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MEASURE-THEORETIC PROPERTIES OF THE C””m?AL TOPOLOGY
ON THE SET OF THE FACTORIAL STATES OF A C"-ALGEBRA

CENTRAL NHWUCTION —

by Silviu TELEMAN

On the set of the extreme points of a compact convex set various
topologies have been introduced,having relevance to the boundary mea-
sures(see L1}, {41,16],18}, iﬁ},[}}},{14},{15],{16],{211,{281,(é9lyiéég
[31],133§,L353).As a result,a general topological measure theory has
been obtained,which cont=1ﬂ~,a9 particular cases,bovl the Borel mea-
stire- theory in Polish qnﬂcep as well as the Radon measure theory in
arbitrary compact spacesjand also,this allowed the development of a
"non~commutative Borol analysis" over &rbitrary C%ualgebras(see [35}}

In the theory of ¢ ‘~algebras an important role is dl 350 played by
the set of the factorial(primary)states of a given o —algebra,

In this paper we shall introduce 2z natural towolovv in the set
F(A) of the factorial states of an arbitrary £ mqlgebra A,and wé shal
show +that the central measures on the set E (A) of the guasi-states
of A ,which represent states of A,induce regul&r Borel measures on
F(A),with whose help a spatial central reduction tmeory for the re-
presentations of A can be developed.

We refer to {10},111}, Vﬁ5} {223, [24),and (27 )for general facts
concerning the theory of C alﬁobrLU.In ”51 gh. 1 one can Tind o
deep analysis of Reduction Theory for. the separable case.

In the present: paper .no. senarabllﬂty'con litions are assumed.

-Theorem 33 is the main result .of the paper.

§1 . INTRODUCTION

We shall denote by B (u) the convex set of all the cuasi-states

of A ,endowed with the Lopology m(” sAYfor \nlch Lis ‘compact; E(A)=
= Xf €E, (A); WL =1% is the set of the states of A,which is a convex
C; “ubgct of B (&) The set B(A) is compact if,and only if,A posse«>
sses the unit elemunt,uhlch we shall denote by 1.
The set of the extreme points of E (X) is given by the equallty
ex B (A) = ?\A)uﬁug,
41

f he pure states of A (see i } Proposition
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For any positive feA = {féA”; f>of, we shall denote by‘néamyx(ﬂ?



o
the representation of A on the associated Hilbert space Hey by @fﬂA"§Hf
: s e > B0 . 3 :
the associated linear mapping,and by §f the associated cyclic vector,

according to the GNS-construction.We have
, o [ .)€0 \ 2 A )T (a)€0
f‘(a) = ( Hi(d):\’f\ ‘/)f )9 L}f(‘;)‘) i hf(.c’i')‘%f ’ aé’A’

The state fEE(A) is said to be factorial (or primary) if W.(A)"
is a factor.We denote by F(A) the set of all factorial states of A.
We obviously have that :

Ba) > pla).
We refer to - iy C3],E71 for recent results relating topological pro=
perties of F(A) to structural properties of A.

In order to develop a working topological thedry for the boundary
measures induced on P(A) by the maximal (orthogonal) measures on EO(A)
one has first to find a suitable topology on P(A).In this respect,we
refer to (57, 161,(28),(291, (301, (311,032, (33}, (361and (37] for the
corresponding definitions,results and aﬁplications obtained.In parti-~-
cular, an irreducible spatial disintegration theory has been obtained
for the (cyelic) repr@senﬁaﬁions“of A,and for their exténsions to the
Baire and the Borel enveloping CWFalgabras of A.We point out here only
the fact that several topologies have been intrduced on P(A), compa~
tible with the maximal (orthogonal) measures,thus allowing several re-
gular Borel extensions of the indﬁced boundary measures,the maximal
orthogonal topology being,so far,the sgrongest in this family(see{é},
EEIDE =

We shall define below the central topology on F(A) and we shall

show that any central Radon probability measure on EO(A),whase‘barym
center is in E(A),induces a regular Borel probability measure on F(A).
- PFor the central topology, the space F(A) satisfies the (Tl) separa-
tion axiomjand it is gquasi-compact if,and only if,A possesses the

unit element.

For any topological space X we shall denote byfﬁo(X) (or byﬁRO(X;t)

when the tondlogy T of X is to be emphasized) the T -algebra of the

Baire subsets of ¥ % it is the smallest g-algebra of subsets of X con-
taining a1l closed Gyesubsets of X; by B(X) (or by R(X;T),when the
topology T of X is to be emphasized) we shall denote the T-algebra of

vhe Borel subsets of X 11t is the smallest 9 -algebra of subsets of

et
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X,containirﬁg all .cliosed subsets of X.0f course,we have the .inclusion
J{..O(X) € i)

Tf X i metrizable,;then
oo (X) = F(X),

but Ffor most compact spaces X we have fﬁO(X) £ X)) .

By C(X) we shall denote the : -algebra of all continuous complex
functions on X,whereas C ( 91 ( c ¢(X)) will stand for the C%~a1gebr?
of all bounded continuous complex functions on X,endowed with the sup-
norm. : :

For any compact(Hqu%dorff) topolo sical space K we shall denote by
J%,(?) the space of all n051t1ve Radon measures on k, endowed with the
vague topology;i.e.,the topology induced by a(e (K) °C(K)),u1nceu9g(¥)
can be identified with a subset of the dual Banach space C(V) of G(KZ
By ﬁ&l( we shall denote the compact convex subset of.ﬁi (K),con
ting of all Radon probﬁbllltv measures on K.

»Jw

If ¥ is a convex compact subset of a Hausdorff locally convex topo-
logical redl vector space X, then for‘anyﬁ%M;(K)rwe can define its re-
sultant rQA)& X by the formula

2 N = . -
() = | X (x) dp(x), e s
it always exists and it is umjoue.*ffwiﬁ (V) then r@&)‘ i the

case it is called the barycenter of = and it is denowed by b?k)

If we denote by A(K) the real Banach space of all continuous affi-,
‘né real functions on K, then, by taking into account the fact that the
space of all the res trictions to K of the functions X#éﬁK% is uniform

ly dense in A(X) ,we 1mmediate1y infer that we have the formuls
n(b(u) = [ neo W), h e A(K).
e 1 _
We shall also denote M. 3( i) i/wfi Sl bQL) }-.3y S(K) we

eshall denote the sup-cone of all convex continuous real functions on
the compact convex set K. :



§2.5UBCENTRAL J“A%URF

F.on B (“),who e ‘resul-

Rl

I.For any f €8 (f\)y nd any Radon measure
o 2 o 3 2 . . .
tant “%“> - 7OﬁOM@ has the ”ﬂﬂw*ﬁ marning S o “’)4&!(I },which is
. o & Z O : %
1‘ﬂ“”FyPC“1ﬁlV€7 (“(L (“) L (HJ)y‘CWk OX@T%%OT} cont1nuou and - im K G

i

= 4
] d

f (A)’;it is defined by the equality

'(EO(A)L\I'}\A(&) ap = @; (CDT, <a>1,;\<*}3, 2 e A,
mhore{kjl the class in Qx) of the bounded Borel measurvbl func-
fien 00X (A)~%f{,and 0 (a) EO(A)a>Q,15 given by ?ﬁ(a)(f) = f(a),
feE (A). - ' |

We refer to E?gl for fthe ba sic properties of XK ,which we shall
use below. b .

The measure . is said to be orthogonal if for amy MeR(T (A)) we
/

have tha

r{ Ay ) L ol X s

i e Co ¢ fOI" 841’1‘5; {‘ G_:;' AL ] S (,}_l_ 'i'hfit

we have f = o,

The Radon measure . is orthogonal 1F9ﬁnd only if,the mapping Kk_is

: ; 2 : o A :
multiplicative.In this case W%‘x im Kp_lS ubh-

aleebra Gf‘ﬂf (A)'.We denote by e, the projection onto ¢ ;b(x)
: 0 ' el /
Conversely,for any state f ¢ E(A) and any abelian von “Neumann sub-

algebra % of T, (A)' there exists. a unique orthogonal Radon probabili-

%y'mea?urefwf&fex),such that b( Y % fQ andff::%.
A

We shall denote by m&(d ( Vst ) the set of all orthogonal Radon
probability measures . on E (n),nucb that Blu) = fo;ulso,it will - be

convenient to denote bv &L(E (A)) the uetlj{jl( CR)sf ); fOéEO(A)}

(@]
of all orthogoénal Radon probability measures L (A)
If A possesses the unit element (1?—A) then.&)(E(A) i ) will stand
for the set of all orthogonal Nadon probability measures p on E(A),
;

!1u( i(A)) will denote the set
. orthogonal Radon probability measu-
res on BlA).

” A2

In particular,to any state f mrﬂ(A) we can associate its corres-

~
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ponding central measure 'a L,fi (B (A)) which is

the orthogonal Radon
probability measure corrosngndm{_f 'bo the center W, (A)"m“’ﬁ (a)Y of

h{ (A)!',and whose barycenter is at f ; o C

En orthogonal mb&uUIC/wC nl«r( (A deienid ‘LO ve subcentral if € C
e T, (AN g’\nf.o(.,i)',x.rhere £, = /,L).‘
LEMMA 1.For any measrsure/:,.;@‘*‘:(Jr(EO(A)) the following are eguivalent

a)mis subcentral;

b) for any MeR(E

MEJS &

\ ) : ' -
(A)) the representations W ,~ and T,
- >l 00y
gre disijoing, M

(i )
dt i LK
Eroot,u)r::>b)..re have f (/Lt) ¢A’ and

o . = : 72
(Kﬁ(ﬁgi\ >nfo(a)§§o\§§o) = SFO(A)(@A(Q) Bl ‘Y(E A),HE_(A))

=

Therefore,we have

¢ : - oy < BN A @ a0 :
( XMP)((}) = (KI;,L(\_'XV;D ﬂfo(a)sfo\ éfo ) Seh

K. it ek (=T Dmpibalst i oo
oy i x)"‘“‘\’) fo o\ S :
for any i‘f\éR(EO(A)tBy hypothesis, for edﬁf“ (LX }\ we have Gguf @SN
o oy ~ s G ."T' Tresyn ST -—
f\u'ﬁ(A) ,and the representations e 1% L) TeSP ey 1"(7‘\ {&),ax‘e unlta
rily ecguivalent to the representations 1\14[& Da "P“i (a}o in er yTesp.
T, A DawsT, (all3=e) in 1= e)H‘E JAssume that ther® exists a partial
isometry v &?If —> (1«@)Hf such®that viv Syt 1t
0

and
o)

VT g (a) = Te {a)v, a€A.
o 0

Then we have vé = v, (l-e)v = v and,by virtue of Kaplansky's Theorem,
there exists a net ad(:A,buch that We (aa)‘“'”/’ e.fe infer that
% %

Vo= ve = lim v (m Y= ddn Boala Jvs ew=a
s f oL =7 f ol
ol 0 ol :
and 1;}_11:; Sh?ws that “I‘('XHM) and ”,I‘(Xcm 1) ar'e disjodindy, : :
b)=s>a).First of all,from b) one immediately infers that /A.io or—
thogonal, If p- were not subcentral,then one would have that Q’C{Tf {aye
and E(Lﬂ one Couid Find a-set Me 3%(” (A)), such defy

that e = (E/)L ,\S)

Q |\f (A)n.0f oourse g dg.a pI‘O;}eC"’blOIJ in T’f (A)‘,and we have th &

e 'ﬁ'fo(éx)"(lb-e) #10}
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(otherwise,e would be in T, (A)") .From the Comparison Theorem we in-

fer that there exists a centPal projection geT, (A)"AT, (A)',such
. £ e

that ge £ gll-e) and (l-g)e & (1~g)(1-e) .Then elther ge Z o, or (1-g ).
.(1-e) # o0.In the first case,there exists a partial isometry u # o,

such that vu = ge, v < g(l-e),and the mapping
i : L% :
hf(a)gawﬁtrwf(yju - aeh,
’ 0 0
is a_non-zero correctly defined unitary egquivalence of a subrepresen-—

tation.of‘ﬁl with a subrepresentation of‘Wé.These are,therefore,not

~disjoint.The second case can be treated similarly.

