h:iF-»R=|[=e,+00], let us
consider the following (global, scalar) primal infimization pro=-
blems :

(Py=(P_. .) x=c.  =inf h(G). L0

Gk G, h
In the paper [9] (see also [4]) we have proved some theorems
‘'of "unperturbational surrogate duality" type (in 'a sense similar
to [15]) ,[16)), for a certain "reverse convex infimization" pro-
blem, namely, for the particular case of problem (1.1), in which
F is a linear space and F\G and h are convex (the general "re-
verse convex infimization", as studied e.qg., in [18] and the refe-~
rences therain,'is the case when F is a linear space, h is convex
and GzGl/\Gz, where Gl and F\\GZ are convex; téking GlﬁF, we Ob=
tain the case of [9]). \

‘Motivated by the above mentioned results of [9] (see e.g. re-
mark 5.4 below), we introduce here the following concept of "dual
problem” to (P) of (1.1) (without any assumptions on P, G, h):

Definition 1.1. By a dual problem to (P) we shall mean any

infimization problem of the form



(>

G,h) ‘{S:pGah = inf A(W), A , (1;2)

where W= WG’h is a set (assumed non-empty, without loss of genera-

lity) and A= XG'

Q)=(Q

tW—R is a functional,

Remark 1.1, a) We assume no relation between « and B.

b) There is a marked difference between the above dual pro-
blems (1.2) and the "usual" dual problems [16] to (P) (extending
the “usual dual problems for convex intinlzation, ive., for ()

of (1.1) with F a linear space and h,G convex), in which

=sup AMW), or, equ1valently (see e.g. [5]), P==inf MW). There = fore,
we shall call the above problems (1.2) "unusual" dual problems
ta (P}, :
We shall first consider. "unperturbational surrogate dual pro-
blems" to (P), in a sense similar to [16] (see also [15]), namely,
the case when X of (1.2) is of the form

A (w) AG' (w)=inf h(a, ) (weW) , (1.3

'
where AC wg;F (weW) is a given family of ("surrogate constraint").
i o f
sets; thus, by (1.2) and (1.3), we have
p=dpf dar hid. ), ' - (1.4)
weW G, :

Remark 1.2, There is a marked difference between problems

(1.3), (1.4), which may be called "unusual surrogate dual pro-
blems of the first type", and the problems where ) of (1.2) is

of the form AMw)=sup h(A ) (and hence fi= inf sup h(AG w))’
weW

studied in [17], which may be called "unu@ual surrogate dual pro-
blems of the second type".

In §2 we shall give some necessary and sufficient conditions for

.g<{% for a>p and for «=[, with ef (1.4) and xel artdtrary or, . in

particular, o=inf h((‘)E and some simultaneous characterizations
of "solutions" of (P) (of (1.1)) and of "weak duality" for
{P), (@} (i.e., conditions in order to have x=f, with & of

(1.1), (1.4)), involving the level sets
A, (h):{yeFih(y)<jc} '(CER), BES]
S, (h)={yeF|h(y)gec} (GeRE, - (1.6)

of h, thch cofrespoﬁd to our résults of‘l}l]—[lBJOh the "usual"
dual problems of remark 1.1 b) above: we recall that, by defini-
tion, the "solutions" of (P) are the elements of the (possibly
empty) set ‘

$s(h)={g_ec|h (g )=inf h(a)}. ; (1.7)



(»

S
In §3 we shall apply the results of §2 to surrogate dual
problems defined by "perturbation multifunctions" F:X-»wZF, where
X is a parameter set and 2F denotes the coilection of all subsets
of F, and to certain families of "surroqatb constraint gets™"
i G

AF(XO) o SF el a1, 0 Ty, whers X=X exX is such +hat L(x)=

rg - 23R i
and where W& R” (we recall that RX denotes the family of all func-

tionals w:X —R). In §4 we shall consider the particular case of

‘the "natural perturbation multifunction =" associated to (uy £LL),

where u:F—X is a mapping and Qc¥ is a "target set", and where
G:F(xo)mu"l(ﬁw. The pafticular case when X=F, uzIF (the identity
operator) and Q=CcF, will be considered in §5. For locally convex
spaces, the surrogate constraint sets of §4 and §5 admit conve-
nient geometric interpretations.

