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1. INTRODUCTION

Let M be a semifinite von Neumann algebra and denote by
J (M) -the norm closed two: sided idegl generated byiithe finife
projections of M. Let NEM be a subalgebra of M. A derivation
of N info J(M) is a linear amplication § :N+—>»J(M) satisfying
S(xyﬂ:&x)y+xg(y), for x,yeN. For instance if KeJ (M) then'{h€-5§“¥ﬂ®
S(x) = (adr) (x) =Kx-x¥ is of this *XPQ. Su0h de;fv&*ﬁows fmgdewmnfed
by elements in J(M) are called inner. A typical example of a
derivation which is not inner is as follows: take M%QALZ(W,H)),
where p is the Lebesgue measure on the thorus T, let N=CFT) act‘
on LZ(T}u) by left multiplication and define &(x):(ad P 2)(x)

Z(H

2 T i)

H
Then it is easy to see that S(x e Kl (#p =3 ¢§}@ for xeC(T) .

where P is the projection.onto the Hardy subspace H

and .+Mé% e e o implemented by a compact operator.
We will however show that if N is selfadjoint and weakly
closed in M then all its derivations into J(M) are inner and

thus obtain the following general theorem:

* :
1.1. THEOREM,. Let N be a w —=subalgebra of M anng:N@-?J(M)

" . a'derivation. Then there exists an element Ke€J (M) such that

§=ad'K.

Results of this type first éppear in a_paéer by Johnson
afidi Darrett in: the early 70's (E?]). In that paper Johnson and
Parrott wén£éd fo characterise the commutant modulo the ideal

}{cﬁﬁg{ﬁgﬁ) of a von Neumann algebra N¢Q(#). They noted that
in order to identify it_With the compact perturbations of the

commutant of N inﬁﬁ(ﬁa it suffices tosshow thet any derivation



g:NfﬂaﬁQﬁ) is dnner. They proved thet this s indeed the ecase
if N has nosgertain type II1 faétors as direct sqmmands. To 0o
this they first solved the case when N is abelian the other

ases being rather easg consequences of it. The‘general type
II1“case was proved recently in [7] by different techniques and
using more of the ergodic theory of the type.II1 factors.,

In [4] it is studied this derivation problem in the more
general setting when 3?'ﬁ is repléced by a semifinite von
Neumann algebra, ?ﬁﬁ) by the ideal J(M) and thecenter of N is
assumed to contain the éepter of M. Under this hypothesis it is
proved thatvif N is either an abelian or a propérly infinite von
Neumann algebra theﬁ any derivation of N into J(M):is dnner.

Although the proof at the general theorem 1.1 that wé
present in this paper is inspired ' in certain places from [3]
and [7] our approach is rather new evén for M=Q(ff) . We will
now present some of the ideas behind ouf praof.

" We begin by considering a new norm on the algebra M by
wen =sup { frxl, [ xeMm, Ixl< 1, Nxly$1}, where f
semifinite trace on M, It turns eout that iﬁ many situations the
right correspondent, in an arbitrary semifinite algebra M, of
the uniform norm on & (ff) is the norm [ i ‘

We then prove theorem 1.1 in the case N is atomic an&
abelian. In the proof we define the operatbr implementing %
as }J ‘ (e. )e ' where»ei are the atoms of N’and'the series is
strongly convergent, and we use an adaption of a trick in LBJ'
to show that §T“_ )e, mJ(M).

1

By the atomic abelian case and by the s@Gme argument as

in 4.1 {7] (for M 5(})) we prove a continuity result namely



that if N is finite and countably decomposable then 8 is con-
tinuous from the unit ball of N with the strong operator topo-
e Using this result we prove

¢

e *
that if an element T is in K£=cow<{a(u)u [ u unitary element

kogy dinto J{M) with the.niorm fl I

in Njg;M and implement% 5 on N then it is in J(M). From this

we easily get the proof of the theorem for finite-type I and
properlylinfinite aléebras and also rgduce tﬁe remaininq type
II1'case to the situatioﬁ when N is separable and M is countably
decomposable. Moreover,. by using the Ryll-Nardzewski fixed

point theorem in the same way it is used to prove the Kadison-
-Sakai theorem on derivations of von Neumann algebras,; and

other derivation problems (see e.g. [9]),’we mak§¢§éduction to
the case when N'N'M contains no finite projecfions of M.

1

assumptions: To construct a candidate for the operator KeJ (M)

Finally we prove the type II. case under the above
implementing g‘on N‘we show thét N has a maximal abelian *fsub—
algebra ACN. such that A'IM contains no finite projections of M.
Lo proof of this fact is inspired from [6]. Siﬁce A is
abelian by the type I case there exisﬁs KeJ (M) implementing %
onsl and.the ‘rest of the proof shows. that in-fact.this K imple=
ménts & onall N Tb this end .we proceed by contradiction
following the lines of the proof in [7]. The assumption

go=g—ad K#0 shows that é~o(v)#0 for some unitary élement vEN.
Then with the help of A and v and using some technical deviceé
symilar o 2u an [7]‘we construct a sequence of abelian sub- .
élgebras An in N on which SO behaves as bad as possible. More
precisely we construct the algebras An together with some finite

M . o
projections enEM so-that if we consider M as acting en I (MF)

then the compressions of golAn to the spaces Aneng;L (Mpp) dre



spatially isomorphic to a sequence of derivations

.Sn:L“’(T,u)»~9§B(L2(T,u)). We do this in such a way that the

derivations Srlbehave more and more like ad P 2 and moreover

so that by the continuity result the limit ad P 5 follows .so-
‘ "H e

—normic.continuous° This is easily seento be a contradiction.
We mentioﬂ that the construction of the finite projections e, i
which doesn’t apbpear in [7J, is essential. here and carry

mdst of the technical difficulties of passing frem the. case
M=ﬂ%(ﬁ) to the general case. Moreover the consideration of e,

can be used to slightly simplify the preoof of -the ease M=ﬁﬁ§@

i 7]



2. SOME PRELIMINARiES

2.17. Let M be a semifinite von Neumann algebra wiﬁh a
fixed normal semifinite faithful trace ¥ and assume M and P
are so that a projection e€M is finite if and only if Ple)<oo .
Moreover assume that for any minimal pfojection eeM,'f(e)QT.
Denote Mf={x6M]{%x*x)<<m} and, for xeM , Hxﬂ{ '='f(x*x)1/2.
Let H? be' the Hilbert spaée completion of M¥ in: the norm | Hf’
BE T isa linearlbounded operator acting on Hf then we

denote by

il o =sup{ HTX“? { xeMp [=lt< 1, (}X“{ £ 1} ;

This norm will play an important role in the sequel. Note that
il £ |IT]] and that the equality holds-if M is the algebra
of all linear bounded operators on a Hilbert space but fails

FfoMidis nonatomic.