Remark 1.The fact tha b two rﬂhrewentations‘ﬁl,“ﬁé of A are disjoint

is wsually denoted by ﬁjﬁé v f fl,fzé.ﬂi,thenlthey are said to be
disjoint, and one writes flg,Lg,lf W, g e .(see{jlél,E.?.Qo;Céé},
D.65). | .

E;;EEKME The nwecnd1ng Lemma exteﬂdc ?rOpooitlom 20 from [P5X to
the llfhtlj more general case of a C' ~algebra which is not assumed
to possess a unlf element.See,also,( Clcj Proposition 4.2.9).
oL The following theorem extends to the general,possibly non-sepa-
rable case,a theorem belonging to W.Wils (see-| 461e(ﬁ11; and also EQS},

Theorem 27).Also, we do not assume the existence of the unit element.-

gtate f04 E(A) the OOrreuponJan central measure

fkf is the ﬂrnﬂ”est(with respect to the Choguet-Meyer order relation)

Red8n probability measure on EO(A),whose barycenter is at f_,and which

is dominated(with respect to the Choguet-Meyer order relation)by any

Choouet maximal Radon probability measure,whose barycenter is ab fd'

FPor the proof we need some ]emmau,which are interesting in themsel-
ves,.In presenting them,we follow C.F.5kau, except that we do not assume
A to possess the unit element( see E? l,Lemmas 32,23,u4 and 25).Lemma
2 below is a slight -improvement of a Theorem of G.Chogquet{see [20],
Ch.XI,§1¢8;fiQ , Proposition 4.1,1.;{?81, Préposition 1157,

EMHA 2.Let ¥ be any compact convex set in a Hausdorff locally con-

vex topological real vector spacé.,Then for any x_ C,n and amyu@H*(K;x )

there exists an increasing net (\Z) in the set ﬁ? (”' ) of all Radon

aporta, and whoso barycenters

probability measures on K,having f?irqubaA sUt

are at X psueh Teat .
a8y sup §Q£(§);ﬁff = Lk({,a £e5(K);
b)) ldmeoy) = it J((,(M)A OEE) )

W o P - :
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f‘(Lj):><>¥ and CF“TO e o) ufT“

.

Proof.i)Let f¢€C(K) and £>0 be given.Then there exists a cover Ky

1<idn,of X,by compact convex subsets of K,such that
LU e b and LEe Ko L iGxt - il &

et L, =%, »81d L_.I = 1, \(L u.o, 1 g 2 g lets b xii{
h ) (

)
i E snhere x. = BlulL. Egaiet
/ . s e e

5 i ‘LL o . ;
bviously have X.L L,iLJ Tp ;o}lowo that

\(K J; av-{ s = 2 peety) - %J (L £ 0yl

E‘y ( ; ¢ l 11 : 5
s VR )t A S LD =
T * f i

ii)Let us now consider any cover %Z—XIW,L2,...,L } o K,by Borel sub
sets L,C K,such that I, ALj =0 .Ffor i # J, 4,1 =L sva,nollop icd =
=) s 1o 1<‘m,/A(L Foioh oleh ws. define X, = b(/& ) 1XL f‘) and

'Qf = Qb fA(L )Z" TFor any convex Contlnuous real functlo% NES (onl K we
1&d e ‘

shall have =
V(£ = ﬂu, )£(x \i}»(z, )yl ( £ ap = f £ ap,
. 'L&;d 3 L

and this shows t\)<qx Of course,this implies that*Qwui(K;XO).

iii)Let @, W be two such covers of K,as above :
b4

((.f’ L‘:{Ili’lléyﬁoe’:[lr; &' \E“ ’—QL" II?’OOQ,IJ"}.
We shall now consider the cover

Lo VALt A iom, e L

Tiet:, J = {(i,j);f&(Lir\Lg):>o'} and define

7 H] -1 .'
/Uij /&(L /\L 2 XIJAL /& ; = b9“13

for any (i,j)€ J.We shall then have

N = i Tita s
¥ i“’-i“’)eJ/L( Takdy %55

We chall prove that‘§7<§Xﬁfﬁ.0),{\2ﬁ1ndeed,for J'*Q iyolziem,iuill ',
o) ’."C’ . K’ " :I: ’
>,o% let ug define

pPODTEpin €, 150
/ A Il.j



where the sum oxtpnﬁa over all j, 1 <Jg¢n,such tha%f*(Lif\Lg)f>O.We
'%, d

have b(Qi) = \L(L' T fb ie J'.Indeed,we have
- e 3 ;
) - Toh ; 4 ‘,-L" b 2! R (1
BV, ) f»(ll) @?;/ \ml/\IJ) X4 5 :

and,therefore, for any h¢ A(K),we have
h(b(Qi)) 35/&(Li)~1 é% }Q(Lif\L%) h(xij) =
?/A(Li) :ﬂfiu Auu>/L ./\L) e & ALS h,dﬁ,s
S </L<L;ﬁ>‘"-x-1,_i/»><h> BB gy M)

and this shows that

(V) = BMLI)" %L ﬁ), i €a,

Por any fé& S(K) we shall have (Xﬁdgfb(vi), &g

e eeaRes L 0 iR .
N, (8) = %i;-'f(‘m) (el = & I f(bwl)} ‘
TedY o 1d o (1 ;])éJ

ﬁ\) (f)y

4

‘. ML) %’L‘ : .2;/&(1*%&1’%) ) = 2 /u(TJ ALY £y =
j S

and this shows that Qﬂ,<\vag;1m114“1y,xo obtain that v,,< 0, :
iv)From ii) and 3441) we infer that (Qg) is an increasing et in
ﬁli(ﬁgxn) such that V. (P) /x( ,for any ¥ and any f €3 K).From i) we

infer that
sup {V (f);f\::/;_,u(f), £es(K).

T+ follows that we have  1lim Vo ki £k = f&(f) for any f ¢ S(X).Since the
% wh,
vector subspace == SlE) ¢ OE

KyR ) is uﬂWLorm]V dense in C(X; R),
we infer that

y 3 £ . i = ok

for dny fe C(K; R) and ,therefore, lim i in the topology a(C(X) ;
“ o ol

C(K)).The Lemma is proved. > .

Remark 1.Measure s having finite supports are also called simple.

it e s

(73
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Remark 2.Part a) of the Lemma shows that M A = “upJog,xW.ln Lho set
Jﬂ%(K;XO) partially ordered by the Choquetmﬁeyer order relation.

The following Lemma is an adaptation of Lemma 2 to the case of the
orthogonal measures.It is a slight ﬁmprovewanh of Lenma 23 from LBBl

an orthogonal Hqﬁon probe bllitv measure on I (A),

whose-hwrvoenuer ig o state (b(#)c:F(A)) Then there exists an 1ncreu~"

3

sing net (Fw> in the set O, (h \n);b(u)) consisting of orthogonal R

2

don proba bl il ‘- measures on B (&),aﬂa having finite supports,such that
a) qupiu(ﬂ o /u(i‘), - £ES(E(R));
v Lm /A%,_:/,L in S(o(E (AN C(B(A))): _ |
(as above, O, (B (k bgu)) is equipped WLth the Choquet-Meyer order re--

latbionsor, eou1vqlent1y,w1th the B;%hop -de Leeuw order relation (see

(281, T™eorem 3.5)). ' ¢
Proof.Let %kbc the abelian von Neumann subalpebra ok )(A)‘,

corresponding to /A yand denote by %ﬁ %;' the progectwo%uonto the

subspace %"> 0l 3& i) Let J be the set of all finite dimensional

{

von Neumahn Jubdlgegfz} of @' ypartially ordered by inclusion.For any
@e| ,let us denote by 7\JB the projection onto %f€b< ) and let M
be the unique ortboﬁonal “Radon probability measure on F (A),oUCh that
b(/ ) =D u) and im ﬁ& ¥ (see [?8} Pheorem . 3.2).It 48 obvions thatb

Ndg an 1ncrcas¢ng net and that the net 33%§~>e converges,in the.
strong operator topology,to e, . <
- On the other hand, from @c‘” Vel,we infer th&tcg Sp’xhcreas , from
(fﬁ (a3 (é? s fﬁ th’jf‘f’ 1nfer thatu, <</zz (or emuv 1ently,/z@</s.,
reqn.,}@ < v a e L?o}, Pheorem 3. 5).
Prom bbe LLCb that c%grééjlﬁ finite dimensional,it is easy to in-

-

il
»
§

fer that the measures have finite supports.

Jug BEme
By taking into account ( L28],Corollary 1 to Lemmal.2,Lemma- 3.3

and Lemma3,6),we infer that for any al,ag,...,ahAé'A, n>1,we have

i

=3 - wbed

(K 7()\( 1)\A(a ),-., (a )),b%) §b(/x) ) .=

))ﬁ(al))ﬁ(aé)"’}A(any %H@ = f (A;bﬂ%A(aZ)...%ﬁ(aﬁ) @ﬁ%z

0, Oyle L (WE 2)) e K, Oyleg) ) o0} $n00) )

< ne @] 2 V
= (e, T fa. Yo Wi Sla )e .0 T (a2 )e %, VE ) —>
¥ / i E ) < e b(/’»&) n e 0(/(&) b(/—i)



T
H
5]

)A(a1)AA(a2)...)A(an) df&,

il
L

4[{&)

0

X

Since we have 1 =\ e, W= ﬂq“d(ﬁ))ffwom rho Stone-~Weierstrass Theorem
: : { G 3 . :
we now infer that legAyij in the W —topology on B (A) The Lemma
(C,«,v e ‘ .

.1is proved.

! Y.Let . be a subcentral Radon probability measure on E (A),'
rhon b& jcvninmfis‘a state.Then there exists an increasing net QQQ
in the set &L(E (
measures on | ( ) and having finite supports,such that
a) vﬁ{%gf Slf “jﬂ<“>; i 5~(~ (4 ))r
5) lim /u\f /u in O(C(E(4)) ’c,(” (A)))

Proof. Fhl 3 an immediate consequeince of the proof of the prece»

A)s b@&)),cbnaisting of subcentral Radon probability

ding Liemma : indeed, if/} is subceﬁtral,then‘é‘is contained in the cen-
ter of 'Wb/ )(A)‘,and,therefore,all the von Neumann algebras ¢¢Jare
also contained in the center of ?TbQL)(A}f;hence,the mea&ureS/%;are
subcentral. '
The following Lemms is a slight improvement of a Lemma of C.F.Skau
[253 Lemma 12;{?81, Lemma'},?;see,also; E4ll,proof of Lemma 3.19,
where only subcentral measures are con31dered).