Throughout the paper, we adopt the usual conventions
i.nf ,@’?+m, Sup @==0, 5 (1.8)

where & denotes the empty set, Also, as in [11] -[13], we make the
convention. that if Ac(h)=¢ or Sc(h)=¢ for som&vceR, then the con-
ditions involving these Ac(h), Sc(h) (see-e.q. (20003, (2.11),

etc.) will be considered satisfied (vacuously). By "linear space"

(with or without a topology) we shall mean: real linear space,

§2. Surrogate duality results in the general case

Let us first recall

Lemma 2.1 ([13], proposition 1.1). Let F be a set, AcF, h:

i, s s cssons

:F—R and ceR. We have inf h(A)zec if and only ifz&ﬂA (h)=¢

Proof [13]. If Yo €4 NA_(h), then inf h(a)g h(y,)<c. Conversely,
i inf h(A)<c, then there ex;sts YoEA such that h(y 5<cP SO
Yo cAnA (hy,

Proposition 2.,1. For F,G,h, W, 4K SSF AweW) as in g], and

any'c%eﬁ, the rollow1nq statements érc eauxvalent'

lq; We have
A'G,w
20. We hazg

fﬂAc(h)=¢ .‘(weW) ceR, c<x) o (2.1)

G,w

30° We have

AT 10 S

A f\‘sc(h):::gf (W‘E"\.«rp CGR; C(“X)l (202)

ﬁs inf inf: h(A w). {2.3)
: wew Gy

Proof, 1Q@$30, By lemma 2.1, condition 1° is eguivalent to

inf h(AG'w);c (weW, ceR, c<a), (2.4)



=4 o _
ige s Lo inf h(AG w);a (weW) , which is equivalent to 30.
4

Finally, the equivalence l°¢¢20 follows from the inclusions

a s, (h)c;Ad(ﬁ) (¢,d¢R, ccedex). (2.5)

4

Corollary 2.1. a) For F,G,h,W and '&G = ¢F (weW) as in §1,

if we have

Ay SC (weW), (2.6)

cthen «=inf h(G) satisfies (2.3).
b) If F is a topological space, h:F—R is upper semi-conti=-

nuous and

be 50 (weW) (2.7

(where G denotes the closure of G), then x=inf h(G) satisfies
(2.3). -

Proof., a) Clearly,
GNA (h)=g (c€R,c<a=inf h(G)).
Hence, if (2.6) holds, then

A /\Ac(h)g;Gf\Ac(h)ﬁﬁ' (weW ,ceR,c<ca) ,

G,w
so.the. rvesult follows from proposition 2,1,

b) If h is upper semi=-continuous on F, then inf h(&)=inf h(G),
and hence the conclusion follows from part a) (applied with G re-

placed by G, and with Aﬁ,wﬂﬁc,w)'

Remark 2,1. a) If weW, 4

G’V’zs‘éw t}’}érl & }Dy (1 ® 3) I we have

Mw)=inf #=+co,Hence, by (1l.4),

ﬁz infr inf n(AG'w), : {2.8)
weG ‘

where

gt =fwew|ag | #25. 20

byaZE AC W=¢ (weW) , then (2.6) is satisfied and;, by (2.8},
= § 4 &

(2,9), we have [=inf g=twz « .,

Proposition 2.,2. For ¥,G,h,W,4

G,w‘;F (weW) as in §1, and

any x€R, the following statements are equivalent::

1%, For each ceR,; crx, there exists wcew such that

emvauns

: ; _ <10
AG”% F\Ac(h)¢¢ | (2.10)
22, For each céR, ecrx, there exists wcéw such that
«Q w
AGawcfzoc(h)¢¢. (2.11)

39, We have




r

b

«>[3= inf inf h(a, ). . (2:12)
wel : G

Proof. The implication 10:¢20 is obvious.

2°=53°, 1f CeR, ¢>a and w eW satisfy (2.10), say v el I
L i g o) G,Wa
NS (h), then, by L 40, :

ﬁ— inf inf h(A )sinf h(&c Y<h(y J<ceo; (2.13)
7;W' C 3
weW e

hence, ﬁginf ¢=« .0On the other hand, if there exists no Cc€eR such
cru '
that c>«, then Pgteo=a, @

. 3°=1°, 1f 3° holds and cer, crazfi=inf inf h(a; ), then
weW
there exists W €W such' that c»>inf h(A ) » whence, by lemma

l
2.1, we obtain (2,310, : e

Corollary 2.2, For F,G,h,W,AC wEF (weW) as in §1, if there
; i e ) Ral lENS
holds

Gg‘\”/AG,w ol . {2 14}

then «=inf h(G) satisfies (2.12).

