INSTITUTUL DE MATEMATICĂ INSTITUTUL NAȚIONAL PENTRU CREAȚIE ȘTIINȚIFICĂ ȘI TEHNICĂ

ISSN 0250 3638

A COMPLETION OF "ON FLOWCHART THEORIES (I)"

by

Gh. STEFANESCU

PREPRINT SERIES IN MATHEMATICS
No.7/1985

A COMPLETION OF "ON FLOWCHART THEORIES (I)"

by

Gh.STEFANESCU*)

January 1985

^{*)} Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

A completion of "ON FLOWCHART THEORIES (I)"

by Gh. Stefanescu

The main result of [2], i.e. if T is a theory with strong iterate then the theory of reduced Σ -flowcharts $\mathrm{RFl}_{\Sigma,T}$ is the theory with strong iterate freely generated by adding Σ to T, was proved only when T is an "almost syntactical" theory. Here we show that this technical condition is superfluous.

We shall use the notations from [2]. Suppose T is an S-sorted theory with strong iterate and Σ a double ranked S-sorted set. If one re-reads [2] he can see that in the definition of a reduction $f \mid_{y} f'$ the condition wac): $Ac(f) \subseteq Dom(f)$ was wrote in this way only for the sake of generality. In fact he can use only reductions $f \mid_{y} f'$ which fulfils a strong condition sac): Dom(y) fulfils ac) in f.

We shall distinguish two types of reductions, one by functions, denoted by $\frac{1}{y}$ and one by injective partial functions, denoted by $\frac{1}{y}$. The reductions by bijective functions are of both types. Obviously

Somehow as in the proof of Church-Rosser theorem [1] we shall show that ->-reductions can pass over | --reductions.

Lemma 1. If $f \mid_{y_1} \widetilde{f} \mid_{y} f'$ then there exist f, z_1 , z_2 such that $f \mid_{z_1} \widetilde{f} \mid_{z_2} f'$.

<u>Proof.</u> Suppose the flowcharts are from a to b and f = (i,t,e) with $e = e_1 \dots e_{|e|}$. Using a top reduction given by a bijective function we can restrict our analysis to the case when $[\![Dom(y_1)]\!] = \{1,\dots,k\}$, for one $k \le |e|$. Now $y_1 = (1_{e_1 \dots e_k} + \frac{1}{e_{k+1} \dots e_{|e|}})$ u for one

bijective function u , which can be moved in y . Hence we can suppose

$$y_1 = 1_{e_1...e_k} + 1_{e_{k+1}...e_{lel}}$$

The f-flowchart is obtained by adding to f' an inaccessible copy of the $e_{k+1} \cdots e_{\lfloor e \rfloor}$ -part of f. More precisely $f=(\overline{i},\overline{t},\overline{e})$ is given by $\overline{e}=e^{\dagger}e_{k+1}\cdots e_{\lfloor e \rfloor}$

$$\tilde{i} = i'(1_p' + 0_s + 1_b),$$

$$\bar{t} = \langle t'(1_p, +0_s + 1_b), (0_{e_1 \dots e_k} + 1_{e_{k+1} \dots e_{le_k}})_{out} t (y_{in} + 1_{sb}) \rangle$$

where $s = r_{in}^*(e_{k+1} \dots e_{|e|})$. Now we shall show that

One can easy see that 1_e , 1_e gives a reduction of desirated type. A bit more difficult is to show that the total surjective function $y+1_e$ reduces f to f. By our hypothesis

$$i = i'(1_p, +0_s+1_b) = i((y_1y)_{in}+1_b)(1_p, +0_s+1_b) = i(y+1_s0_s+1_b) = i(y+1_s+1_b)$$

where the last equality is based on $Im(i) \subseteq Dom(y_1)$. If $j \in [k]$ then as $[Dom(y_1)] = \{1, ..., k\}$ fulfils ac) in f, we have

$$t_{y(j)} = t_{y(j)}(1_p, +0_s+1_b) = t_{j}(y+1_s0_s+1_b) = t_{j}(y+1_s+1_b).$$

In the case $j \in \{k+1, ..., lel\}$ we have even an identity. \square

Lemma 2. Every chain $f = f^0 \mid_{y_1} f^1 \mid_{y_2} \dots \mid_{y_n} f^n = f'$ may be replaced with a two-step reduction $f \rightarrow f'' \mid_{f'} f'$ (hence we have $\mid_{x_1} f' \mid_{y_2} f'' \mid_{y_1} f'' \mid_{y_2} f'' \mid_$

Proof. By lemma 1 we can suppose that in $f^0
\downarrow y_1 \dots \downarrow y_n f^n$ the first k reductions are \longrightarrow -reductions and the last n-k reductions are \longleftarrow -reductions. An easy computation shows that every chain of

[x] fulfils ac) in f iff y([x]) fulfils ac) in f (the reverse implication is based on [[Im(gz)]] = z([Im(g)]), if z is an injective partial function).