\,V@M §u Ay e_such that ;ufv .Then, for any subset

‘%%W*'°°’Rr\ @ IJKFJW, uch that ég (ei = l,there exists a subsetl

3
200YF . such that i=1 F9 L eme g ey S0 e g
é\‘/"ﬂy ¢ o o “V,rfl\( C I )1 9:);;()1‘ L.ﬂ.@,<,-i:r° (T &‘/i == 1 -(J,_‘].d [<;/J~( R/i) = }x\)\\.‘)i} $
leicm : i=1 :
- — o — 3 m

P Let us define m. = . pm, 1L<igm. 5 -

Proof.Let us oeflne;yl @5/ 1€isg .Then we have M & et
From the Cartier-Fell-lleyer Theorem (see r 81,Theorem 1. 6), “Twe ine
fer that there exist positive Radon measures Qj ol edemon B (A),
such that = %i;‘v and ﬁilw 0 1 <igm.We infer that ihere exist

i= 1 :

functions Wi

i

(\‘)7 ; 8uch that W =y Q <£i<m,and,of cour-

se,we have é e Vi = 1(mod V ).We then hhve

=1

Z (. 'i..{; g '}’or.m
1) '\)(‘3_1) Twio( i gfo‘ > ) (}*

IRV R N AT LA OLA:

g J\J(j .;‘\. ‘ G J,.AQ : 4 . . a, é X’
for any 1¢ fJ,r,a..,m} ,where we have denoted f defb(d) b(V),ta-
king into account the fact that u< my/*MQoimom (1) we inLT that

i ®

KJ(@&) = K<((')1 1<ig<m.The Lemma is proved.

The fol ]Owluﬁ Lemma essentially belongs to W.Wils (see f4i},proof

= . . : el SR o G i s
of Propogition 3.20jand als \”25 y Lemmea o4 Y.
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(3

L S.Let p= s d.Qﬁﬁ be two measures on
= L = Jez © 4
(lx),\u’b,} finite suppoOrts, 1 J
8 £, €B(A), 1€1i<m; gjé Al 1~éj§i : n
by e. oh lad way dj:;o, Lggesan s £ = =L dj = 13
¢} o is subecentrals 1 i
d) ."Q(/DL) el :j('\]). ;
Then ymrw sts the least upper bound of/ﬂ_and v iﬁtﬁ{i(EO(A);fO);

where fo‘“ bﬁ;& = b(V).

Proof.We can assume that f. % i and giyé gj for i # jsand also that
ci">o, 1 €dens-and d S0 1;]& n.

By hypothesis,the von Neumann algebra (%L ,corresponding to /4 vie

contained in T, (A) (\uf L)t

Let Ciong}g f?( \(), 1< i ana D dgfl*(?({ ), 1 £j<n.Then we ha
ve
i) C eTp (A" nmp (A) ,1<igm; o
e 181/m is 8 central projection and &y C. = 1;
Aiy) DJ LAY e dens =
iv) D> 01 dicpreant. o2 D; = 1.
Of i conrs we have J=
i i 20O
et (a) = L X)XQ“ N(a) du ) ff %E i
Sud) ) 7 (0} 3 C
. Q i<
and :
o be X
d;_i(»__,;)(m,) = <}? (q) ifah\( / (pi. }A (:D rj ((3,) S O'\ \fQ)g
ok J e,
for any a€ A.We shall define the positive linear functional r:ijc EO(
by
rij( = (C; DiTe a) ff \2 ) a €A,

(since C‘lD] =B (‘ s we have C.DjB;o and, therefore, r]?_j;o, lisidcm,

A J _“"1 ¢ ',-. ¢ o e
Jc ey it r{ ,Z o,define r . = W\r] \\ ris s ifer s o,define

rjjx 0.Tt is obvious that for

éldé’:f

g

e

oL
s

b

T aan i ; il
we have that € is a simple measure in V}v(.{,( E (A)af ) and
n
g el e
i 1“1*5]‘ 1.,]“ !

fd
/

in
(=4
~ 8
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S ko % o
B g R i e e

By simple CG;lV”“’?+‘« arguments,we have that pLE and W& .

T ii;‘("* (A);fzo) be such 'tha‘t/u(tmﬁ,d V<L T e shall

Gonversely,let Tey 5
prove that é¢<t .
From Lemma 4 we infer thet there exist functions (Q el (t)ls,;uoh

that = K_ (Lq s < msand algo there exist functions \@ €L (T )l ;

such J@t f;)j:;; K fL‘).), ]_--gjg.n;nmtr:'eover,we can assume that

m 0o
S 5 =
2. . = Zﬁ g)()]. =3 (ned T,
a= Jj=1 tﬁ
Of course,any decomposition & = =, Qk of & is of the form
' el o0
¥

~

cmt B35 51 W 5 0Eye
5 d ¢ :
where o« ﬁijk’ 1€k< i;:—a,nd: 34’?3 JCijL =
If we define

e I 1<ke
K s S Wi ) , <k<¥,
. 131\(1 i
we shall have
£
(1) T e amd T e goned,

=7

i

With the Cartier-Fell-Meyer Theorem we shall infer that < T,

Indeed,we have

£ ' 2
- Y ml 57 BT
o Lo w e el ey ) =
=1 K iﬁ,l{ 1jk ‘?1 3 5 o “ﬂ
' =i o n, _
= ( ij%k{) z(gjfg(‘;;jYCst ,
Sl i=l el

and the ecuality in (1) is proved. :
r the second part of the assertion (1),we shall first prove that

t2) K_t((g’ivgj) K '(i\/ji)K-g(W?j) ; T etiem, b= gon,

o

Tndeed, from ol . <. W . ,we infer that
inaeed, {(f)..k'\/gj ¢ \0 y Y i 3 L

Wy deidng ladjan.

aggygt(agi\gj) < ?{t(agi), Zt(“‘j
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gince K (q ) is a projecthion,we 1n;or that

ey = B U JE (o) = Kt(i('”j}\/j)i‘ic(c(i)i;

whereas from the fact that Kthgi) is a contru] nrogectlon we infer
that

(3) R {5950 < B (0 )E Gy
By repléciﬂg (?i with'.lw(@i , we similarly get that
K( 1-tg . )qa Y (1~ )X (L(J),
and this implies that

R € TG 0y

From (3) and (4) we get the desired result (1).

Let us now remark that,by virtue of (2),we have

S 3 Lo =1
mo(h) g :

0
== ’tiij.,,(Lei\(') Wfo(a)gg \f% )

<N
= geet _L p(v (\( )"[ (\‘()) “,o ('1)«00 ‘\fi ) =
s 4 gt g 0
=y 1 ”O S ] .
g e t,_. 1r(( D ij ( l) \if ey -tl-"x I‘J {a) =
i j Ty idk 13
= Z g Umpgrgg(e) = by ey (ad(rg ) =
T : o 5
= Xold) 48w l.ékég, GEl,
Bla) e
We also have that
e liys [ U8 s an e (B G UI B
‘ Bl o |
v o : e 0 e
= (KL Z tondwgdlalte )= 2, 45 (80 Do | Sr ! = ¢, (1),
weedpde - O O y

for 1~Ax;:§,x $ak ife into account 5;0”] Corollary 1 to Lemma 3.2
: : v bl

and Temma 3.3).From (5) and (6) we infer that Tfkﬂféa{ L€k and

so the second assertion ip (1) is proved,and also the Lemma.



We shall denote & =pvx, .
The following Theorem belongs to W.Wils (see [ﬁl},PrOposition .20

where it is stated under more géneral conditiong) . It is stated as
e ey . % : o
Lemma 25 in \?51,,ncre it is given for C -algebras with a unit ele-

¥

ment.Here we shall drop this assumption.

fo ¢ 5(A),any measure MLM (D ;fo) and
5 1 -
any subcentral mea {(* (A)sf ) there pyw,ug the Jleast uvprer
i |
o - o A > s gy o ks G Uy o 5 ;
bound of j+ 2ad AT ¢ﬁ+( ;) O)y ]u% respect to the Choguet-Meyer

order r@l\b_un@

Proof.Let giw) be an increasing net in F- ( (A);fo),as given by
Lemma 2,for the measure i Let (Q?) be an 1ncrea81ng net of simple
subcentral measures,as given by the Corollary to Lemma 3yfor the mea-
sure v .Tet us defineé?w“7%€V\> yas given by LemmaB.alncm we have that

Qg’(g

subnet of (0 ),xhlch converges to QQJ{ (b fo).ulnce for any
@éMbJAH wemme

1
e M (M LAY oF ),dﬂd since this space 10 W —compact we can select =

gEO(A)W P ég}zo(mw d%ﬁf: ’ L

we infer that

(u (A)q(vi (EQ (&)

and this shows 1,: hat u< @ V<€ . .
Let now &é)ﬂ (B “),10) be such thut}&<\,and V<T .Then we have
Fyv(r, =) ,< T u.ny ¥ ana 4 ;therefore, by Lemma’ 5,we have g)é\, and
this mgplles that @<T, It follows that & =V V. ;

: Remark.5ince the preceding argument works for any COFVCTFlﬂb ke
net of (Qv%j),and since the least upper bound,when it exists yig uniqu
we infer thzt we actually. have € = 11m.6ﬂ-f,&oreover,since
Qﬁlé(f,) and X’qlg ’:((5’?

implies that

we see’ that we 1‘V"

=
‘?'”?z?& £ §g ()
o
& an N{ B (ix) f ).
proved by Edwlla (see [40l) for the
case of C -algebras having a unit element (see,also, C?%],Theorem 26 )

W@ 0 €5(8 (1))

and s0 we have sup

e sy AL LT r'\'},
The iOAthihg he



[¢8)

.¥(a) = r(a),and this projection is called the support
- denoted by s(a). '

L0

.

THEOREM 3.Let £ E€E(A) be a state of A and let Pg,\% (A) i ) be

any subcentral measure.Then we hnv&/k<\)f0r any Choauet max1mal Me &=
SSeenii P
ﬁgﬁngJw+(m,(A)ﬂ,).

~ ~ N ¥ s \ = 3 L] 3 % It o
Proof.By Theorem 2,the least upper bound.fuveex1sts in V@t}(ho(ﬁ);f

R

Since we have Q{}ﬁJQynn@ gince vV is maximal,we infer that V m/Avﬁand

.therefore,fk<iQ“The Theorem is proved.

B &)

A

“ni let / be the central measure corres nondlnﬁ to fo.
Then we have fx Lo for®: any Choguet maximal measureOéJA;(Eo(A);fo),
by virtue of thSTLN 3, : ’
Lonversely,letfxéﬁ{+(E@(A);fé) be a measure,such that/&<\) for any
Choquet maximal measuredé@{;(EO(A);fo).By virtue of Henrichs' Theorem
(see [3?1’(?8] Theorem 3.lo),we shall have /L(\) for any maximal or-

P

thoeonal measure Qé;KL(n (A):f ).Ly ( EQS] Lemma 3. 7),we infer that
o9 4
K (o)) € k1T,

for any maximal orthogonal measure V ,and,therefore,

e o ar Th o SN o ' " AT vl
- EG e R i LT (AT, (4) )
(1) 0 s
X (5%, 150
/ﬁg /Elof1 :

where the intersection is tuken over all maximal orthogonal meas ures N,

Since £ is simplicial (see V28], Corollary 1 to Theorem 3.1 ), fren

(1) and fPom ( [203 Lemma ;.7,11)) we infer that f&ﬁ/f .The Theoren

+

18 proved. : ' .

IITI.The following ?heorém essentially belongs_to W.Wils (see [ﬁl})‘
We shall denote by Z?i AA(H) il ) the set of all subcentral Radon pro-
bability measures on EO(A),whooe barycenter is at fo.'