T R,

Proof, If ceR, cra=inf h(G), then there exists = 28 eG such
that c>h(gc). Hence, 4f (2.14) holds, then thareexists wcew such
that gCEGEAG,wC’ o) gcééciwcrﬁAc(h;% #.Thus, by proposition 2.2,
we obtain (2,12),

Combining propositions 2.1 and 2.2, we obtain

Theorem 2.1, For F +Goh, W and A wg;F (weW) as in §l,_and any
x€eR, the following statements are equ:valent:

lo. We have (2.1), and for each CeR, cr«, there exists wvew
satisfying (2.10), :

Al We have (2.2), and for each CeR, ¢c>«, there exists w W
satisfyving (2.11).

30. We have

x= inf inf h(A w)‘ : (2.15)
weW G, i

Combining corollary_?.l and proposition 2.2, we obtain

Corollary 2.3, For F,G,h,W and A chF {wew) satisfving the .
F-\

assumptions of corollare2 1 a) or b) and for x=inf h(G), the fol~-

O g

lowing statements are equivalent

10. We have 1° of proposition 2.2,

40 o s S s g T
< . We have 2" of proposition bl




e e e

3°. We have (2.15).

Remark 2.2, The assumptions of corollary 2.1 a) or b) are

O

£

needed only in the proofs of-_.he implications 10:§BO and 20593

Combining corollaries 2.1 and 2.2, we obtain

‘Corollary 2.4. Under the assumptions of corol]ary 2 I a)

or b), if thcre ho?dw {2.34) ,; th@n we have (2. 15).

Remark 2.3, If_(2«6) holday then 12180 49 sanivatant oo

G =\_Ja, . -(2.16)
weW : ;

Concerning simultaneous characterizations of solutions of
(P) and of weak duallty for 4(py, (Q)} of (1.1}, (1.4), let us
' prove

Theorem 2.2. For an element 9o€G and_for «=inf h(G), the
following statements are equivalent:

lO. We have

B o e——

G wf\A (h)y=g .- (weW,ceR,c<h(go)), (21T
and for each ceR, c>«, there exists W, eW satisfying (2.10),
57 We have : e
AG =0 ( Y=g (weW,ceR,c<h(go)). (2518)

and for each CeR, c>x , there exists W EW satisfying (2;11).
3°, We have 9o€dc(h) and (2.15),
Proof. 12080 Assume 1°, Then, by (2.17) and proposition
2.1 (with w=h(g_)), we have h(gb)sﬁ. Furthermors, by the second

condition of 1° and by proposition 2.2, we have (2.12), Hence, By
9o€Gs We obtain :

otie= inif h(G)<h(g’)g{5g o . (2.19)

3217 18 3% holds, then h(g )=inf h(G)=«, and hence, by
theorem 2.1, we have 1° :
Finally, the proof of the equivalence72?¢¢30 is similar,

Remark 2.4. Similarly, one can prove the following result

for supremization (instead of the JnfLWL ation problem (1.1)):
Let F,G,h,W and ‘QC wEF (weW) be as above. Then, for 9, €G and
e 2 W Sho

~o«=sup h(G), the follewing statements are eguivalent:

17. We have (2.1) (with «=sup h(G)), and for each CeR,

A s

c>h(go), there exists wceh satisfving (2,10),




. : Srlon
27, We have (2,2), and for each ceR;, c>h(qo), there exists

wcew satisfying (23133

30 s We h ava

A0 % W, S

h(go)zsup h(G)=inf inf h(a

) {2,209
weW '

G,w

Indeed, in the proof, the inequalities (2.19) are now repla-

ced by

p<h(g )<sup h(G)é(%i

-83. Applications to surrogate dual problems de fined

by perturbation multifunctions

- Assume- that problem (P) of (1,1) is "embedded” into a fami~
ly of "perturbed" constrained optimization problems

(p*y=(p¥* u":;g hminf h ([ (x)) (xeX), (s

- where X is a parameter set and [= f’ >’->2 is a nerturbatlon mul-
tifunction", such that for some X “yGeX thern holds

G~-F(vxo); , ' £2)
then, by (1.1} and (3.2), we can write (1.1) in the form
(P)Z(PF(X ),h) O(:O(i"(x )ih';lnf h(r(xo)). (303)

o ) =
Furthermore, in this section we shall assume that Wgﬁx.

l 7 v
1) Let us define a family of sets 4 Plx )'wgr‘ (weW) by

All(s{ ) w={y(£Flw(Xo)<inf w(X\F"l(y))]r (wew) , '(354)