Lemma 3. If for $f: a \rightarrow ac$, $f': b \rightarrow bc$ and $y \in Str(a,b)$ surjective function, we have $f(y+1_c) \xrightarrow{z} yf'$ then $f \xrightarrow{z} y(f')^{\dagger}$.

Proof. See the last part of the proof of theorem 11.2 in [2]. [

Theorem 4. If T is a theory with strong iterate then $RFl_{\sum_i,T}$ is a theory with strong iterate.

Proof. We have only to show I4-S:

if $f;a \rightarrow ac$, $f':b \rightarrow bc$ and $y \in Str(a,b)$ is a surjective function such that $f(y+1_c) = yf'$ then $f^{\dagger} = y(f')^{\dagger}$.

Let us suppose that f, f' are minimal flowcharts. Then yf' is also a minimal flowchart. Hence the equivalence $f(y+1_c) = yf'$ is, in fact, given by a chain of reductions $f(y+1_c) + \cdots + yf'$. By lemma 2 this chain can be replaced with $f(y+1_c) = f'' + \cdots + yf'$. As $i''(u_{in}+1_{bc}) = yi'$ and u has a right inverse v with uv = Dom(u) and $Im(i') \subseteq Dom(u)_{in}+1_{bc}$ we have

 $i'' = i''(Dom(u)_{in} + 1_{bc}) = i''(u_{in} + 1_{bc})(v_{in} + 1_{bc}) = yi'(v_{in} + 1_{bc}),$ which shows that f'' = yf. By lemma 3, $f^{\dagger} \rightarrow yf^{\dagger}$. The theorem is concluded if we show that $f^{\dagger} \mapsto (f')^{\dagger}$. By lemma 10.1 in [2], $yf \vdash_{u} yf' \text{ implies } f = wyf \mapsto wyf' = f', \text{ where } w \text{ is a left inverse of } y \text{ (wy=1}_{b}) \text{ and } f^{\dagger} \mapsto (f')^{\dagger}$.

As a corollary we rewrite the main theorem from [2].

Main theorem. If T is an S-sorted theory with strong iterate and Σ a double ranked S-sorted set, then the theory of reduced flowcharts RFL $_{\Sigma,\,\mathrm{T}}$ is the theory with strong iterate freely generated by adding Σ to T. \square

By Lemma 11.1 in [2], if T is an almost syntactical theory then $\stackrel{*}{\longmapsto} = \stackrel{*}{\longmapsto}$. We conclude this note with an example, in the one-sorted case, which shows that generally $\stackrel{*}{\longmapsto} \neq \stackrel{*}{\longmapsto}$. As T we chose the quotient of the thoery of rational Γ -trees, RT (Γ is a one ranked set, with one Γ of arity two) by the congruence $\stackrel{*}{\Longrightarrow}$ generated by

$$V < x_1^1, x_1^1 > = 1_10_1.$$

Now it is easy to see that RT /= is, as RT , a theory with strong iterate. Then the flowchart

$$(\sqrt{(x_1^2, x_2^2) + 0_1}), 0_2 + 1_1, 55)$$

where $r_{in}(\sigma) = r_{out}(\sigma) = 1$, can be reduced (in two steps) to $(\pm_1 0_1, 0_1, \lambda)$:

$$(V(\langle x_1^1, x_1^1 \rangle + O_1), O_2 + I_1, \sigma \sigma) = (I_1, I_1) (I_1, O_1 + O_1, O_1 + I_1, \sigma) = (I_1, O_1, O_1, \lambda)$$

but not in a single step.

References.

- [1] J.R.HINDLEY, B.LERCHER and J.P.SELDIN, "Introduction to Combinatory Logic", Cambridge University Press, 1972.
- [2]GH.STEFANESCU, "On flowchart theories (I)", Preprint INCREST, No.39,