THEOREM 4.For any state f ¢ ¢E(A),the set Z ( KA);fO) is a complete

lattice with respect to the Chonuet-NMever order relation.
& » : i e s e % : .
Proof.The mapping E§+(E (A)sf )?}Lhéiécuﬁk (A)'A-nf ) ag o

?

order isomorphim between ;g (EO(A); ))-&bd th8 set of 311 von Neumann
subalgebras of the center of ° i ER )t (e _ul,Lheorem a0,

= : 0 / ; :
As usually,for any operator "ac¥(H) we shall denote by r(a),res-

vl i 8] L ! 5 Y, 2 4 " - (> =« 4 .
pectively ﬁ(a},lms yight,respectively left guppors Il a¥ = a,then

J

g and 3t ds



(v

for any a¢ A and el (q/),ht infer that H

~16~

PH“O>PV@xoUDUP£‘}{ (E,(A)) qnd(?LL ;@) ¢ >o0.Then :

a)If . is 8 subcentral measure,then Q%Ll a_subcentral measures;

Bl f is & central measure,then({y_is a central measure.

Proof.It is known that if u is an orthogonal measure,the n gpis also
orthogonal (see E28&7?rop031tion 6. ;
a)let fﬁ = r@x),Then the mapping K, maps L ay) into the center
¢ ¥

T (A)‘pﬁﬁf Ca)" o T (A)',and
"6 > "o

gw T e = (LG T (o) 2ol S0 ) it A, e,
B _ v |

Since we have

i A)V‘('XA(BQ) @/‘ =

i
La o It Pia®
)

(1) g? (;#XAHQ d@%ﬁ: g
: 0 "
: ; 1/ 2 of 1/
= (%, (T9D) g (K (D) TESE (DY)

can be identified
o

T(ﬂ*)'

with Q(V () )H r( ) fr@( can be identified with ¥ (Q ﬁi,whereas
"0

T ) oan be }dGﬂt]lltu with the representation

r(w

Ara v T, (a)s(%*(q))‘
0

“Prom (1) we infer that

i X ﬁ([xﬂ = X (gD (Dﬂ)), W € ¥ (B2 (4))

A
(we can always use bounded Borel measurable representatives of element

in 177 fdyetc,).Of course,we have U“C@ the fact that s(K ([ql))élg

From (2) we infer that Kwﬂ_maps ] %yj into the cnuUer of 1&(%#J\A)
hence, qvkl° subcentral.

b)If‘leﬂ central,then K, maps LWT/A) onto "ﬁf (A)'/Vﬁﬁ g
‘whence we infer that qu Rupb L (%fJ ogbo W Eayns (A )” ywhere

Elf &,y

go f‘ﬁ*) It follows that KF-W CGﬂuT .The" Thoorem JO proved.
TV.Thp following Theorem char cterizes the central measures.lt is
in the proof. following Definition 3.5.1. in C24]3

‘ ¥ : . .
whéere the C -algebra A is assumed to possess the unit element.Since at

“

implicitly contained

the ‘head of ‘Section 3.5,p. 146,40 C?@] A is assumed,moreover,to be se-
parable,a superficial reading might leave the 1WL1CSJlOn that Sakai's
characterization is establisked for the separable case only.in.i&cz,
it is easy to see that the argument following Definition 3.° o

[?ﬂ] does not require the separability of A,and so the following



(R

(2

.

.

Theorem is only the extension of Sakai's rpsu1t to the 11”htlv more
. ¥ :

general cage of a C -algebra A,p0031b1v not pomf ssing the unit ele-—

ment.

; e ) 5 - £
any C -algebra, £ e ¢ B(A) a state of A,and deno-

e
-~ ) the canonical normal extension of 7rf to i

o

b OF s
Tamn a measure

S e . : : :

EM (HO(A)giO) is the central meas /z wf?ang only
» ; S

ts a s-homomorphism ®:%(A"")->L /A) of $he centér

if, there exis

3 e

Z(A%%) of A sonio ﬁmyu),gggh that
) floade | Geldalaa a eh,ze 7(8%
ot O 4 CL 1 b 43 zi L / 13 [ ; dhog Lo .l A @

In this case, @ is uniquse.

o

(0f course,in (1),for ®(z) one should take a function representati-
' =

ve of the class ®(z)e I (w):it can alwa 2ys be chosen to be a bounded

Baire measurable function on EO(A),Hhcreau vith the help of Lifting

vTheory,one can even obtain a x-homomorphism into ¥ (F (&) f*))
Te

.....

s assume that f‘“f‘f JThen, by its defis
Kﬂ? maps omorphjca]iv the C ~81~ebr“ T 9&) cento the center of Zf (p)

(henceyaloo of e ()% )..0n the o+1er hand, the restriction e 7 015

Proof. e
et

is a normal #%-homomorphism of Z2(A*) onto the center of e (A)”,and
X
we have

f (za) = ('V (a) mn (z)é’f isf Yoo oodmeh, pe g
Yo

The mapping E@p = K, -1 n(‘rg \Z(Aﬁ*)) has then the required proper-

1) (see Y?QP mema 3.3, WLOﬂo iition 3.1,44) and Qozeilary 1 to

.Theorem 3.1).

'Oonvorsely?let us assume that there exists a surjective ¥~homomor-
o 7 R ik e
phism @:7(a J=—> 1. 9%),such that equality (1) be satisfied.
; J%K ; :
a)For any z¢ Z(A"" ) we shall have

FEAR T (2) *W’iio(z)?:%ét -zgo) - L (A)gzw)\A(aq 0=

(R 4Sz)im, @ ), o g

and this implies'that

V.
N
S
foe

o
S
L
T

Ny
St
et

i

1

LR
(,‘( B el

[ e
b)Por any Wqroé b 9&).there exist z,,%, € 4Z(A  ),such that

Mad VW
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ﬁi(zi) ﬂigifi = 1,2.We shall then have

K (i0-4s) = <«ié<z. Y B (z,)) = - X, (Blz2 ) =78 Un) =
#L(’l%a /A 1 T Ao |

and this shows that ﬁ.is orthogonal.From (2) we infer thatf& is cen=-
7 45

tral,whereas “hgp)% = 1 - 4implies that XK is injective.From (2) we

infer thal

= e ' o 5
D(z) = (k/}m; ) (z), seblll
-

and so the unicueness of @ is established.The Theorem is proved.

We shall denote by Eéf the %-homomorphism corresponding to the

2 o i 0. : TG Shn
state foeh(A),and whose eRistence and uniqueness is established above.

i . e e
sitive linear functionals fw,fgé:A+ consider

The reldatiaons

a) flésfz .
bl BLa T i il b R0
c) ’f3i—f?;

d) f-} ;v": f?,lujr\ f_) = :‘c-? = O‘v

Then a)=b) =>c¢ )&_,d),nnc no imvlication here can be reversed. .
Proof.Indeed,there ex s a projection e € € LA™Y ) eeh that fl(a)x
= f ( 5.8 ), ] (a) o 0(0(1 e )), aé AJIf we denote £ = f, + f, , bhen
we have 7
f(eoa) = fl(a), B a €A,
FO(1L - eo)a) = fg(a), 2,68
and,therefore,
(£, =, Val = f((zeo'— 1)e; a_eA,
whence we get that
\\fl o fg“ = \\f°(Peo Sl e g S \\flﬁ + “f2“ 5

because 2e. ~ 1 is Unitmry,ThuS;ﬁhe implication a) => b) is proved.

b)vJﬁ v Ve Incmﬂﬂ asoume-.that 0 éf‘gf&_amd 0 gfsgf?.Them we have



P

.= # (L, = £f),1 = 1,2,and,therefore
WE M+ BE N = WEy - Foks W(E - 8) = (5 - Dl

and orin IF il s

1 Wk RN - 2 WP,

and this implies that f

i

o.Hence, f?A_f

¢ r==il) 1T f,1f, and £, = f,,then, obviously, fy = f, = o,
Simple examples can be founu to show that the preceding Jmplwca 1un
cannot be Tevexaed,ln general.

¢ B(A) be two states,such that

2 z\\fl - _fz“

and 1qi/xﬁéf43 (n) 1. )9 1 =~,2 Then the meas ure“/ul Pnd/xg are

mutually Sinﬁular. : :

Eﬁggﬁ.lu@eed,by (121, Proposition 125 3l ) the supports S(f ), resp.
s(fg),of fy,resp. f,,in A are orthogonal : v(f )¢ (f }. = o.3ince f(f )
and s(fp) are countably decomposable in n%* Ty ([ﬁ”} Ch,I,Lemma 1. d)
there exists a Baire element LéanCA) G (see. [}i}),uuch bhat b g be
<1l and fl(b) = “flu = 1, fg(b) = 0.If we denote e 2n31§’b then e is

g Baire projection and we have

fl(e)'z_l, T

Since the barycentric calculus holds for Baire elements over A (see
{31],Theorenm 3),we infer that :

(1) .(E (A)\ (e) apy =1, SE (A)M(e) ap, = o
0

From (1) we infer that

‘fl({%E&Ah fle) = 1}) =1
and S -
A2(~{£GEO(A); fle) =11}) = o3

hence,)&l and)xo are mutually singular.
¥R .

f. e B(A) be two states,such that f gf Let

THEOREM 7.Let f,,
tedlo 3 jefine f = tf1 w4l = t)f Then
a) p=tm. + (1 ~%)m,. is the central measure corresponding
e P ( )/fz



e Qe

b) ;:E.p = (Q{‘ i @f‘ s s :
ke Ty 5 ;
Proof.a)By Leitma 6 afid by Godement's Theorem (see [251,p.?81‘(if1),
we can identify ‘Wftﬁvﬂf(ﬂf) with T2 'rfey7nf Aw%&dUJntﬁ Hf et
- i

: i 2
the agsociated cyclic vector

i

'go = ( tl/z“igl, ( ;'t)1/2.€§;)

We shall assume from now on that O<§t<11,0therw1oe,the assertion is
trivial . '

For any bounded Borel measurable complex function (@ on i) (A) we
shall have

s el alonges o B e oty g P g

T ot
gi) (A)
+ (1 - t)(}i}*fé(Q) uf2< ‘2 \if =

= ((xf% ](@ o <a>m/*f2<c() tfg_m))*fo'\?o) = |
= (K, 1(@@7 /&f?a())*@(a) A a €4,

and this shows that

e, = R, (€) ™ (a)’i '221) +
: J

(1) K, (@)K ol (@), el (B (n) BEW)

ffi r:2 i) .= &%Mf1_+ (1 - t>uf2
" Remark.This equality is estéblighed only on the basis of the assump=
tion that f11~f2 Under this assumption it is easy to infer that /A
is subcentral. '

Let e, Hp @H; —>H, ,i=1,2, be the canonical projections.Of
course,we thClel,egél‘ A}‘ From f1£>f we now infer that

Eoy.o W= ) s LA
- £y
and . :
( 3) ‘-ﬂ' ( i‘;) o= \}Tfl( ia) i C;]T(f?( A.) i

(see E?él,TheoremIBeB.ll,).Wé infer that
eq9€s€ el A el A )i

From Lemma 6 and Lemma 7 we now infer that there exists a Borel mea-



- on

surable subset Me:EO(A),such that

/,,A{.l(l) =l /Lk_fe(f‘s’l) o0 ' 7

Oe

We infer that

(4) Kf% () = 1y
L

P Af
He /Af2 M

A
Prom (1) we immedigtely infer that the measure %Mf w1 - t»“f
; : 3 e o ; =
is orthogonal;whereas from (2) and (3) it follows that this megsuré

is subcentral.Moreover,we have
(8) W) ' AR(A)R = (. (A) !Nl (B)"& (T Ghlam, (A1)
1 R 2 2
For any wgl,WQéEff?Eo(A); j&(EO(A)))glet us define

e Ryt @ Ay
Prom.(4) we infer thats K, (@) = %u (wly, ?ﬂ () = K (wg);hence,by
: : - ) ;
taking into account (1),we1infer ﬁhﬂt/p.is,céntral> we have denoted
b= B“f g -‘tbuf? ).0f course, b@u) =T
b)On Yocount of eqfialities (4),it is obvious that we can assume

that

(6) T (2)%y = By (1), @ (adhpy = B (), 2 £2(A7 ),

Prom the -equalities (6) it is obvious that the mapping
*H : — A
Z(A" )d>z+> @l(z) ‘*‘QZ(Z) € '}g(/")r

is a multiplicative +« -homomorphism,easily shown to be surjectiVQ)Oﬁm
0 L"""(/A).On the other hand it is obvious that
f(za) = [ (By(2) +Tpl2)IN(a) du, aca,
i : i ! %
E(8) z € 7(4%°),

From Theorem 6 we infer that (Qf = aﬁfl + Qif? yand the Theorem is

proved.