‘where 30 :F-uaa»ZX is the "inverse multifunction”,defined by

Fhl(y)-":{:»:e:{]yff"(x)} ey gy

The family (3.4) satisfies (2.6); indeed, for G=F, (2.6)
is obvious, whlln, if G#F and yéG—n[(y ), then x ch“ (y), whence
w(x )>inf w(x\r~ (y’)), T} Y"éAF(x ¥t Note also that if 0e¢WeRX

(where 0 denotes the zero funct.Lonal on X), then Ail"(x ) O=,®;
¢

whence, by (1.3), A0)=inf h(,c;s'i:@(, ) )=t Hence,

’ “o
= inf  inf h(Aﬁ( ) w). : : {3.6)
O#weW ol el
We reecall that, fotlowmq Ky Fan [3], a subset M of a set
X
H\"T

X is said to be "W~convex", where WcR if for each x¢M there

PRy S

exists weW, w#0, such that sup w (M)<W(X}; hence, M is (-W)-convex

1f for each x¢M there exists WEeW, w#0,. such that sup (-w) (M) < (~w) (x)
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A

i.e., inf w(M)> w(h) In particular for a locally convex space X
and mex or me‘\fo} (where x™ is the conjuqate space of X), from
the strict separation theorem it follows thaL a set McX is W-con-
vex if and only if it is closed and convex (see a,g.02]).

Theorem 3.1. Let F,G and h be as_in §1, let X be a locally

« 4 E’
convex ”wcenf WFR o and Me¥ 52" a multl function sat sisfving (3.2)

O S i i e

for some YO”XO&X’ such that X\P' (g) is (-W)- -convex, for each
- geG. Then

e

inf h(l(x_))=inf ing ' hiy). (3.7)
O#FweW yeF -1
wix )<inf w(X\[™ ~(y))
Proof ., For each geG= F(x ) we have x fF ( ). Hence,.Sane
XE (g) is («W)-convex, there exists a functlonal wgew, W #O,
such that

sts s
wg(xo)<1nf wg(_X\I {g)), : (3,8)

S0 qeﬁﬁ( ) of (3.4). Hence, by corollary 2.4 and formula
g <

(3.6}, we obtaln e i Y

Remark 3.1. We recall that the "complementary multifune-
tion" FC:X~»2F is defined (see e.g.[1]) by

rC(x) = F\['(x) (xeX) . (3.9)
By {3, 5), we have

oyt (y)={xex yéF\F(x}}=X\rf°l(y) i (yeF), (3,10}

and thus the assumption of theorem 3.1 means that (Fc)“ (ag). dig

(mW)-convex, for each ch This assumption is %atzﬂfied €.g. when

Wuxﬁ (or X \10}), F is a t@ooloqlcﬁl }7near qpac;,F is upper se-
mi-continuwous (i.e., (I'®) "*(a)= KH){FQ (y)m{ch;(FC)(xNWA$¢}~is ’

closed for each closed subset of F) and (Fe) is quasi~convex in

the sense of Oettlil[6] (i.e.,(r% ~1(a) is convex . _

T e S0 ey e NN WS T

for each convex subset A of By,

2) The family of sets A2

T (weW), defined by

w.x{yeF]w(x0)>sup w(X\F"l(y))}A — Uweld). (3.12)

(%),

% ¥ s, J 5 = 2 :

satisfies (2.6) .Moreover, if Wng satisfies W=-W, then the family
n

necides with (3.4), since

=A

Pl ) pw OT(x ), ow (wel} s (3al2)

hence, if W=-W, then formula (3.7) is eguivalent to




6
S

inf hillx, ))minf inf = ). (313)
O#weW yeF :

w(x )>bup wie\rs (y))

3) The fam:ly of sets /ﬁY )' cF (weW)Idefined by

A3(x ) w“iYéFiW(xo)¢W(X\r (y)?} (weW), (3.14)

satisfies (2.6); indeed, Lmt G=F this is obviocus; wbjlg 1f G#F
and y%GmF(xo), then XO¢F (y), whence w(x )tw(x\r (y)), SO

Y$A;(x') w+ Moreover, we have
o 2

2 e
F(x ), v 4ﬁ(x ) W . (weW) , (3:15)

and hence, by corollary enl d),

: : : 3 S '
inf inf h(A )>;nf inf AL Yzin® hi{G); (3.16)
Ofwel PR oW 5 ren Flxg)ow

consequently, from theorem 3.1 we obtain

Corollary 3.1. Under the assumptions of thborcm 3.1, we

have _
“inf h(F(x_))=inf inf h(y), (hol0s
0#weW yrF
l?cW\X\F‘( )
4) Let us consider now family of sets
A ={yeFlw(x_Y=inf w(x\r"L(y))} (weW) (3.18)
T RS : :

which, in ghneral, need not satisfy-(Z.G).'In particular, if -
ch(”RX, then A

i ) =Fg§G, and therefore we shall assume now
that '