2.2. Let J(M) be the norm closed two sided ideal of M
generated by the finiﬁe projections of M. Thus an element xeM
g dnad My -iE and ondy 1€ all ﬁhe speétral projections E[tﬂp)({x[)
of | =%} cofresponding to intervals [tﬁx) with  £>0 are finite :

projections, or equivalently f(E[ )([Xlﬁfcog

t po

_Note that if M=B(H) then J(M) is just the ideal of compact
operatoré on H .

2.3. Let Red (M) and {e a sequence of mutually ortho-

nknéN
gonal projections in M. If M;B(ﬁ) then it follows that Hwemﬂ~—70

and Uenkuvw%o. In general this-is no longer true but still we

have (HKenme«~+ 0, HienKMV~d 0. Indeed, to prove this, since



K is a linear combination of four positive elements in J (M),

we may assume K is positive. Let £ 70 and: e=E (K) then

[e/2,%2)
; : 2
fle)< o0 and.s:Lr‘lce {en} tends weakly to zero, ﬂeen{{.P =

= “ene“ 1"2:f(e ene)f-90. But if XeMop llx\l{ el uxné_T then
ﬂ}{enx H.?é I\Keenxﬂjo? [ﬁKH—e)enxllf <
Dl 4 xU o een“'i, +.((k'.(1—e)|[ u enx"u*,e WK i eenllNP +€/2 ,

so that if n is big enough | Ke x “f £¢ independently of x and

thus | Kenm +—> 0. Similary M R late=—> 0

2.4. Another feature of the norm Ml W is that in the
Calkin algebra M/J (M) it gives the same norm as does the usual

uniform norm. !More precisely we have for any xeM,

inf {lx+xl | kegool=int { Il xrll | xesom}.

To prove this we only need to show that if yéM and ¢ >0 then
there exists ¥eJ(M) such that [y+kl <l vl +&.

So let e and to=inf{t20 | ‘f’(et)<0<>} .

2 ey LR

°

Note that for any t»0, (\y(T—et)\\ ZoE e I{':—-yeto}*_g/ﬁ; . ?hen

key (M) and W y+kl = (ly(1-eto+g/2)l\ £ t_+ g/2. Since f(eto_€/2)=mp
there exists a projection e_< eto" 8/,2’ such that *f’(eo)éh Then
vl 2z llf&’eoll,f 7 t,"€/2 so that qyll 7 (tof g/2)-¢ 7|ly+kl -€. '

2.5. Since the norm MW W is a supremum of vector norms
it is inferior semicontinuous with respect to the weak operator
topology. Indeed if Ti tends in the weak operator topology to

T then (TZll ¢ 1im sup | T} so that
i



e 7 o

¥
4

ol =swp {ITH 13em, PETI<1, WEL 2 152

als
i ;

lim.sup(sup‘{“T.gﬁ \ %EEM,f(%*g)é1,'H£“ré %)?.

=1lim sup. iz, I
: ,

2.6. We now prove a version of Johnson and Parrott trick

in {3];

LEMMA. Let N¢M be a von Neumann subalgebra and TEM such
that [T,N]QEJ(M) and T€J (M) . Suppose the seti})={f€ () [

HfoH ess: UT-“ } contains no minimal projections of A.

ess
Then there exists a sequence of mutually orthogonal pro-

jections {enk in N such that

I e Te |l > T el

o

Proof. Let “¥ be a maximal chain in g)and let fo=inf +

') : QD s iy : ' X

Suppose foelf. Since §’ has no minimal projections of N, there
exist nonzero mutually orthogonal projections f1,f2 in A -

with £ =Ff
o

1+f2. Sipce [T,fijéiJ(M) for i=1,2 we have

\VT“éss :ilfono“ aEs” '{Uf1Tf1“ ess '’ nfZTEZHess }«

which contradicts the maximality of ??. Thus fog{ﬂa so that
e = | <l . Then the chain %'={f-f ’fﬁﬁf} decreases
0 O . ess ess o

to 0 and since

max ‘{ﬂ(f—fo)T(f"fo)“ g ufono‘leSSX: “T(‘ess 4

«



we: have that | FiTEY| - I\ for any £' in ¥ '.

ess
We can now construct recursively the required sequence
{fnﬁn&N' Assume £1, ...,f! are n projections in %' with
i Lot T | e | i - 5 . Com ol T
gt Jeeei=er gl i w0 mkealt inee B deva

chain decreasing to zero, by the inferior semicontinuity of
the - nerm - W+ it follows that there-exists s projection

£ e ikl £

ot such that

1éfn

ligp-£a, PTE-EL Il > i mendllia o

But by 2.4 i EapE iz ol I cas® |l = . Thus

s ymEesr yller ol s soehat £ o0t <4 will o

Q. E.Ds

2.7. Let now M be an arbitrary semifinite von Neumann
.algébra and NEM a weakly closed *=subalgebra of it. Let
§:N +>»J (M) be a derivation. By [b] Sis norm continuous and by
[Zﬁ]it is weakly continuos. Let p be the unit of N and
K=&(p) p-po(p) €J (M) . Then Kp-pK=5(p)p-2pJ(p)o+pd(p) =

=(S(0)-pS(p)) - (2802 p-2§(P)p?) +p§ (p) =§ (p)  so that

(e¥s!

(§-ad k) (p) =0 and (§-ad ¥) (x)=(5-ad K) (pxp)=p(f-ad K) (x)p
which shows thatg-—ad K takes values in pMp.
This shows that in order to prove the theorem 1.1 we may

assume the weakly closed *-subalgebra NcM has the same unit as M,

¢

i.e. N is a von Neumann subalgebra of M. Therefore in all the
rest of the paper the subalgebra N will be considered to have

the same unit as M.

2.8 . " Liet be a family of mutually orthogonal pro-

{Pi} ser
jections in thescenter of M with”Z:pi=1. Assume that for each
it

i there exisks K eg M)y = T, ) such that S(x)pj=ad LONEY

Pf Pi



for all xe& N. Then K=§; Ki is in J(M) and 5 =ad K on N.
. ieT :

Since in a semifinite von Néumann algebra M there exist
mutually orthogonal central projections Py with Z}pi=1 such
that each Mp. has a nogmal semifinite faithful trace -Pi with
,"a"projectio; feEMp; is finite if and only if -?i(f)4100 and
if f is minimal thei'fi(f)é 1", it follows by the preceding
obsgrvation that igssufficient to prove theorem 1.1 for each
Mpi yoodeies under Fhe assumptions 6F 20

2.9, Lek NOQ;N be a finite dimensional von Neumann sub-
algebra of N, Glio the unitary compact greoup ef NO ang . X
the normalized Haar measure on QLO.