Remark.Since the measures f% and ﬁ*f are mutually singular,there
. : J

is a canonical isomorphism (forl ) <t(<12)
R e F AL =t ) os TR, NS DM )
/- 1 2 1 deip

Then part b) of the Theorem is better expressed as follows

j(’@f :KZf & ggf"
s T



83, THE CENERAL TOPOLOGY

In this section we shall introduce the central topology on the set
5 5 . ok
F(A) of the facteorial states of any C -algebra A.
I.A subset FC E (A) will be said to be centrally extremal ( Z-ex-

s

remal,for short), JP the relations

fePNE(L), f=tf +(1-8)f,,0 2t <1,F 4 f £,,f, ¢ E (4)

2r Lt

“imply fl,fgé B, :

O0f course,any extremal subset of E (A),and any orthogonally exte-
mel subset of . B (A), -are Z- ektremal (sce [281,p 141,for the defini-
tion of the orthogonally extremal subsets;and als 50,the Remark below).
Also,it is obvious that aﬁy subset of F(A) is Z-extremal.

THEQREM_8. Por any compact subset FCE (A) the following are equi-

valent

a) F is 7- e\’m emals;
b for any subcentral measurs FLK{ (n)) such that byx)éEF/\E(A);
we have K(P) = 1. : : ‘

2323§.a):4>b) By way of contradiction,we shall assume that is a
subcentral measure 1n.J{ (“ (q)),auoh that be)ler\ (A),and/x'F)<‘ 1
Then we hQVO/A # & ) (thp Dirac measure at b&y)) and therefore,

Supp p has at 10@“t two points.If JunpfA<:F then./A(P = 1.9nd this
‘contradicts the assumption.It follows that suppﬁ.Qj Let thgn foéé

é (sgppfx) \F,and let K <:EO(A) be a compact convex neighbourhood of

1
fo,such that

KynF =¢ and f,ecint K.

1 l

Of course,we have p(?%) > oL T fL(Kl) = 1,then we would have bv&ﬁa
€ K, shence | b(M) & F,a contradiction.Therefore,we have O<7*(? Yo

- Let us define

i : «’1/"
S
FEo e Lm0 XCKi/A ,

and

Since/; is subcentral,by Lemma 1 we have

b@ul)éih(f*z)



and,of course,from - /J(Kl)/ll + (lm/x(Kl),)/ug . we get

b(}‘) = /*(.z.cl)b(/#l) -g (1-«/1(}{1))1)(/42)&'}f"/\E(A),

whence,by virtue of a),we infer that b”ul) b@u cP.8inee it is ob-
vious that o@ul é:Ki,we arrived at a contradiction.

b) =>a).Let fl,fgé-EO(A) be such that £,) f, and assume that
there exists a t¢ (o0,1),such that '

b3

vy (1“‘t)f2éF/\E(A)'3

then the measure = t& + (1~ t)Ef is subcentral (f]é,f impliés
that i.fQ,hence/A is o%thOéonal Anply then Godement's Theorem).Since

b(p) = tf + (J_;t)fgeFAE(A),
we infer that/x(F) = ],gwxfhcruforg,fl,f <:F The Theorem is proved.

Remark.We can strengthen the concept of Z-extremality of a subset

F‘CE%(A) as follows : we shall say that F is measure Z-extremal (or

Z-extremal in measure) if: .
a) F is a universally measurable subset of EO(A);

and : :

" b) Tor any subcentral mea urefﬁj{ (A) ) such that 'gu)é:F NE(CAY,
we have (F) -
s ile reca 211 that in (s o 141) we introduced the notion of an oxr-
thogonally extremal (e -extremal,for short) subset FCE (A),namely,
P id e3id to be ) ~extrems]l Af IOG FnE(A), f = tf + (]«t)f2,0<<t<(1
£y fs e (&) £ Auf?,imnlies that f,,f,&F.A :Ubset Pc: (\) is measu-
Te &)w@?*TP%O] if F is universally measurable and -if er any orthogo-

R 2 AR o

al Radon probability mcasure}A on bO(A) we have the implication
b(ﬁ) éE?AE(A)@#(F) =

15 [}j},p.B) we introduced the notion of a2 maximally brthogonally

extremal subset FCE (4) (L ~extremal,for short),as being any com-

s aairormrit 0

pact subset E‘CEO(A),suCh that for any maximal orthogonal Radon pro-

bability measure . on EO(A) one should have that
bgu)é F AE(A)=>m(F)

" Of course,this notion can be extended a little, by cons 1dcr1ny Al



=24

verqa]1¢ measurable subsets F¢E (A),for which the same implication

sl 91

should hold;we obtain then the notion of ‘& measure L) ~extremal sub-
set.

It is easy to see that any o -exivemal subset I‘CF (%J is Z-extre-

[y

malsand also, any measure a)«@ytremqi subset 18 measure A~oxtrem&i.

We shall denote by Z(B (&) ‘the get.of a]l compact Z- extrem il sh—

sets of EO(A)E

TEid e abytions  thats

i any_ flnxto union of elements in 2(E (A)) ig again in Z(EO(A));
ii) any intersection of eleménts in Z(kO(A)) ig again in Z(EO(A));
iii) ‘for any f € F(A) the set {f } belongs to Z(E_(4)).

HWe immediately infer that the set
A
2F(A)) =4 PaRa) 3 Fes(z (a))}

is the set of all closed subsets of F(A),for a topology on F(A),whlch
we shadl call the central topolozy of RLA).

It is obvious from iii) that F(A),endowed with the central topology
e (T1)~spacen :
II.Let FCB _(A) be any subset.We shall say that f €T is a Z-extre-

mal point of F if .there is no decomposition of the form

IR e

2 LBt s odtial 6 Ve B L E T

2

It is obvious that any extremal point of P is ngxtremal.(mlth the

excention of O, i QOePl),
%e shall denote by ex, F the set of all Z-extremal points of F.

0

9.a)For any subset FCE (A) we have (ex F)\\Qﬁ}cjexz P .
"p)For any Z-extremal subset F(LEO(A) we have ‘ ’

(cex "R eBlA) = B llh),

7
Proof.a)0bvious.
b)L@t‘foe (\x” YA E(A);then £ o0 ndf CA“( ) If T é'“(&) then there

exists a docompooltlonaé the form

S

- G (1mt)f2,

L2

where téa(o,l),f1$ f, and fl,fgéfE(A).It follows that fl,fgééF,from
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the Z-extremality of F,and this contradicts the Z-extremality of f

Conversely,if f ¢ BEAF(A),then it is obwious that foéi(ex ) F(.)

The Theorem is proved,

JJor any compact Z-extremal subset F(:EO(A),such that
have also FAR(A) £ 4. ; k

Egggg.ﬁy the Converse Milman Theorem,we have that ex To(F)c P.If
we had WfW< 1,for any f ¢ ex Co(F),then from the Strict Minimum Prin-
ciple (see (28),Theorem 1.2) we would infer that WE el S for any £ €
€ €o(F)shence, W fW<1,for any f€ F,a contradiction.Weinfer that there
texists & f‘é ex"EB(F)f\B(A)fBut then we have foég(ex BailN)c (cx F)

N E(4) -P N F(A),The Theorem is-proved,

THEOREM 11, F(A) is guasi= combacf for the central topelogy if and

only if,A possesses the -unit element.

Proof.a)Assume that 1€ A,and let (F ) be a decreaéing net of com-
pact Z-extrmal subsets of B (A),ouch that

(1) P oAT(A) £ 8, e

™ &g'
s gy

# @,because E(A) is compact.Since 2. NE(A) is a non-empty compact
Z-extremal subset of Bl from mheoren 9 we infer that B ARCA) #£.0,
dhd this shows that (P( 5 Z(f(ﬁ))) is .quasi~-compact.

b)Conversely,assure that (F(A); Z(?(A})) is guasi-compact.We shall

prove that A has the unit element by 3da§ting the proofief ( [éBl,
Proposition 3.19),

Then AT, is a compact Z-extremal subset of E (A),dnd F_ N E(A)

b')A possesses a strictly positive element. Indeed for any Gent
let us consider the subset F(za) {.FC,” (a) 3 “‘u = o\ It is obvious
that Pla) is a-compact face of bo( AY,1f A does not possess a strictly
positive element,then F(a)f\E(A) # ﬁtfor'any a&A”.Since we have

n

4
- &, o _" 8. r” & & & ? & .
2| F( 81 + ® o o+ < 11) j[}l 1 ( “..1) ¥ qu’ ¥ il’l A‘ §

we infer that

$=40YnF(A) = ( N . Fa)) n F(a) £ 8,
a& A

. * o r.’..
‘and this is a contradiction.Assuming that A / 40\ let then aoe_A :

\\aO“ = lybe a strictly positive element of A. i
" b")Por any «é(0,1),let us consider the function %&i[byll“iLP;il ;

"given by



0 0 €t <
(1_-‘0()“‘55( tow), et el

2 . def
Let A < A be the L -subalgebra generated by 8, sthen we have b“gt

’def 7(ﬂ )e.A and, by the uelf&mamuﬁlmar“ iepreoentatlon Theorem, A
can bp 1d mt1fled to the b -algebra C CW{) of all continuous complex
functiong defined on thé compact oubgetWWc[b,I],whlch vanish at o (we

can always assume that oéfnt);For any £L&(0,1) we have
(1) o e d i er (87 ¢ flal) o WA

Indeed,if L€ B{A),then f\&' is a Radon probability measure i on

AR C (WH) (take into account the fact that since a  is strictly po-

Sltlve in A,the Sequence (ag/n)

s e am appTOXLmate wnihk of Ad 18
f‘éﬁ%k&)/\ﬁ(ﬂ),then

(2) 0 = f(bd) = g ?o;d/u. . oo, 1),

: L e . S = ;
where hx is the Gelfand transform of bi.From {2) we infer that
N

Qi\supn = 0ji.e.,we have

(3) . ¢ (5, (n)) = o, m & Supp M.
Fron (3) we infer that

8, Am)L o : nlésuppr,

and,therefore,

=h
P G
)
P
i

a,) = f’E @/A ; ‘ . . _ :