Ogm. ' _' e = Chaten

Proposition 3.1. Let F be a topological space, G a sub-
i > b 4 p #

set ¢ OE F h:F—R a functional, X a locallv convex space, and

S F a ‘multifunetion agLRFV1nG (3.2) for for some xOMyGeX, such
that ;
{yeF]x ele(y}}gino). - {(3.20)

Then,. for W~X e 0} (where Xk is the conjugate space of

X), we have

S g, 5 s e

4 o :
AFTXQ);W & et | : (weW) . (3.21)

3 4 4 -1
" Proof., If O#weX™ and veah then x dInt (XINT ~(v))
S = ¥ F(XO),W ’ O¢ v

(see e.g. [11] , proof of lemma 2.1), whence xoerul(y). Hence, by
(3020 and 13.2), we cbtain - (3,21).
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Remark 3.2, If we have

E‘j(y)

"1 (yeF), .29

where [iX-—2" is the multifunction defined (see €.g.[1}]) by

R A

T(x)=I(x) o (xeX), (3.23)

o

cusso

then [ satisfies (3.20). Indeed, if yeF and xoefwl(y), then, by

o ey . Pt 3 Gers s adlimtnaon,
{2.22) ;o x ¢l (y), and hence, by-(3.5), we obtain yei(xo)mléx03°

Theorem 3.2. Let F be a topological space, G a subset of

E, hifr=R 3£,DAVFW semi - ] ﬂﬁlﬁucu“ functional, X a normed lineax

space, and [I': k~%° a multifanetion, s t131yinq (3.2 and (3.20) fop
some xomxgéx; and such that each X\[ (g) (geG) is either a boun- .

ded convax set with non-empty interior, or a bounded closed convex
set. Then

AT i S USRS T

inf h(I(x_))=inf it oy - [3.024)
O#weX™ ysF -1 :
(y))

w(x Y=inf w (XA
Proof. For each geG=I(x_) we have X, el (g) Hence, by
our assumptions on X\[I'~ (g) and by 181, corollary 2 and 9],
Addendum, for each geG there exists w éY*\{Of»W such that

Wg(xo)i (X\L ( )); “ (3025)
SO gea4(y g of (3.18), Hence, by (3.21) and corollary 2.4
g
(with W= kﬁ\dOj Yy we obtain (3.24).
Sy Ir we BN satisfies W=<«W, then the family of sets
A ={yeF|w(x )=sup w(X\["1( Y15  (weW) (3,26}
{KXO),W L YEL o P ¥ s &6
‘ coincides with (3.18), since
ﬁ 4 . e
l.( )‘;‘] _ )’ (Vze"q)f (3027)
hence, fggmulg (3 24) is 6quiva1@nL to
inf h(l(x ))=inf _ inf = Wl (3.28)
0fwex™ veF oA :
wix )=sup w(X\[ ~{y})
6) Let us consider now the family of sets
A6 »{vukiw(} J¢i % w e\ (y))] (welW) (3 29)
Lix]) w g ‘ g ! .

4 :
The remarks made on AFT" e as well as proposition
4 L { A .

3.1, remain valid, with similar proofs, for A?‘ i replaced by
1 \’ ¢

. 6 : »

A . Moreover, we have

R >
L(xo)fw



~

4 6 ;
A (X Y w S T(x_),v (weW) , , (3.30)
and hence, by corollary 2.1 b},
= : 4 : 6 o ' :
Inf-dnf hiln Jeint dnfanin l>inf hitc) (3:31)
wewW T(x ) oW wew ' (x *O) oW ;

whenever h is a topological space and h:F~-R is upper semi=~conti-

nuous; consequently, from theorem 3.2 we obtain

Corollary 3.2. Under the assumptions of theorem 3.2, we

have ,
inf h(lx ))=inf _ inf Rl - (3093
0#wWeX™ yeF : oy -
w(xo)ginf w(X\[ ~ (y))
%) LE Wwe R satisfies W=~W, then the family of sets
A'IZ‘(X - -—«{yéf‘iw(xo);sup 'W(X\Fnl(y))} (weW) (2.33)

coincides with (3.29), since
M o™ F(x,) p=w : (weW) ; | (3.34)

hence, formula (3.32) is equivalent to

inf h([(xy)=inf ShE hiy). (3.35)
0FweX™ yeF -] -
w(yo);sup WARSE 0y ) )