Then K= Sé(uﬂfd)&u)eJ(M) satisfies for any uofflgz

KQO—uQK= fS(u)u*uodk(ﬁ)fjﬁoé(u)u*dX(u):

1l

gg(u)(u;u)*dX(u)~ guog(u)u%dX(u)=

1l

(Stu wu”a) - Sgoé;(u) u () =

I

Stag) fadim + (o S u*akw - fu S a"arw=§ w )

Thus (g—adk)(xo)=0 for any XbENo' In particular this
shows that if N is a finite direct sum, then to prove 1.1

for NeM it - is-sufficient to prove it -for eachs summand.

3. THE ATOMIC ABELIAN CASE

‘In this section we prove the theorem in the case N is
isomorphic to the-algebra  1%(I) for a set I of arbitrary

cardinality.

fordosthis let {e.H.. be the minimal projections of
i s AR .



- 10 s

i

N="]2(I) ‘and note first that the series >, 5(@.)ei is convergent
; e
in the strong operator topology. Indeed, the sequence i$ bound-

e ek Sras
ed because if e,',ez,..‘,,eneleijiCEI then

n 5 '
FE > Sle e U 2 Sile e ki)
s k]mlﬂg e
gg ) 8 ok n
=h St a e V(T L2 e g d i)y
o e e

where X is the normalized Harr measure on the thorus “En and

z=(z1,22,...,zn)‘e i[I‘n sososthat

I fj&ek)ek <« Siscs 2pe) (2,0 || dhiz) ¢ 1D,

= S = s

Now if M is normally represented on some Hilbert space
’,f/{,é(.ﬁ and £7>0 then there exists a finite set I,& 1T such
that (1§ -2 ei)§[{<a and thus for any finite set J &I with
1&10
I 0 I =0 we have

b 22 Stepegleeldl + [ (Z Stee) (5 e
ey Er e Pl

which shows that Zg(ei)eig is convergent for any :i@ff
jie s

‘ <
Let T=zg(ei)ei, Sinee' ' -is a  derivabion and
1ET

'_ (5t e de =8(e. )ei we have

Sel ) o o o

Tey —e; T=gle; le; -2 e, dle;le;=
@) ) Ol LA BRRT )

=ole; ey =2 Ble; ejle+fle; ) T, -
0 G el

:&(e. b= --,S(ei Je i whle, h=gle; )
1) @) O O : Q o



Since both 8 and ad T are weakly continuous on M and the linear
span of {ei}iel is weakly dense in Ne= [°AT) it follows that

g=&iTonN.

We show-that T is 4n J(M) ., Suppose T¢J (M) . Denote by
= .‘ -O E : - o ‘ = ‘ . \}
{£ePm | | ez we sl e

‘Theng?)contains no minimal projections of N. Indeed, because
by the definition of T, foranyad e.Tei=O. Thus by Lemma 2.6,
there exists a sequence of mutually orthogonal prOJectlons

{ ’BnéN in N such that
| ' i
fl EorE N w e ,\ess/zyo.

Moreover , by the inférior semicontinuity of the norm m il
we may assume each projection fn is the sum of a finite set
JHQ;J of minimal projections in N. But by (*) we have

T =Z' g(e.)e.=g5(z zle )(24 zjeJ )y d .X(z) v

jes_ FEEd ieg jed_

g mf e 2,80 ( > E.e.)fnl.‘l a\z) > zlleze Il 2 [}'fl{éSS/Z :

n¢ L

1 & £ 1 6 j ]
IS0 Lo aied
which implies that for some u =:§: Z.lei ;
ieJd
n
e ot yuses il Slol /2

Let now u:EZ?ul. Then, for each n,
neéeN

(‘ :'f. ,'k —-(_\‘ =~ (\" *
%1U<u)u*fn fnS(ﬁnu}unfn fné(fn)fn fnC(un)unfn 4

so that:



| £ Stwuxe I = [Hf % ya £ ) 7 lo /2

n:-=n ess

Since Slupu® is in J:(M), by Lemma 2.3 -this. is a contra-
diction.

Thus ZLJg(ei)éi iein g, and the ease N=- (T} is selved:
1ET ' :

4, THE CONTINUITY RESULT

For the next result we assume N¢M is a finite von Neumann
alogebra with a normal faithful finite trace & , G(1)=1. We

denote by ﬂx —Z (x* x)1/2 , X EN.

4.1. PROPOSITION. Let &:Nt+>J(M) be a derivation. Then &
is continuous from the unit ball of N with' the strong operator
topelogy into J(M) with the norm 'N lK 2 : e

PROOF. We, first prove that if {f is a sequence of

nJnéN
projections in M with g(fn)v~a0 then l@ )m =3 0. - SUbpose
ng(fn)ﬂi does not converge to 0. By taking a subseguence if
necessary, we may assume \“S(fn)ﬂl'?' ¢70 for all n and

> ()
Z:@\Lny<00. Let g be the supremum of {fkgkzn' Then

B tends to zero with n. Denote by & the support
kyn 4
e gl e Then. S £ cand 8 is majorized by g .and thus &
m’n- m nm-"m B !

being a trace,'e(snm)éé(qn)’mﬁﬁvol for each m. Since {gﬁﬁném

is

T sewl {f g, ﬁjnem is decreasing so that {SnmknéN

™ ey ] s to
decreasing for each m. Thus {fm bnm}ném increases to £ soO
- Sir =gt ' e S (f
»Lhat {@(fm ”nm)jneN is weakly convergent to Q(“m). Bv the
inferior semicontinuity of the norm Ml Ml (cf. 2.5) it follows

that for.a fixed mdf n-is big enough Hg(fm—snm)m T2



(,,

We may thus get by induction an increasing sequence of

integers NyrDyye .. such that the prOJectlons hk:fn ~Sn o
ae ke karlaioke
satis £y Al g(hk)m’Z c/2. These projections also satisfy
G(hk)éZank)'"E9 0. » |
Moreover since hkgf and s o Tes the ‘supvort of
G TS R
| £ rivby > the: definition of H. we get
S ey '» "
g h, =h f 5 £ hioeh s h, =0 .
k Ny Ietie Ny "Ny g Dy kol Ny gDy k
Thus. h. g =0, in'particular:h. f. Ffor lzk+1 and so
k Dy : k1

hkhI:O which means that hk are all mutually orthogonal projec-

tions. Since ‘we dalse have M g(h Il  ¢/2 we obtain a contra-

i)

diction, by the atomic abelian case ( %3) amneliads B

Now we turn to the ageneral case. Since | ﬁ2 induces the

strong operator topology-on the unit ball of M, we have to show

—3» (0 then

that .if (x_) 1is a bounded sequence in M with I x |
man D2

k\é M e 0k STedis elear Ehat e only need to nrove this
ﬂr} i\?(v\\\ ai,

implication in the case x are selfad301nt elementq .Moreover,

since Hlxn}“ = “x 12, it follows( Mgk o Eixhﬂ 5 o

“(x

\2v~a0 and |l (x )_\}2¥“»a0, se that-it ds enfficient

1’1+ n

O prove that it X, are positive elements and |l x ” “*70

(equivalently E(XH)HA%O) then “V%(Xn)m — (.