. : A nd
whence (1) immediately follows.
J BTor anyv 1 SR A are axve T E i Trdeand we have T o s
bt ) Fox eny I o€ F(A) we have Loé»b(bifw(a )).Lnucuq,yc have io<“o*
~o0 and,therefore,

] e o A . » < ﬂ. E e} K : o
joe_{fe;uo(u> s £(a)>Af (a)) WY

The assertion now immediately follows from b").

s ] O<:M1‘:uh<:1 :;,F(b ) & Blb &) .Indeed, we have qﬁﬁé'q;io
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pt 1 )Let ue nov
Uilp;1) naerss x*stszﬂzmaeﬂﬁ%ogd)smnm that‘,(nx) % >0 buuﬂﬂ

a

aaume that aois nob \YvﬂlbahTo i n.”hcn for any

oy
CARD Y

L oo.dieh P, - ¢ P(A) be such that p \A, he the humomoxmhﬂou A axuyﬁ(md).
He then have D ( ) = 03 1aBey o- 7(o, ey follovs thatb
(o ) NE(A) 2 p(p,) A P(R) # B e (o1

From pitt) we now ipler that »

b F(p,)) AE(R) £ 9
Lelo,1) '

by taking into sccount the asetmption that F(A) is quas .i-compact 1in

the central towolo~y°but relation (4) is in coﬂtfadiotion.to b“‘).l%'

follows that a4 8 1nvort10je and the rneorem 18 proved.

x

e

%4.STABLE YﬁOJECTIOﬁS AND TLIFTINGS OF MEBASURLS

The theory geveloped in this sechion 18 ipnepired BV the following

observation from (EZKX,E. 5)

Let "1,{9 ve compact spaces and 1 X o continuous m%rﬂlwﬁ
“Tetb lllej& (ﬁ ) and define /L? = T QA‘ e M { ) phen the mdﬁplng

Q« (';{2, ?3(312))5% ST E % (Xqs ’”3(}21))

induces & bijective jsomorphism

1k po) %E@ v (gorie 111'(5{1 v},"_l)

if and only if, M€ X . G¢L?})
T.Let (%, 2 e amd measurable SPAce Cace ».,22 te 8 o —algepra of

._-——--"""““"...-.-—--""“"‘"'

4

subsets of the aet X).Ve shall denote by &f(x,é;) the algebra of all
5 _measurable C 1ex functions jefined OU reae 1 (% *q)‘”'li
L —measurable complex functLoms defined on L, Whereas L will
Pe

atand for the conmutatlive ¢ ~plgebra of all bouﬁaeé fﬂﬂctloﬂ“ in
: : b
-\ft (z{q ) el ”10"'(\\3 with the SUl )"""101 Me

S V'jg any proba pility I measure oOn 0w any given ?efl +cél we

28] 3 3 1

«hall denote BY 7 ’K,Z;,}x) the cemi-normed complex vectoT gpace O
411 funetions LciZ(K,ﬁﬂ such thabt Ve ds ﬁkmimtegr&ble,if TEepa

in which cage the gemi-~-norn 1g given Dy

e IS



ot : I s G
o) = f Ve aplg) 08, el L E
for p = + eo ,we shall define

Y(yffuxs/*) %(As
and the semi-norm will be giveh by

\\f“wf:fx~vv i Quhi\f Ct g Xé}i}
i.e.,modulo the measure "
~ We shall denote by LP(X,Z;,/&)'the corresponding Banach spaces,ob-
tained by identifying two functions fl,fﬁéfﬁkx 2;,7L),wuch that Wiy -
- fz“ﬂ = 0.In this case we shall also write i]n/f wud/u)
We shall denote bV'CfW or Cn(f),the class of feyt (x 2?,/&) in

a0 : .
L~(£,ZL,/L ),thus obtaining the canonical mapping

\'ZT‘(X;:Z:”/*) = {Jp(‘gyz_,¢/““-), . 'Dé[l,—}‘/cxarlq

Wwe shall denote by 2, () the Lebesgue completion of Z, with respect
Y L £ - ¥
: L
/J\
zjj(}x) =<{>’;Oe P i3 e % e?ﬂ,‘,ucn that

B
I, b XCX, eand /A(Xg) = o}

We shall denote bV’J\ (& Z:) the convex set of all probability measu-
=0
res/xi§$~5L0?1X

IT.Let 2. ,2 . be two S -algebras of subsets of the set ¥, such
l P 2 & : b
that Z,, < Z, ,and let J4 be & probability measure on ézl.The problem

of extending /x1 to a (probability) measure Mo on 222 is very diffi-
cult,in most -caseg,and 1t depend% on deep set-theoretical properties.

Assuming that such an extension exists (we ceould start with a given

Pl o 2 def
probability measure o 2, and consider the restriefion )Al =
def 5t ; : :

= fﬁpkégl of /*p Lo 43 ),h@ obviously have the: inclusions

a) ¥z, 2 ¢ Y@ B

<

b) \g_‘p(j:x:,if";l,/ﬁ) Fas 314'1*“’('7»{,4‘_;2,/*,) : D ét1;+:>;&°

i



oo

0f course,the semi-norm “@“ on f{p(X‘ézl,/A]) is the restriction
to E@p o % ) of the scmlmnormAh«“ %@(X,ES?,/x?),for any
p(,[1 +cwxa‘e ﬁhen have the commutative diagram
i
Wwh(x 2 B onie e
- (Xav“‘-—-41;9/"3_)"‘“"""‘%5{“{4’{94:327 /u2)
b \l, ,X, C
DA’\
X, ;51,/A ) —— L (m ¢ 2,/—2

»Jp

where jn is a proper inclusion,whereas 3 “is an isometry into its co-
~doma1n which can be COLfOCt]V and ualquelv determlned by the commuta-

tivity condition

I ® g ‘ ¢ (L ol
We shall say that the extension /A F~é/42 ;or the festriction /ug\ b“l’
are stable iff gy is ontoji. ea?jp is an isomorphism of Banach spaces.

Standard examples of stable extensions are:

Example 1.The Lebesgue completion of any probab111ty space (k,g,v&)

Example 2. The Radon (i.e.,regular Borel)extension of any Baire pro-
bability space (X, J)(A) /A) on any compact space.

Wﬁ remark here thau the second example is not reducible to the .7 =
firstimore precisely,there exist compact spaces X and Radon probabiliw
ty measures f&on X,such that the Lebes gue completion of the rﬁ“ﬁrlcm
tion Of/ﬁ to'.ﬁo(X) does not contain jB(A)s

pe - - «oF B
III.Let us now consider a measurable space (Xl,Zml),a set X2 and

a mapping r :X,—>X,.We can define the (full) direct image T (hd})

e

of 2;3 by r,given by = . :
: S ""‘]_ , o~ ' . ;
rt e dpcx s 2 NBIEE b

it is obvious that r (2;1) is a G-algebra of subsets of X On r,(éﬁ )
we can define the (full) direct image T 9%1) of .any probnblllﬁv mea~

gure} ],blven on Zjlgbr the formula
r(/xIMB) /Alh“”‘ﬂfﬁ BETkQZi),

We shall say that r <fL1) is the nwogeci1on of /A& B g,
If 5, is a given T-algebra of subsets of X,,then r is said to be

surable it

R v
g‘jé? = rw(z ).
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Egggyk,ﬁtven a probability measure /&] ézl,and a (231,522)~mea~
\Suzgyio napping c:?lwﬁsfg,oue usually considers that r.(fxl) ig defi-
ned Gh\gdh only,by restricting r (/Al) t ?,bnt we prefer this,mo~-
re gene T”\\SCtLlugs

Now,given & probability measure. M, on ‘ggi,and a (Ezi,ézg)wmemw

surable mapping,oxne could put the problem of finding a probability
)‘T(

3 =t
measure M, on < sish that = (M S L.ouch easure
Py On Laq,SU ‘bh} x, (A 1)\;d2 /A.ﬁ.>ach a measure py
will be called a lifting of m, by r.

I e S e ’/
o

Of course,the restriction of a probability measure %o & ub* gl

gebra of sets is a particular case of a projectionjwhereas the exten-

Siog of a probability measure,to a larger ¢ -algebra of sets,;is a par
ticular case of 2 1lifting.This shows that,in contrast to the case of
a projection,the lifting of a ‘measure is not always possible,Therefo-
re,theifollowing well-known result is quite remarkable :

Let r - X

1~aixp be a continuous mavping between compact spaces.lher

the following are eguiva lﬂnt*

a) ~r is surijectives.

b) —any Radon proba hwiibv measure on ﬁ? can be 1lifted to a Radon
probability measure on Xlo
(sece L261,m.5: QSK,Lemma 1G5

IV,.Given a (2] i,ha_v:,_?) ~messurable mapping r':XXW% X between two

s

measurable spaces (Al,;gl) and (X?,%ﬂo),and a prob%blllt" measure .
on 2,.,let us consider the probability measure f*o e (o \é;, .

T 2 *® = o
We can then obviously define the mapping

"75) 5
% 3 '~<. $+:
r-p 2& (1*291.::30 /A?) ——*?\K 4"192‘19/""})7 4 P
b i 3 » P wr . ey S - - WP
by the formula Lp(f) = for, fn»{,(Xg;;ﬁﬁ,/ﬁ Yu
It is obvious that we can now obtain the commutative diagram

By
f (/‘[pswdzzf/“ ?) f 19 ,::41‘9 /’Ll )
: /i” C' -
b b gj "
il ( ?!%uﬂ’/}?)’””A L Xli 1! [ l)
P
fhere qpis unigquely determined by the cowmuLﬂLJVLt condition

D é[l,-&» 3‘9‘}0

A0 o 8 ' N
dpts” v
It is easy to show that 9 is an isometry into its codomain,
We shall say that /» is a stable projection of /Al (induced by
the mapping r ﬁl«@>Xq),or,equivalently,that f*] is a stable lifting
il 5




2 i /x Q,iff the mappings qp are onto,for all pa’:fl,+;~ﬂ.

ping

el - |
THEOREM 12,a)For any }*1& My (%y92i) and any p€(1,+ ==, the _lnap-

».' TPty 3 - o Py s
3._1).5{ (k~2?w29/12}3f‘——> ferey (X]?g;l?/&l)

e o er Py 5 By .. 32

induces an luomc; ¥ Qp,L (Kggﬁﬁg,/42)~»é L (leeﬂl,/*l).

) qaois a C -algebra homomorphism, toe

¢) The followine statements are ecuivalent
: i)./xl is a stable lifting of Foi
ii) there exists a pé{1,+ao},suéh that q  is surjective:
= P : :
Gy JAq € ex r*"(%/xz}).

(Here rtXl—%»Xz is a given (521,250)»measurable mapping and % =

o LA 3

2 NS E co ey : TR N : 1 3 Gr
= rg(/ill\tdggly is the direct image mspping g‘ﬂ}i+(il,Ezl}ejﬂ+(az,é?z'

Proof.Statements a) and b) are obvious.
¢)It is obvious that i)-=>ii).
ii)-zéiii).Indeed,let pé[l,+cm]'be such that qpbe surjective.liet fg:

~ %:(/*i f /L£) be a decomposit?on of /Alvsuch'that /ui,fxié}r;;({ﬁz}%

Fil.,

il e BN Zn

e o ,7p ¥ s 7 M o 7 orn ¢ 'c*'ﬂu. Rl D S"I-
Let {;ek_(Al,ﬁdl,/xl? be given.Then there exists a fc.z’(Xg,:dg,}*g),
Sweh ot fep.. @ (mcd/ul).Wefthen infer that farAN,g(mod/ui),and
@lso,that fer g(mod/A{).We obtain :

,

f gd/«(ix j (for) d/u{:-.f fd/u?:'(,(far)-d i:f_gd/ufi,
Xl &1 KZ Xl /* 'Xl :

* ”p = & 3o exd o -~ - | i © o ~ T
for any géa%’(xl,j%l,/*l),dﬁd this shows that /ii = ljihence,we ha
ve that /&Léex T ({fb})’ | o
1ii) =>i).We shall first prove that qq is surjective,Indeed,if im o

i

# Ll(Xl,Zzl,/ul)ithen,by the Hahn-Banach Theorem, there exists a (g7 ¢
(im qlYL, Ugl€ 0.1t is obvious that we can choose (g} ,such that

m

= tX o L 23 s oL ‘
g be real,and \g(x)kg l,xe X, .We then hav%
i e .