§4. Applications to surrogate duality for systems

Ceneral¢zxng¢j4}, definition 3,1, by ia "system" we shall
mean a triple (F~«@x), consisting of two sets F,X and a mapping
u of F into X. Given a system (Fwwwx)pvwhere X is a linear space, .
a "target set"QcX, with u(F)nQ#%, and a functional h:F—R, we
shall consider now the primal infimization problem ;
(P)=(p '1 ) S =dinf . ki), (4.1)

(9) ,h L@, n yer

& uly)ef

158 o Ol o0 it ey

() . Then, thé “natural® ﬁultifunction
o

» definad (see [10],([15]) by
FP ) =u"t (Qx) (xeX), 1.2y
satisfies (3.2) with xomO and, clearly,
(fn)nl(y)“5XuX|u(y \+A7“u(y) (yeF) ., {4 .3}

Remark 4.,1. a) For Gmu”ltﬂdpi”mfn of (4 20 XGwO and



(¥

pa\

w 12 - :
Wexl (where xf is the algebraic conjugate space of X), the fami%
ly (3.4) becomes ‘

Al_l ={yeF|w(uly))>sup wix\}p (weW) . (4.4)
u sy ,w
' Indeed, by (3.4) and (4.3),
1 2 : : 1l .. &
« ={yeF|0<inf wix’)} (weW)., (4.5)
P00, x'¢u (y) -L2

~ Observe now that x'¢u(y)=-£2if and only if u(y)=-x"ex\Q ;
and thus, writing x’=u(y)=-(u(y)=x'), wa have
XN(u(y) =) =u(y)=-(X\Q) Cyer), ~(4.6)

Hence, by f‘n(O)?Gmu”l () and Wex¥, we obtain

1 i
i = . “: 1=
Au l(—Q) oV {yeFi0<w (u (y) )+i§§\gW( %)}

:ﬁ{yéFquv(u(y))—-sup WX\ )} (wewW) ,
f.e., (4.4). Note also that, by (4.3) and (4.6), x\('™) " L(y)

(where veF) is (~W)~-convex if and only 1f XA\& is W-convex,

s B ——

b) If (F-25X) is a "linear system" in the sense of [14]

(i.e., F and X are locally convex spaces 'and u:F—X i8 a conti-

nuous linear mapping), then for O0#weX™ such that sup w({X\.0)=+oco

L

LAl

: I 5 ;
we have A =@, while for 0#weX” such that sup w(X\.Q)<+oo -

i

A 1 is an opan half-space in F.
Wl w

From theorem 3.1 and remark 4.1 a), we obtain

Theorem 4,1. Let (F-%X) be a system, in which X is a

linear space, let Wg X", letQbe a subset of X, with uw(F)Inl#Z ,

Such_that X\Q.is W-convex, and let h:F-»R, Then

inf h(y)=inf inf h(x). | (4.7)
yeF OfweW yeF : '
u(y)esl w(u(y))>sup w(X\L)

Replacing w by -w (or, alternatively, using (3.13)) e

see that if W=-W, then formula (4.7) is equivalent to

the - hivi="dnfs “ine hiv)s (4.8)
yeF O#weW yeF
u(y)efl wlu(y))<inf w{X\)

Remark 4.2, For eru“l AEhE B =rh of 142y xor-'o and W Q}{""l{‘y

the family (3.14) becomes

Q2

Vi

1 x{yel‘*"} wilu(y) Ygw (XN} (weW) . S
@) .



s _
Indeed, by I (0)=c=u"1(Q), (4.3) and (0.0 e haws

AB = A :{yeF[Oqﬁw(X\(‘{i(y)mﬂ)’)}z

uflLﬂJ,W rn(O),w
={yeF|0¢w(u (y)) -w(x\0)} - (wew) ,

From corollary 3.1 and remarks 4°2, 4.1 a) (or, from
theorem 4.1), we obtain.