27" be the diadic decomposition of X, - Tt

follows that 3 )Pwaao for each m>1. Let € »0 and m0}1 SO

= -
thati 2 224 ¢/9 » Then by the first part of the proof

there exists B such- that for n}no, }ﬂg(en)m < L2 For afy



MEm .« Thusg . . fox n}no we get
m
_, <f_- | s -
Istx e >2™ ISl « Balx, omee
: m=1 mym

The above continuity result will enable us to reduce the
theorem to more tractable situations and te:prove it 1n seves
ral cases, We will actually use the following consequence of
Al

4.2. COROLLARY. Tet KS=EBW {E(u)u* ﬁu upitary elefient i N}e
Assume N is finite and countably decomposabile and denote by &
a normal finite faithful trace on it, &(1)=1. Given > >0 there
exists & >0 such that if xeN, [xlz£1, ilxllzéd\ then

(HTXUEé}3 and fﬂxTHEE% forwall TEKg

PROOF. By the preceding proposition there exists = >0
such that selbe 1 1\y'ﬂ2<ﬂx implies ﬁ}%(y)m 4 B/3, since
- S(u)ury=S(y) -udlu*y) and | u*y 5= Hyllz it follows that

0 Seury Il < (5ol + NSl < 2p/3

for any unitary element u in M. Taking convex combinations
andwsince -the norm It W is weak inferior:semicontinuous.we

( oz E : TeK..Simi hvTll < » . s
get  HTyli< 3} for all TL,bf81mllary fyTll < ; e

Actually 4.1 and 4.2 will be  used through the.followinq
technical result which roughly shows that whenever there
exists TéK¢ (defined as in 4.2) with-ad T=§ then Te&T(M).

4.3. PROPOSITION. Let N¢M be a finite von Neumann algebra
and %PiXiéIg Z(N)va partition of the unity with central projec—

tions of N such that NP is of eountable type for all .i.
Assume the derivation =+ & :N =>J(M) satisfies g(pi)=0. IE

TeK; is such that ad T=§ . Then either
C 5

(’D-— . = (’—\’ { m —_ i »
D-fee P { leve I = IT U L

™

contains ho minimal projections of N, orihen TET{M).



PROOF. Suppose T | >0 and .} has no minimal projections

©
ess §

COf N: By 2.5 there exists a seguence 0f mutually erthogonal

. . & ' % i ; i H ‘}" ' s
projections {eninem in'N such that llT&WyM !(T{{eSS/Z, B

By the inferior semicontinuity of the norm U W for each n we
can find projection b in the von Neumann algebra generated

by {pigiﬁI such. that an 1s countably decomposable and

iTe . 0l 20T _ /2.

Let p be the supremum of the sequence.{p Then p

nwj neN’
belongs to {piﬁs (so that %(p)=0) and Np is countably decompo-

sable. Hence we obtain that

%) : \ Te,p I Z |T | 2.

1§
Less

‘Let zp be a normal faithful . finite trace on Np, ife) that-
> {
“pen“L converges . to zero. If we consider the derivation %
induced by § on Np, then by the preceding Corrolary, and since

obviously Tp ek it follows that HlTenpjn = ﬁ\Tpenﬁn

clia
also: converges to 0, which contradiets (*).
| QB D
We end this section by proving a useful converse to the

preceding proposition. Note that the proof doesn't use the con-

SEinuity result 4.1,

4.4. LEMMA. Let N be ah arbitrary von Neumann subalgebra
of M and & :N\+—>J (M) a derivation. If there exists KeJ (M) - such

that § =ad K there exists Té&Kg such that & =ad .
PROOE. -Assume &irst: that P(K*K)a o Tet

c=co" {gKu* lu unitary element in N }.



Then vl ol Je wf for alil y%in C and C is a weakly compact

1’; ==
convex subset of M. By the inferior semicontinuity of the norm
i &Pit follows that there exists a unique element y _eC with
| HfzéﬂY§$; for all yeC. Since uy_uéC and uuyou*uf = “Yo“f
it follows that uyou*=yo for-all unitary elements . ueN, Thus
yogCﬁN'.

Let's show now that also for arbitrary K, there exists

some yOéCﬂN'. Lot Kn be a sequence in J(M) with f%K;Kﬂ)<.a%

fx Il 0K [and | K—Kn'li —> 0. Let

C =EBW{~uK u* | u unitary element in N:}
n n :

aﬁd yné CﬂﬂN'. Lét y be a weak l;mit‘point of {yn}n (which is
bounded in the uniform norm by Il Kl ). Then clearly yeN' and
since ﬂK—Knlih~»O} by the weak inferior seﬁicontinuity of the
uniform norm, yeC.

Now- denote by T=K-y. Then K-y'€ K—C=EBW{K—u*Kulu unitary
element in N}:Kg and morecver , since yeN', ad T=ad K= §

Q.E.D.

5. THE TYPE I AND PROPERLY INFINITE CASES

We first prove the theorem when N is a finite type I von
Neumann algebra. Since N is finite, there exists a partition

in the center of N such that N is coun-

.0of the unity {p;
i

[ier
- tably decomposable for each i. By §3 there exislo an element

)(Pi)=0 foE ol iy Thus we may

O

K, €J(M) such that (h=pd &

. assume that § vanishes on pjkiel'

e

The unitary group of N has an' amenable subgroup Q4L such

N1 . - " .
thde Al =N . T o Lat M= S&(u)u*du(u) where |1 1s an



invardiant mean of @l and the Integral has the usual signifiance
(see e.q. [2]} A 9s L Thens ocbviously TéKg and
by the same computations as in 2.9 we have
e :
e - W, & U&
Ty =1 Pata s iln Oy 390 o '
S B s A

. @ g . .
Since both oy and ad T.are weakly continuous and N is

the closed linear span.of QAL ik follows Ehat Sx:ad T on.N,
By 2.9 we can now consider separately tﬁe case N is completely
nonatémic and the case N‘is atomic;

In the first cade;, Proposition 4.3 triyialliy chows that
Te (M),

In the second case (when N is atomic) we may assume the
pfojections {pi}iél are the atoms of Z(N). But then the inte-
gral Py S g(u)u*du(u)pi= Sg(upi)(upi)*du(u) is norm convergent
(since N ig finite dimensional) and thus'piTpiGZJ(M). Hence

b
T flele |

essz{[T[[eSh'>O for some minimal projection. e.of N,

“and p is the central support:of e; then 0=

PP || s 7

7(\@Teliessb 0 ‘& conbradiction. Thus by 4.3, WeJ(M).
Assume now that N is properly infinite. Then N and M are
it > e
isomorphic to N1‘g}63(l“(z)) and M1<$§ﬁ(12(z)) respectively,

(where N, C M., are von Neumann algebras), so that the inclusion

1 1
NCM becomes N1 éifg(lz(z))cM1<§3§3(12(Z)). Note: fFrst that 4Ff
the dérivation.giN%~ﬁJ(M) vanishes: on ‘€1 &}ﬁ%(lz(z))CN=
- =N, @?§3(12(Z)) then éiven a unitary u€N1(§>¢i we have for
. any XE:CiM @ﬂB(lz(z)):

so that ¢ (u) € J(M) N (€T SR (B 'OM, @@,(12 (z))=J0(M) N

Thus 573 0 on  N.