.‘ 5 7 . 1 :
(}{ (for)g d/ul = 0, fe¥ (Xg’égv/ug)i
_ i1
and, in particular,

P N



o 3L

gx & las O

Tet. us define /&i = (1+g)/x1 : f‘i = (1«g)/il.We have /*i ’/*K €

1 w 5 5 ' A = o
@4}{+(a1,4g1),amo for any f éji(X??égg,fxz) we have

(}zzf d/AQ s f:{l-(f"?) d/‘}_ = IAXl(for)(lfﬁ)' d/'(l =
, | - [x (for) drq ,
: ‘ i ;
. ﬁ}{ 3 d/’(f? e }.), (for) 6‘/“1 = (X (for)(1l-g) d./xl =
‘ . e

2 = :
: : i for) & 1"
le( I) /“l 9

U

e TR o) L — = A 'r('.*

and thljluﬁowslthat ?k</il) =y = r%(/xl).It follows that td] ,

/;{;éx}_(%ujkxanﬁ since we have [& = ,%("f + f<{),we infer that
= my .We infer that (g

e e

l= o in L""(}il,_;g;l,/xl),and this is

a contradiction.
; : - * % : =
Let us now remark that the mapping g 15 (w ,w )y-continuous.Indeed,
S i e e ~ .
for any feY (AQ,ZZE,/iz) and any geg{fixgggdg,/ﬂg) we have

| fo u 3 .

(e ape i | L iBat By
5 o B
and ,since the mapping a, is surjective,we infer that if Cg}~>o in

Xy =7 ~-1 ~ T q ' o] : H ~ N ' o 3
'U(quig,gdg,/42);L1(X2,4;29/42)),th@n q;}{g))ué-o in the topology

o (L (leézlv/“l)';:{i ‘(}{1952;;19/‘41))20 :

Since q__1is an isometry,it follows that the closed unit ball in

the image by g, of the closed unit ball'infLuYXQ,égz,/gg)g

e

s o B B
o > =
hence, it is w —compact,by the Alaoglu~-Bourbaki Theorem.
¥ 3 : b Ietts o]
: . oy e s a S : g L
From the Krein-Smulian Theorem we now infer that im g 18 W -closed
3 oo, . . 3 T i = : - =
o s e e VoIt dmeoag # 10 (X, pos ,/A.),then we could find an
1 2 1 1 e 1 A 1
fléfg'(xw,ZZW,/é}),such that kfix # o,and ’

(X e ey = 0 géfh(xgvgg,/*z).

Since q. is surjective,we infer that there exists an f2é§§l(x2,gg?vup)
such that ql(ffé\) = Efi},aﬂd,th@refOfé,we had : :

‘o = (lel(gfr) ﬁ/xl = fx1(€ff?(gnr) df*l = (Xzfgg d/ug g



for any gé%w(XzyZ;?,/p 2)".,This implies that [fg_} = o0 and,therefore,
’Cf = o,contrary to the assumption.

We have thus proved that o s surjective.Let us now remark that
for any 4116 Z«,,3 there exists an A? w?,uuch that "X ~X »—J( fxf;, (mod/tl)
Indeed,since q_. ig surjective,there exists a ge SE“‘(“?,M?,/A ?), such
that ;

0 = \7/\ -gor \ 4 - legor\ (t g\sr) 4 i
(_1 n | B (Al\ T 0/‘1 ([A {glor) dpy
et ﬁ wﬂiﬂreﬂl Lgarilix) = 1} and A" ~4 X(CAl, (paplilm) = } JHe then
have /ﬁ(fx ) = Juq Ai) and /Al(ei’\l) /, 1(& Y.Let By -«{ yeKz,b(v) }
. and P =d YéX;z? gly) = O\( .We have

A

e

=L A W =l i
= T (B]")/\.A’\ and - AR =ow (BO)AC.A1.

We infer that we have

P . o :
XlA e o (Al\xr 1(81) L d’/il 5 (C’A;(T"I(Bl)dfl”
= gAli Xag Al apg (AXXT-J.(B:L) Ay = 0,

@nd this shows that XA“' Xx-"'L(B )(1710&/*1) :
~ Let us now prove that qp ig strjective,for any p é[l,-&- ~o) . Indeed,
§.£F e&fp(‘[{l,z'@ /A ),then there exists a sequence <An>n>o°f setsa
A ézlle& such that

To e gk s 7, for i £ i3

) Js)ﬁ. e “{1";

) f)«.\ ¢ ¥ {"l,nﬂlf g s R,
We infer that for any i€ N there exists a g, €Y (K?’éﬁ,/u?) such
that gioT ~ f?( .It is easy to prove that the C’G'L"J_C% 5";3 is norm
converging in vggﬁ(y?,e_:;,—,,/& ) If we define g = ,_.;g' ywe have g €&
A (xg, ,_;?,/& 2ol Tk (f o) = [f].The Theorem is proved.
In the same setting a above,we can also prove the Tel lowing cri=

terion of stability. -

'PHT“O’"’T” 13.The following atatements are ecuivalent:

oo o o e v a

a) /wl is @ stable 1ifting of M3

b)  for any ,legﬁl there exists an A€ Z?,auch that py (A Xy (Az))

:::Q,‘



e

e ST e T

zlvof,Tao implication a)=>b) folloWb from the fact that the sta-
billty of M with respect to /Ag implies that 6 is surjective,whe-
reas b):@}a) follows from the fact that b) 1m011@g the quJGCL7Vlby
of g_,,as one could easily see by approximating any funutlon in
yf“xxl,:ﬁ] / 1\ by simple functions ,un1foxmly.~

V.The well-known method of introducing measures on possmbiy non-
measurable subsets gives another instance of a stable lifting.

Example 3.Let (X %ﬁq,/A?) be any probability space and consider
any subset X, CX, ,oUCﬂ that /&2(?1) = 1.Define

N

o ‘{N{/\Xl : 'Jiéi‘z\(

obviously, &, is a T -algebra of subsets of X,.

n..-l2

Since fi?(? NE, = /&?(1), Me 2, ,we can define a probability mea-
sure /Al 1ﬁ1~aLp ]1 by the formula

/,gl(ﬁ _/\Xl) 74:/*2“5)9 a 2 még?

215 i o il—§X2' is the inclusion. mapping, then it'is easy to see that
/Al Lg 5 gteable lithing of)p?,Hy T

Consider now a o;ﬂbl; extension (XQ,,dj,/L)) of (Kp,mgz,/kz),where
2 C'z;3 and /k3 132 = g .We can define correctly a canonical bi-
jective isometry T, L (A?,QMB /x3)~%ibp(xl, 15/41), for any pefi,+aﬂ,
in the following maﬂncr

For any class [£] e 1.P¢ i?gz;B, ) choose a reprc%entatlve f e
e;in(u?,zﬂn,ft?) and restrict it to Xl,then Lf\ﬂ'x is the correctly
defined image r'([f] ) of (£},and the mapping ri.is ess 1ily seen o be
g bijective Joometrv.

This setting is often encountered in Choguet Theory and,as an appii
cation,in Reduction Theory.Namely,let_Xz be any compact convex set in
a Hausdorff locally convex topological real vector space,and let le
= eX hq be its extremal boumdary Let s be any Choquet maximal Radon
Sos = B(X,),and let = B (X)),

/A? = /Aj aqﬂ.Then /Aq(k ) = 1,by the Choquut -Bishop-de Leeuw Theorem

probability measure,defined on

and the precedlng con Jderdblons can be applied.

Below we shall encounter another instance of this example, by con-
sidering the set of the factorial states of a C%~algebra,and central
measures.

Remark.The indiscriminate. striction mapping

vt ot



el

e : e
¥ (A-29.4_:;¢39/"3) 21 > i‘){l

is not 1&g1t1mﬁte in general, for defining the;mappiﬂg ré »
The  following Theorem shows that there exist maximal stable exten-
sions for any probability measure,

] any wrobwbjlitv space (X el /L ) there exigt maxi-
fubie spkans i L i
Proof.Let Y be a totally ordered set of stable extensions (XO,Zj zﬁ

of (X ,EZO,/» ), such chqt for any (AQ,,d w) (Yo,ﬁ*“ ‘506 ;
either Z el and/ /u y o Or B _ﬂ%' and/u 120 ”ﬂmm
Of course, we can assume th&t,(ko,ézo,f&o)c and it is easy to
'nrove that iFf (Ko,zz /%ﬂ O,g; /ggﬁé‘f and P te s, then
X /{gﬂ is a stable extension of (X S ﬂJ

We can define on the algebra 22 0{4; %ﬁ: } the finitely additive
set function /u_ Ly [0, 1] by .

/?(M) - /VZ(M), e =

where (XO,ZQ ,/& ) is a suitably chosen extension in %f (For any V&QZ
there exists such an extension). :

Let us now consider the outer measure ji*corr@sponding to/ﬁi;i.é,,
we define '

/«’i*(m) = inf { “*H*‘” ), M, € Z}, © M;:\M} ;

i=0
Tor any MCX Let Zﬂ {}"e‘: @\,h ~3M & ZJ

and define /ul = \aﬂ] Then (k ’ﬂdlngl :
it is a stable exten lon of epy (3 071 /Aq ¢ E{ The application of

Zorn's Lemma finishes the proof

a TEOM AN Ve
o, SUCh that B(MAN )=0},
a probability space,and

4]
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§5.5TABLE LIPTINGS OF ORTHOGONAL MEASURES

In order to prove the topological properties of the central measu-
res, we have in view,we need to est”%l sh the possibility of lifting
orthogonal measures as orthogonal measures.

I.Let WA -—>B a homomorphism of C%;algebras.We do not assume them
to possess the unit elemeﬁt;whercas,lf they possess it,we do not as-
-sume that 1"(1) :

Let B = A" bve the adgolnt mapping and @enote by szEO(B)mé»Eé(A)
its restriction-corestriction to BO(B) and LO(A).

THEOREM 15.a) s(E (u)) is a compact face of EO(A).
beslElE)) i3 face of JO(A).
¢) If 1¢B,then s(E(B)) is a compact facé of E (A) ;
) Ei Ted,leB gnd (1) =, hen s(E(B)) is a compact face of E(A).

s

Proof.a)Since the mapping s is affine and w*~continvous,it is ob-
viocus that S(EO(B)) is a compact convex subset of B (A).Jet fcu\ﬁQ(B))
s e R i e R R 8 S EEE f"@’LO(A)-bL a decomposition
of f.Then we have ' | ker‘rf =l ey Tf = 0 and,therefore,there ex~-
ist &! ,U"éwx Af'buch that 1 = g'e N e gl Jrom WA= w(at)

O :
we infer that 220, g »ojwhereas from WT(A)? = W(A;) we infer that
WE'R = wgli, Wiy = uv”\\cIf we extend g! to g'€E {B),and ge. %o
“Q”F (B),we havo s{g') = -Q(EO(J)) and s(g") = f”c. (B (B))

b)If fé:o(h(D)) with the same notatﬁorc as above,since Mg ‘\\ clang
“g”\xglgwe can find extensions g' of Qj,dﬁd gh of g" such that Wg'y=
= Wg"{ = lithen we have s(g') = f'¢€ s(E(B)) and s(g")‘x fre s(E(B)) s
¢)If 1 ¢B,then E(B) is a compact subset of E (B) It follows that
s(E(B)) is a compact subset of B (A) and a f&he of & (A) by bl
d)Under the assumptions,we have ( HBY)YcBlA).