Corollary 4,1, Under the ass umptions of theorem 4.1, we
have el

inf  h(y)=inf inf hiy). ' (4.10)
yEF 0#weW yeF : :
ul(yles wlu(y))¢w (XN L)

? Remark 4.3, a) Simllarly to remar% 4.1 a); for G lQQ),
Bl of wd 2y, xO=O and We X#, the family (3.18) hecomes

‘ A4=~1 ={yeF|w(u(y))=sup vr(x\ﬂ)} (weW) (4:11)
: () ,w | ,

TE (F~—:x) is a linear systen, then for O;éwe'xk such
that sup w(X\Q)=+w wa hav'g$4_l | =, while for O0#wex™ such that
2 ol 92 B ;

{ s |
sup w (X\Q)< +o0, A® 1 - is a (closed) hyperplane in F.

T e :
b) When F is a topological space and X is a locally con-

vex space, for ['=r? of (4.2) and thO we have, by (4.3),

Ps s e

™y =ty R=uly) -7 ; (yeF), (4.12)

and hence [" satisfies (3.20) < (with X P03 1f and only df

u“1CE>:{yEF1u<v>e§3¢;gyewfucy>eﬁwmu”lul>;- S (4.13)
i particular, when uiF-»X jis ne-to-one, (4.13) is equivalent *o

S sal ; e ; :
the continuity of-u . Let us also note .that if u is continuous,
-1 : - > :
then u =~ ) is closed, and hence we have the opposite inclu510ﬂ

to (4.13); thus, in this case, (4.13) 1s equlvOlent to

L@=ar@y, o (4.14)
From theorem 3.2 and remark 4,3, we obtain

i o Ll s 3 F
Theorem 4.2, Let (P«JéY) be a system, in which F is a

topological space and X is .2 normed linear space, let .0 bhe a sub-

Sk COF X, with u (F)nQ+d, satisfying (4.13) and such that YDk

P
—um‘a—a‘w@

ulth. a bounded convex set with Jnon-empty interior, or a bounded

closed convex set, and let h:F—ER be an upper semi-continuous func-

Pt Ty Tl - o
tional. Then




e | -
inf  hiv)y=inf . ot SRy (4.1 5]
yer _ O#weX™ yeF - 5 :
ul(y)efd wl{uly))=sup w(X\.D)

Replacing w by -w (or, alternatively, using (3,26))p we

see that formula (4.15) is equivalent to

41‘1f h(y)minf et h (Y) e 2 (4616)
el ; O;..’.i,](_:‘:x““ yER .
ulylefd wiu(y)t=inf w(X\Q)

Remark 4.4, Similarly to remark 4.1 a) above, for G=

a
= =1 g iy ) e 4 SR T # it ey 5 S
=0 ), D=l of (4,2); %,=0 and W X" , the family (3.29) becomes

Evaces s Ty

6
4
u"l(ﬂj,w

r5{3;61?!w(1,'1(y’));sup w(X\xl)} | . (wewW) . (4.17)

If (F-2-X) is a linear system, then for 0#wex® such that

sup w(X\L) =+ we have Aﬁhl =@, while for Ofwexk such that
wo YW : :

sup w(X\£D<+a5£§" : is a closed half~space in F.
u ) ,w

From corollary 3.2 and remark 4.4 (or, from theorem 4,2
and (3.31) for I'=f", x =0), we obtain

‘Corollary 4.2. Under the assumptions of theorem 4.2, we

have
inf  h(y)=inf _ inf ‘ h(y). ' (4.18)
yeF O#weX” yep : : ‘
ul(y)efd wiu(y))>sup w(X\ Q)

Replacing w by -w (or, alternatively, using (3.33)), we
see that formula (4.18) is eguivalent to

inf  h(y)=inf _ inf ' hiy). « 4,10)
yeF O#weX”™ yeF :
u(y)efd wlaly))einf wixXa)

i

e w 3
§5. The particular case of systems (F —=F)

Let us consider separately the particular case when X=
p u=IF (the identity operator) and £Z=Gc:F.VIn this case,
(F—E+X)-is a system, problem (4.1) reduces to problem (l.li, and
the natural multifunction ™ of (4.2) reduces to the "standard"

multifunction [%:F 2", defined (see[10], [15]) by

% (x)=C+x (x¢F), (5.1)
which saﬁisfi@s (322 with‘xozo and
ST ey (yeF) . (5.2)

In this section we shall assume that Wé;ﬁFc

Remark 5.1, a) The family (4.4) becomes now




: - 15 - _
AL ={yerluly)>sup w(F\ 6)} ' (weWh, . (5.3
G,w '
by 1f P is a loeally convex .space, then for O#WEFx

such that sup wW(F\G)=+x we have A% wm%’ while for Q#wéyﬁ such that
o

e i ; :
sup w(f\&)<+w,AG w -% an open half-space, supporting the set
§ 2

: 1 . - :
F\G {leéeg&P wﬂ(F\G)mﬁ and the houndary of &% w 1S @ support hy-
: 3 W 2 G W ] - :

perplane of F\G; for the definition of support hyperplanss, see
e.g.[11], §1.0), and we have