1
o8

N M & @-«IB_(lz z))’

_ ££€%f.Z'5é:§'Q



From this it follows that to prove the properly infinite
case it is sufficient to prove the case when 5 :N=35(1202))ww9J{M),

Let D be the diagonal wvon Neumann subalgebra of CB(]Z(Z))
and L the von Neumann algebfa generated by the bilateral shift
u. Let  og)=uxu* for x &D be the automorphism of D implemented

by the shift u. By %3 we may assume g vanishes . en D. Then Tor

any x&¢D we have

xg(un)u_n=5kxun)u—n=5(unm_n(x))u_n=
=St M =S oI el e,
@ 18}

which shows that ¢ (u )u_QEDTWM for all-heZ.

But if we take T to be a (weak) mean (after n) of
g(u“)u"n then TeD'\M and by the preceding pfoof of tﬂe type I
case .
5{L=ad T and TEJ(M)‘.

‘Thus ad T equals & on both D and L. Since § and ad T are
weakly continuous derivations if follows that¢g=ad T on the

von Neumann algebra generated by D and L, which is easily seen

to beﬁg(12(z))-

6. SOME TECHNICAL RESULTS

T prove. the remaining type II1 case of the theorem

we need some technical devices that we prove bellow.

6.1. LEMMA. Let N be a von Neumann algebra without
atoms, ¥ a normal faithful state on N and {wn}n a sequence

of unitary elements in N such that ‘y(wf) ";T% QieForsall k20,



Then there exist: unitary elements {Vn%n in.Nosuech: that

WKy o i = s
&(vn)—O, k#0, and !fwn Ve { >0

PROOF. The proof is the same as tﬁe PEeOEReOE 1. 30 i [7]
but we give it here anyway for the sake of~completeness;
Since N has no atoms each W is contained in some diffﬁse
abelian von Neumann subalgebré AHCN with séparable predual
and (An, %ﬂA ) can be identified by some measure preserving
isomorphism ?% with LQXT,M) where p is the normalized Lebesgue

measure on the thorus T. Morover ‘fn can be chosen so that

f (w )=f sowhere f (eZrilt :ezmlhn(t)
T n n

)

for some nondécreasing
function hn:EO,1J+M¥§[O,T]. By Helly's selection principle
there exists a subsequence *{hy‘}n tending everywhere to some

-nondecreasing function h:[O,T]““ﬁ{Q,1]¢ Thus, i£ f(eznlt):
=eznrlh(t) Ie

then { tends everywhere to f so that by

!
k Sn
n

Lebesgue's theorem gfi du w*ﬁgfpdu for all g, which by the
F n

hypothesis implies gfpdu=0 for p#0. Thus gq(f)du= rqdu.for

Laureant polynomials é so that Aggfdu= ggdu for any gé L ik

In- partieular ifvwe define gz(e2Wis)5_{1 %f 0$S<t. , - where
: Qe fesed

ZzeZﬁit, then we get iﬁudX(S): ggzofdu=.§gzau=t, X being the

Lebesgue measure on [5:{5. This implies h(ﬁ)it énd hence

f(z) =2z 1s the ddentity function on I Now, sinee hk are
: n

monotone and converge everywhere to a continuous function it

follows that hk converge uniformly to h, so that
o :

ﬂ’fk —fll-§0. Since any. limit point of fk was shown to be
n n

equal to the idemtity £, it follows that !}fn_f | —o.



We -can now take Vnz‘f;1(f). Since gfpdu=0, T%VE):O

i asias fo o R Jlt oD - : :'_
for all p#0. Moreover an vnli— \\1n(wn) fn(vn)h =
et o 0

GE D

6.2. LEMMA. 10._Let Ne¢M be a von Neumann subalgebra

‘such that N'\M contains no finite projections of M. Let ¢ >0 and

e, f two finite projections of M.There exists a unitary element

ueN such that Hfue\LP <& . Moreover if N ds-abelian then given
any ny1 there exists a unitary element uéN such that HfukeiLF<38
for k20, Tklan:

E ; :
20. If N is finite, M is countable decomposable and N'YIM
contains no finite projections of M then there exists a maximal

abelian *-subalgebra AcN such that A'M coﬁtains no finite

préjections e M,

PROOE . 1°. Tet NFn be the semifinite faithful trace on

NS

2 ‘ : L :
M given by an((xk)lkhan,kﬁo)é-;+(xk)' Denote by

2n

L ( % a9
o v - i u unitary element of NI M ~. Then

oo el V. o i ‘

fn(§)452n'€(e) and [l x ”“Pﬁ%2n | edip.. for any EGKZ. By . the

inferior semicontinuity of the norm (1 ; there exists a

n

ni % CE ey Ix < I . T
unigue element xa;Ke with “Xollfn “Hx R for all X“Ke o ButE

if N ds abelian them for any unitary selement meN, if Gé(uk”ky11k#6
" g i

“~ ,n,-w 2 ey (e M i % { S i
.~ then uheu*c;Ke and lluxOu*hf; “ltxolWQH SO that, by the

3 '. . e N_k:*_—‘ 6 ek o) i < ol
uniqueness of X, ¢ UX UF=X . Thus i X, (kk)(kkan,k#o%o then

xk¢0 for some k and ukxkzxkuk for any unitary element ueN. Since

in a von Neumann algebra N any unitary element veN can be

written as ﬁk for-some ueN, it follows: that VX =XV for: umitary



elements veN and by taking linear combinations, YR TRy

all yeN. But O~:kaﬁf < uethf and x, €N'1M, a contradiction.

If N is arbitrary we take M instead of M°" and the proof is

Vo Eor

the same.

O

2 The argument we use is symilar to the one in [61>

2.4, Let {fnﬁn be an increasing sequence of finite projections
in M with fn'T1. We construct recursively an increasing sequence
of finite dimensional abelian von Neumanh subalgebras {Anﬁn

of N such. that if {eik1di¢k are the minimal projections of
SRS T

i e
=Y N A o
An Sen LA&@M(‘n)ll {\> ey f e \i 3/4 . Suppose we con-

.
structed these algebras up to n. We figt prove that if peN.
then NéﬂMp contains no finite projections of Mp. To show fhis
let £#0 be a projection in NéﬂMb and- -z a. projection din the
center of N.. Then wafe NéAMp and i¥ f is finitesin Mp then '
ZE s finite, in sz. Take z to be’so thét fz#0 . and pz divides

z, say n times. It follows that the inclusion NZCMZ is the

DM CM @M hat Flaaf @G e My
same as sz(g;dnxn sz & Mnxn and that zf'x ln (sz @"Mnxn) ()

{\(MZp & Mnxn). Hence f'éNéﬂMz=z( MyzeN'ONM and i fF f is finite

then T' i finmite; contradicting the hypoﬁhesis.'Now by 195

follows that for each p=e? there exists a unitary element

n

: - = * 3 -~ e n =
u(%Np suell that if e is-the support of x—eianei then
Pleueu*) = |eue M%~<1/2 ”XILE. Aproximating u in the uniform

norm we may assume ‘it has finite spectrum so that u=§2%iei

with i:ei=p and in{=1. Then, since Plxuxzu*)<e f(eueu*), we

have: [ x 1§=2 | x W;* = “? < % ﬁ?+i§uxu*[L§—2f(xuxu*)=

= I x~- * |l 2_{(<M* 5\ & = ‘ H 27 S \2_

= lX uxu® g ‘{3—- | ‘,._i_d. e 1)eixej 2 & 4 G \e Xe u ‘P \ \\70
it : i :

= :?_T.I‘.\eixej “ 5

i S



| Vi ‘ 2 5 s
Thus L,Iteixei H,ff;z/zl HXU“{). Let afdA  be deflned'by

1
o S = -
A e =span {ejﬁj Then “E(A;)VWM(fn+1)l‘ff:3/4 n - J-n+1 “
— i . 2
3/4 | EAr,lﬂM(an)H s

Applying this trick m-times, where (3/4)m nfn+1

we get finite dimensional abelian algebras An=A§CA;CA§C}..<:A§

with

5 ' a2
”E(Akyﬁ'ﬂm(f 'QM n#ﬂlif

<3/4 ||E k+1)
n

n+1)[\f

so that if we define A =Am then
: Il

i m 2 n+
At om et I f<(3/4) “\fmi Iy -

| E £13/4)

LAz [A Suppose e&A}ﬂM, e#0, ig a finite projection
m
of M. Since fnT1, there exists n- such that ﬁfnefn—e ﬂf<ﬂ/2 e
By the construction of Aﬁ:A there exists a partition of the

unity e ey with projections in A such that

’],
I ?eifneiﬂf41/2 letp - But then

so that, since e:lideiee

which: is a contradiction.

Q. B D.

11%4(3'/4)“

Lo
|

1



In-the rest of this,secﬁion NeM will be a type II,I von
Neumann subalgebra with a fixed normal finite faithful trace G,
t(1)=1. The norm on N given bv & is denoted ‘ﬂx H2=6(x*x)1/2,
XeMo o TE BeEN is - a . von N%umann subalgebra then'EB denotes the

unique normal G-preserving conditional expectation onto B

et s b r

6.3. LEMMA. AssumetACN is an abelian von Neumann subal-
gebra.-of N such that A'\M contains no finite projections of M.
Let %0, n»1, e and f finite projections of M and v a unitary
element in N. Then there exists a unitary element ueA such that

lf(uv)ke {2 for any k#0, |klzn.
5. 't ‘

PROOF. Since e\/f is a finite projection in M and
¢ Vf)(uv)k(er)Nf Z'Hf(uv)keﬂ , it*is suffioient to. prove the
statement when e=f. Since [le(uv)keﬁf = ue(uv)"kelLF we only
need to prove the estimates for k0. We‘il actually prowve the

following more general result:
[}

() ke e Sl el S eN. 15 & finite selfadjoint set of
norm one elements containing the identity and. e, £ are finite

projections  in M- then there-exists o unitary-element uehA such

that
f 5=, T |
E Trolase e g - L&
Oif—"l als \F
i - Cr
for any l<k<n and XorXqre o rXy Eday

~

Weitirst prove. ¥ in the case ﬁﬂxe)ﬁgczxx), T(fx)gcg(k),

xeN, , for some constant c>0. Let QE?{W partial dtsemetry in A )
k
¥ 2 % : ¢ ACH T
\{on‘ﬂ}(WXi)GILD Zgglwrw) for any 1gken, X Xqr..., % €S k
1w ,

and consider on UF the usual order: wog‘.w1 i wo'is a: restriction



(@

of Wqos il.e. wo=w1wéwo . The set UL is clearly dnductively

ordered. Let u be a maximal element of it and suppose u*u#it.

Behoe D d, = (1-u*u) A(1-u*u) , N,=(1-u*u)N(1-u*u) and ??éz

k
O(FT (uxi))(tfu*u)\iékén, Xy 1K p e

Nt .,xnefy}. By 1.2

=‘%1—u*u)x

in [ﬁj given any » »0 there exists a partition-of the unity

; ; Sl = =2
€yreeese In e such ‘that Zilleiyei EAO(y)ei[lz_
= gy " :
= “deiyei-EA(y)(lz égé(1—u*u)=% %}Jei) Eor ald yé@g. Tt fol=

lows that for some eo:ei we have

NN
A
N
R
?D",

o

(*&) ‘ H eoyeo”EA (y)e

: - e *
Let nyr,s30, xe%’, y1,.a.,yse¥;, RIETH Yoy e o n )Y €T and

5 : S 5
w&AOeO r lw|<£ 1 and denote « =[?(¢x';j}(yiw*) 'fé(Z(wyj)xe){,

with the convention that a product -over a void set equals s

If s=1 then by the Cauchy~Schwartz inegquality we have:

<o [fyuypxe Ly [ ex' My o)y € o4 evwvpel ety

where e is the supremum of the left supporte of all the elements
, k
of the form zy.x, with xe%¥, V1Cw and ZEE 1 u E (yi)eO \

Beken, v f~J}, and £ is the supremum of the elements

j e v o r LR
fy with yg@b

If sz2 then we have

S S"'l -4 (
= et do vk o g o o
I ;}1(wv ) xe hr §;1ﬂ L\(<h}{gy3)eo & ol



e mEe] - s—1
S"'j B i 3 H S.\.,__Y i
W TE By e xe ety SOE (v b x Lo
e Pk S S f L ey A s te P
..-—‘(,‘ j It } c i
: WE - > il i Lo g Ao
a __‘{(L(EA(yo)eo eoyOeQ)w zyxe lp Lledes, Be e Va Y au o