; 4 : 2t
= inf IntohA ) (543
5 we (F\G) S Gt ! _
where
(P\G) ®={weW|w#0, sup w(F\G)<teo}. (5:5)

Thus, if W=F" or w=FX\{O}, formula (5.4) means that

= inf inf h(D), ' (5.6)
[>

DEQF\G

where $F\G denotes the collection of all open half-spaces which
support the set F\G., We shall omit the corresponding geometric
interpretations of the B's-ocourring in the sequel, and, for sim-
plicity, we shall work only with ﬁ’s written'similarly Yo (3.6),

From theorem 4,1 and remark 5.1 a), we obtain

5 5 : § et 5
Theorem 5.1. Let F be a linear space, let WQF%, let G

s,

be a subset of F such that P\G is W-convex, and let h:F-R, Then

inf h(G)=inf  inf _ ndw) . (5.7)
OfFweW yeF :
w(y)>sup w(F\G)

Again, if W=-W, then formula (5.7) is equivalent to
Anf h(G)=inf  dinf hly)s Sapt : (5.8)
O0#weF™ yéF .

wiy)<inf W (F\G)

Remark 5,2. The family (4.9) becomes now

R ' : ‘
Acrwm1yeF]w(y)¢w(F\G)} (weW)., . 15.9)
’fFféchorollary_4.l (or, from theorem 5.1), we obtain

Corollary 5.1. Under the assumptions of theorem Suly

we& have

inf h{Cy=inf _  inf hCerye, (5.,10)
0FWeF™  yeF
w(y)éw (F\G)

Remark 5.3.:a) The family (4.11) becomes now




X

»

1 86,u

~that sup w(F\G)=+e0 we have a4

fl=Gc P, conditions (4.

oo

Bt
oy
i

& = {yeRlw(y)=sup wE\a)} S tyel), {5.11)

If BPids 2 locally convex space, then for OﬁweF% such
o.=Ps vhile for OfweF® such that
0

sup W(F\Q)<+wpéc w 1S a support hyperplane of F\G.
I8

b} When X=F is a locally convex space, u=I_ and

}"!
13), (4.14) are obviously satisfied (and so
oS
)
4,

is even (3,.,22) for [=["

From theorem 2 and remark B 3 we obtaln

Theorem 5.2, Leﬁ F be a normed linear space, G a subset

of F such that F\G is either a hounﬁcd ronvox set with non-empty

1ntcrlor, cr a bounded closed convex set, and let h:F-»R be an

upper semi-continuous functional, Then

inf h(G)=inf _ inf ' Ryl o (5.12)
O#weF™ yeF 2 e
wly)=sup w(F\G)
Remark 5,4. In the case when h is a finite continuous
convex functional on F, theorem 5. 2 has been given in [9], theorem

2.2 and Addendum, but the proof given there remalns also valid
for any upper semi-continuous functional h.
Note that, again, formula (5.12) is equivalent to
inf h(G)=inf _ inf h(y). - (5.19)

O%WEFA yer
w(y)= =inf w (F\G)

Remark 5.5, The family (4.17) becomes now

Ag'wm{yeFiW(y)BSup w(F\G)} : (weW) . . (5.14)

%*

If F is a locally convex space, then for O0#weF” such

that sup W(F\G)ﬂ+«>'we have A? wﬂ@, while for O#WGF% such that
= : :
¢

- is a closed half-space supporting the set
5

F\G {i.e,, (Int ;& W NMF\G) = and the boundary of AC . is a support
hyparplane of r\CJO}

sup w(F\G)<+0, A

From corollary 4.2 and remarks S5 and 8,3 b) (or,
from theorem 5.2 and (3.31) for ['=[° ’ k0~0), we obtain

Corollary . 5.2. Under the assumptions of theorem 5.2, wa

have

&

Ing h{G)=inf . _ dnf halsr) o {5:15)

O#we F™ yeF
w(y)zsup W(W\G

Note that, again, formula (5615) is equivalent to

inf h(G)=inf in€ h(y) . (5,16}
0#wer® yeF
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Finally, let us mention that, in {l?},\é@zug, tsing le~.

vel set methods, we give similar generalizations of the results

of [7] on maximization of convex functionals on convex sets in

linear spaces.
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