£}

S O N

where e, £ are as before. Thus if % denotes the sum in the
right hand side of the above inequalities then by(%*) we get

1C1/2%1/2 “eo\\2 , where N, N and N. are the number

2, sSNN*
pesN ON .

of elements in‘ﬁpéyo and respectively ‘%ﬂ.
Thus, by the Cauchy-Schwartz inequality we obtain:

r

P T : B. FrSs o
o g ||ex 331(yiw*)y‘fyeo\L€ (pr | fwe Uf) <
: = G 1/2
2 ({fyeo\gTe (B+ Il fw eU\F)gﬂ ueol\2(§+ | fw' e N{) o
= 2 - 4:1 /2 2 1/2 i } s S': ]
< ONNONTNI“ d eo ﬁ 2+£ l o h 2 \\ fw l*‘ {/\
Thus if 5 Tsrsosthat nNNzNWC‘gq/%:g2~2n“1 and AFf using

6.2 we choose w to be a unitary element in AOeO=AeOQeOMeO such

1/2 enm2n~=1 g e
\ffgz leg | 5 + then we gete<€2 T ewle ).

ERatiE

u Fw'e ||
We now show that if w is chosen like.this.then uO=u+w

contradicts the maximality of u. Indeed we have for any 1<kgn

SROER R e B
o 1Y el

= 5 £ -
| ﬂfxo(ik:(1 (utw) x,)e Uf éﬂfxoiW; (ux,)e “T’+ el

where the o 's appearing in the sum are of the form estimated

above and there are 22k~1 terms .in that sum. It follows that

> '«{;g@(eo) go-Ehat

(s



el gluru) +6(whw) ) =85( (utw) * (u+w) )

This ends the proof in the case 51 xe c@(k),\f{fx)écg(x),
tor XeN
To prove the ganral cage, Jd.e i oy aybitudicy e, f,-note
that given any ¢70 there exist finite_projecfions e',f'eM with
le- e’H% £ 8/3, ﬂfnf'wfé ¢£/3 and such that flxe'lcenlix) ,
cz(x) for some constant c>0. Indeed, siﬁce Tle),

P(f.)eN, , there exist X,YQLT(N,Q)+ sueh that f%xe)is(xx),

PAE e

{fo)=G(XY), for xeN. Thus if En,Fn are the spectral projections
of X and respectively Y corresponding to the interval [O,n]

a A A 2 o - -
then E 11, F 11 and f(xEneEn) \RE XE,e)=G(E xB X)=TCXE X)cng(x)
and similary fYananLgna(x). It follows that [[E CE —eﬁ(n*~>0

HanFn—fiLPPwﬁO se that if en 7 fn'are'the spectral projections

of EneEn and respectively anFn corresponding to the interval

[1/2,03) then an easy computatién shows that |e! _e‘P ;

{{f5~fu$-~90 and jﬂxe') ZW(XE ek Lq2ﬂ6(x), ~~~~~ f(f'x)gZ{%anan)é

£2nGix) (sée B g, e A {8]). Now by the first part of the

‘proof given £>0 and nzl- there exiskts a unitary element ueh

k :
such that [lf X §Y1(uxi)e'ﬂf L8/ 3 for any 1ékﬁn,'Xo,X1,..o,Xk€Q§J
But themn
k k
b TT Lux el 2e/ 3 8w T Jeltllipe 2e/3+8/3=€".
el \t i=1 {
Q. EaD

6.4 COROLLARY. Let €0, nzl, e,f two Finite projections
of M and veN a unitary element. There exist a finite projec-
tion en&M and a unitary element weN such that:

10' 7xenwkeh)=o for any k#0;



o ) S
aie e doy f{ewe J< B

3°. lfw'e <€ , for kf0, |klen;

(o) : > o =
47. llw-uv li< ¢ for some unitary element ucA.

>

PROOF. First we prove that given any ¢'»>0 there exist
unitary elements u¢A and w'eM and a finite projection eneM

such that:

i 5 s et
a) ece, Ple-e Jce';

(%) b) “fw'kenlhzg' i For ik#0, Tiklens

¢) ﬂw'—uvﬁé 3'3

dfRlow e l=0- F6r AL B0,

Then it follows by a) and d) that Yf(w'ke ﬂé elifor. any k#0

n

and thus if ¢' is small enough and ¢'2¢/2 by 6.1 there exists

a unitary element weN such that (gw—w'ﬂ £ £/2n and f(wken)iO

5

for any k#0. But then wakenUQ; ﬁfw'ken“ +n HW—W'K<8, for k#0,

[kign_and fw-uw | < | w=w'| +)iw'~uvﬂé €/2n+E/2¢ ¢ .

Now to.prove (%) we let’' ¢'>0, n'21. By the preceding

£

lemma there exists a unitary element u€¢A such that
JUer)(uv)keu~Q<g"‘for k#0, |klgn'. It follows that {1%e(uv)ke)i&

Helhp'ﬁe(uv)ke w€<gﬂ ﬂe\(@ rforall kA0, L Lnt . and

ﬁ%e(uv)_kf(uv)ke)= ﬁf(uv)keiﬁgég"z. If ey is the spectral pro-

jection of e (uv) kf(uv)ke corresponding to -the interval

(0,5?] then eﬁée, ei(uv)“kf(uv)keéfgg"z and e—eiégﬁu%ﬂuv)ﬁ%ﬂuvﬁ%f
; it .,.""'1 ll‘2 W . {1,

so that~f(e—ek)ée ghdi=g N o Tiat en:/N@£1k+O, {k@:n}. Then

e <€, f(en)yf%e)—an" and Hf(uy)kenﬂzg Hf(uV)ke' e

Lemma 6.1 shows that if n' is large enough and ¢" is small enough
then there ewmsts a wundary element w'et sueh dbot

with g”ég'/(n+f¥/ Tﬂw’{e)zo for-all k£0 and | w'—uv“ <.¢'/n+]



k=1

But then wa'kenﬂé > a)p(

I\ £ ol
p=0 L Ei(uy w'=-uv) (w)

ki'/(n+1)+a'/(n+1)=(k+1)é'/(n+1)££’ which proves (*).

7. END OF THE PROOF OF THE THEOREM: the type II,i case

In this section we prove 1.1 in the case N is of type II1.
By 22 7:and §5 thisg will end the proof of the theorem. We begin
the section by reducing the'problem in several steps to the

case when the type II von Neumann algebra N is separable, M is

1
countably decomposable and N'/|M contains no finite projections

of M.

T. b First reduetion: If is. sufficient torprove the theo-
rem:for seprgble N {i.e. N with separable preduall.
To show this let ReN be a copy of the hyperfinite type

II, factor (cf [5]). There exists an increasing net of separa-

1 s
AN S, e 4
ble von Neumann subalgebrasyof N with Rc;Ni and UN, =N. Indeed,
e :
if {pj%jéﬂ is a partition of the unity in the center of N such

tyﬁijj is countably decomposable for each j, then any countably
generated von Neumann subalgebra of ij is separable, so that
it Ni are such that Nipj is countably generated and contains

Rpj for-a finite number I eF Jey and IF Nizzj pj=R§;

2. P
T = e

£

then Ni wilil do. . .Since RCNi , each Ni is of type II1 and -if

'Ki(iJ(M) i such thakt SEN =ad K. then by 4.4 there exists

Sl R : - o

TiGK& (tih s fagt din cow% & (u)yux* \u unitary element of MingS)
. 5 < ¢

such=that ad Ti=ad Ki=£§N oohet Tibe o weak limit point of
, - OINy

iT.l. . Then ad T= % onﬁjNi ; so that by the weak continuity

dales



of ad T and §, ad T= 8 on Nsﬂﬁzle Since N 15 of type IT. 1k hae

‘no minimal projections so that by 4.3, TeJ(M).

s Second reduction: It is éufficient to prove the
theorem when N is separable and M is countably decomposable.

Indeed, by’ the preceding reduction we may assume N is
separable. Lét‘l{o be a countéble subset in the unitary group
9L of N, dense in“9U in the *-strong operafor topology. Let

1
8 P Ao
épljch

be an increasing net of countably decomposable projec-
tions of M with piTT. By the density ofél(o in%lit follows

- : A * | ueU b =V- * ly et 1 - :
that for each 1?V%upiu \ué%yf V{ppiu IUC}AOJ so that if we
denote this projection by s then it is countablv decomposable
(being‘a supremum of a countable set of countably decomposable

‘projections) and moreover sieNVWM, siTW.'Define gi:NS 7
i

< < } : ¢ ’
—p S .=J (M L AXS ks gtk B > s, eN'NM A ar
c,lJ(M)sl J(lsi) by cl( ql) l{,,(:a)sl S}nce slcN/, ' i e

well defined derivation. If for each i there exists an element

KieJ(MS ) ‘such that £i=ad K, then by 4.4 there exists Ting
j s X y -

such that s.T.s. € K¢ cs,K¢s, satisfies £.=ad(s.T.s.). Let T be
gl : i Josies

e s di“ g
a weak limit point in M of the net -{T,H.(QM), Since 55.3.
2ot 1o Goo el e
converges  strongly to the identity, TeK¢ “and adf-gon M. By

4.3, since N has mic minimal projections T&J (M) .

1.3+ Third reduction: it is sufricient te-prove the theo=
rem Qﬁen'N is separable, M is countable decomposable and N'N\M
contains no finite pfojections of M:

Let po=Vie'€NV\Mie' finite projections of M } and assume
» XEN. Then Kéz%gpo' For each unitary element uelN

defive on-Ke - the weskly continuous affine transformation
el

f 53 = r11 % q * oy = s i § *) =
Pu(x) uxu*+o (uju*. Then N U and since Tu(r(v)v )
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=u§jv)v*u*+§Ku)u*:g(uv)v*u*f it follows that Tu(Kg)cKw . Con-

a
)1/2

sider on M the seminorms = {ﬁx*xe' for X&M\e' finmike

projection in NY\Mj,Then the semigrbup of transformation Tu on

K@ is noncontractive, because if x,yﬁKé y X#y, then

inf P(ulx~y)* (z-y)u*e')=T((x~y) *(x~y)e') and if Clilx—v) *(x=y)e')=
5 :

=0 then X_yz(x_y)poz(x_y)(vVe:)=o (by the faithfulness of £ ).

" Thus by .the Ryll-Navdjewski fixed point theorém (see A.3 in iﬁOl)

there exists an element XeKé‘ with Tu(X)=X for all unitary ele-

ments ueN. But then uXu*+3(u)u*=X and thus &(u)=Xu-uX and by

linearity, &(x)=Xx-xX for all xeN. Since N is of type II1 sl

has no minimal projections so that by 4.3 XeJ(M). Similary,
Seiis g(x)zpog(x) for-any xeN we obtain ‘that & is implemented. by

an element in J(M). It follows that there exists KeJ(M) such

N

that (&-ad K)(x):(1~po)(5—ad K)(x)(?-po). Thus, if we define

S Sa by & (x(1-p_))=(=ad K) (x) (1-p_) then &

% 1~po : o o)

is a well defined derivation taking values into (1-pO)J(M)(1-pO)=

O:N1—p

1,_, ). Since N1L (\M1_ contains no finite projections of
Po Po Po

1~b v this shows that in order to prove the theorem for N
- O P .

separable of type II1 and M countable decomposable, we may iR

addition assume that NY|M contains no finite projections of M.

7.4. In the rest of this section we may therefore assume
N is separable, M is of countable type and N'\M contains no
-finite projections of'M.kﬁy 6.2 there exisﬁs a maximal abelian
*-gubalgebra A of N such that A')M contains no finite projec—

tions of M. By 5 5, there exists K&J (M) such that S(A:ad K'A

«

S 3 :
Thus, by taking o —-ad K instead of<§; we may suppose =0.

5=
Shn

: o
We show that from this it follows that o vanishes on all N



which will end the proof of the theorem.

f‘*‘ k) . -
Assume ¢ #0. Then there exists a unitary element veM
Movreovew

such- sthat é(v)#orfihere exists a finite projection eeM such
that {(ev*é(v)e)fo. Indeed, because otherwise f%v*gkv)x)=0
for any linear conbination of finite projections e, and thus,

by taking norm .limits, for any xeM with f(x*x)< vo,which implies

-

v*y(v)=0, a contradiction.

. Fix eeM to be a finite projection with f(ev*g(v)e)#o.

By  replacing if necessary & with-a sealar multiple of it we may
then assume {(ev*g(v)e)=1. Moreover we may suppose from now
on: that the trace 3 satisfies Ple)=1.

We now prove that for any n there exist a finite projec-
tion eﬁEM and a unitary element wneN such that:

1) e e, f(e~en),§2"n.

e e 20, for k40, IElen.

3)-Ple w e ) =0, for k0.

: 2 v _p.ﬂ p - ‘ 3 -n L i -
4){((6nwn Shwide- ) 1&42 i mrpr0 -and

) —S _n s 5 .
[f%enwniéﬂwg)en){AZ 1f preor pab or 0.

To do this let feM be a finite projection such that

= ot

el -y Sl !

1 S(v) (1-£)|| < (4n)
k| -1 =n-1
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