The Theorem is proved,

THEOREM_16.2)For any orthogonal VC“QUT@LﬁJ% (E (A)),%uch that bgk)

¢ o(Ek ,(P))A B(A),there exists an orihogonzW meaoureQwM'“(L (B),such
() R e o N e s sl e v i ooyt P o o oo el o 4 N AR res v e TP S 7 o e e e T e o L R e T e s
that s (Q) =Jx,and V be a<stab1e Yifting of

b>£§ is maximal orthogonal,then v can be chosen to be,moreover,ma-.

wimal orthogonal.

Proof.a)Since,by Theorem 15, S(E (B)) is a compact face of EO(A),

we have fA(U(E (B))) = 1 (see {287, FJ oposition 1.5).We then infer that
“1 {f&\) is a non-empty compact convex subset of\ﬂ{i(EO(B)).Let




3T

Yidey s ({ Y ).By Theorem L2ywWe. infer Ahat VG pn stable ljftnﬂg
P oile ~hn]l prove that V is also orthogonal,
st TE Culer T (V‘(f) .&\” (A)), /4) is a projection, then q.(CyDe
EL (v (W . Rfﬁ (T My V) ie mnlas e projection,and any projection in
T (EU(“),J>\J (f) V) is of this form,on account of the fact that
is ‘g btabb*?jJL ing of/&
Since i is orthogonal,P = K ([Q]) is a projection in WTb(-)(A)'
(see (28 s Theorem 3,1), g
- From the fact that s%(Q) m/p-,ve infer that @(b (V)) = HAgﬁ)gand
This implies that “bB(O)\\ = 1 gince J = “bAQ&)\ <f\\bp(0)k
Byacligl e oo g ) we infer that AN bl) a0 be identified with
b( )0‘\— A-ék?(n Hu(&))’ where €,18 the projection onto the sub-
space T v (T (A ))*gb()) whereas -s ) can be identified with "é’g(w
E?P], Lemma 3,1}, @ = KQ(%W(EQj)) is an operator in TTb(O)Gw(A)
ouch that 0<€Q<1,

a")Let us now prove that
S K/A(Cw}) = 8 R e (edlle,
for any (yle I (EO(A),ﬂB(EQ(A))O#).Indeed,we have

(E’\./*(CWJ)‘H B )(8) éjg(/h)i ggv&) ) = gE (A)\Q)\A(B) d/u =
0
= (Wos)( N (a)es) a9 = (o sIN. (T (a))
g;r«.:O(B) ¢ 2 (igo(b) ey

Hi

1
1

(T{\)(D‘(}“ 31) \Wb(‘\))(\‘.r( I"))fg(\} )‘2 53{9 ) = s a E‘A,

and this shows that

B

KD = o K (Tgas])e,

asg reguested.

a" )From formula (1) we infer that P = eOQeO and, therefore,we have

eOQeero = GOQGO oo we 00T B

We infer that

e - Qe Qle =
LO(Q CGOQ)OO 0,



s
and,therefore,we have that

fo = QGQQ)GO = 0,

T

whence we get that

Qe = Qe Qe g Q0 = e Qe Q ,
€5 - e R (e Slembailorh

Prom QQsQQ we infer that eOQzeo geOQeO and,if we denote
:k’_ .
R = (Qe, - e Q) (Qe - e4),

we have that

0€e Re =¢e Qe —-e 0e - e Qe + e Qe Qe =
0 o0 50
4 :
=06 Qe - e Qe £ 0
G0
and this shows that e Re = 0,We infeyr that'ReO = 0 and,therefore,
- e =0
GQQ) o y
whence we get that
Je = e Qe 3
Qe, e, 3
this implies that

(2) i Qe = e Q .

= - : s

el " B A e e e e e A e B ML 50 s e
from ) we infer that Q& = Qe and,since e = . We
£ i (c) € wnat W oe we 5 Géb(v) éb(?) ] X
get that

e ;
{3) : Q" fp(y) = ng(v)'

G4 | o OE T T o o e o o B g P [
Since QC—fb(Q)(d)‘,and since 'ib(ﬁ) ie oyelic for TTb(Q)(B)gLrom (3



<20,

3
. 1 £k " . . 4
we infer that 0° = Q si.e.,Q is a projection..

"From ( [281 Theorem 3.1) we now infer that v is orthogonal (¥We ha-

ve glso to take into COl“lﬁGT vbion tre fact that Vv is a stable 1lif-
ting of ). :

b)Let us now assume,moreover,that s maximal orthogonal on E_(A)
N “ “‘—i - ek - -
Since the set b & ({M%)) C & (B) is compact,cenvex(&nd non-~enpty,
we can find a goa ex b \u"’%ﬁr) us define

mg,) = 57N A bt e

It is obvious that M(go) is a non-empty compact face oi »pk)gana,
therefore,we have

g £ ex M(go).z M(go)f\(ex si}({#ﬁ)) .

Let us choose \)/py F(go).By part a) of the Theorem,\%ig an orthogo-
nal meas uro on B EB < Rt =
o) : _
b . » h . -
A evﬁ& ﬁ (B)) is a maximal orthogonal probability measure on

EO(B),auch ﬁhat

then V-~ ‘Q and,therefore, bRCQ) = bR(Q ) = £, It follows that NE
C,b_j({u }) On the other hand,from (4) we infer that

(5 po=8.(0) <L b,

andgaincp Lis maximal ormhogvnnl on E (A)‘,from (5) it follows. that

5, (V Jogle,, Vode "*({}}).ne 1nfer that V) €M(g)).Since Vv is
orthogonal, from ( [?o] Lemma 3.3 and Corollary 1 to Theorem 3.1),we
infer - that V. is simplicialji.e., '

N e exqﬁﬁi(Eo(B) $8,) -

147

We then infer that V. €ex M(g ),and this implies that

-5 .,:L »
NE G—OA.(S* ({f&)) :
hence, V.. is a stable oxtanjonlof /A .The Theorem is proved.

Remark.If we consider the setting of the proof of the preceding

g
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: o . ; : : A : ; ¥
Theorem, since finite linear combinations of projections in the C -
algebra L (E (n), B(E <H))’FJ are uniformly dense in this space,from
formulas (T) and (2) we infer that e &4l and % = %fe Jloreover,the ¢

ot

mapping %Qﬁctcvcc é‘f is an isomorphism be*xevn the dbﬁll o von Neus-

mann algebras ¢, and V We also remark t“at Theorem 16 partly con-
tains a result 0f Andedson and Bunce (see [2]1,Theorem 5).
IT.We want to mention here two ir ﬂﬁanges of the situation dezcri-
bed in the preceding Theorem.
. i : 2 . S 3
a)Consider an arbitrary C -algebra A and let T &E(A) be given.We
can consider the representation W, - —52%II N ﬁet @ch (A)' Dbe
any maximal ﬂbellﬂn von Neumann qabﬁl cebra, 8n8 define B, t8 be the
¢*-algebra C ( (A) ), generated by T (Q) and € .We have then
9 2 y £
0 5
the C ~homomornh18m A —aBsobtamnod by corestricting ™ to B.We

then have that 9

Bl s Do =

and we can consider the mapping s:B (B)**>EO(A),defined as in section
«1.1f we demote o = 2AB then o(go)-~ (Wor any f¢H we denote by
% the positive linear fUﬂCblOﬂal on ¥Y(H) gzven by h%(k) = LR,
£(1)). A
Let ¥ be the central measure on B (B) corresponding to gogit Ae
the greatest orthogonal measure on B (B),who se barycenter is g .0f
course, E(B) is compact,and V(n(B))
On the other hand, = s:(Q) is the maximal orthogonal measure oOn
EO(A),whonc barycenter is fo,“nd which corresponds to ¢ (see {281,

. Lemma 3.8).Bv the Corollary to *hj“ Lemma, V. is a stable inting of p.

b)Consi now an ﬂrbL+“"rv g a?yebrw A,let f & B(A) be given snd

define B to be the C wulyebr% ) (ll_ (AN £ (A)'),generated by %
o

T T ' We he to
‘fO(A) 186 "fO(A) .We have.

B = T Al (R € B 3
0 o 0 e

hence, B; is abelian,and it is the center of-Bf .

: 1 ) Q Ta i
1f.g, = iﬂu ,then there exists the greatesi orthogonal proba-

0

pildty meagu“ Gy s on Eo(Bf ) ,whose barycenter is at g ,and which

&

0 O ; o S .
corresponds to the greatest abelian von Neumann subalgebra B% of

i o}

it &
Owe can also consider the C »homcmorphiﬁm.TnA-~5Bf ,obtained Dby

A 2 < : Q d 4
corestricting V. ,and the corresponding mapping g:bO(Bf )“%}%J‘Q’

O



.

given by s(g) = goﬁ‘,gféBO(Bf ) «0f course, E(Bf ) is compact and
e S -

””hm iOWJoviua Theorem extends towthe general case of C%mulg@brag
A,possibly not possessing the unit element,a well~known Theorem (see
[24]g?roqf of Theorem 3.1.8). :

e (? ) = e bodew., S%(QF ) is the central mesnsure
O ~0

on bo(h)’Wth( h&rxo*u*@r 18 at f 2

e

THEORE

Proof.a)¥e shall 1Q0ntify ™ w1th tha identical representation

i =5
of Lf and we can assume that Ogg 2= ff oIt 'is clear that b(s%(vg V)
Seily Dhenle ) =1 e e :

Q)Frgm L‘-U—& Lemma 3.3) we infer that

(1) B i)
4 u%(VﬁO) E .
¢c)Por any'w&gszo(A),ﬂi(E (A)) & (v )) we have thaﬁ
q ;

(B ey e, ROEE ( Ju(a) as 0y, ) =

A o

] o) O
= (gos)(N,(a)ss) a Gl e (e 8)hg(T, (2)) av=
gE (Bf ) \ = o g (“f ) : £ ﬁv
s (Bw~])n (D% 18, ach,
€o .
and since §g is eyclie for e (A)gwe infer that
0
(2) Eo sty b B = T (g (TR0
s z?; : & o

for any‘véﬁf(E CAY, PR (&)),g (9? )).'r om formula (2) we immedisnte- .
1y infer that the_meaGuro 8, (V ) e J{ ( (
Let e be the orthogonal proabctlon on }

and from (LQS],Lemma 3.6),we infer that

r:'.z

fo
):f ) is orthogonal.
§ Prom formula (1)

i

g ' 5\A(a1)XA(aZ).,.)A(an) gt Vo

E (A %0
= e I e ey o=
. g (pf )i)fo )'ﬂo i].. bfo fO Sq
= (K, (%B(T}O(al)))e..Kgg (XE(Wf (m ) )80 \2@0)
o) o

= (e‘Wfo(al)efoo( 2)@...@ nf (a )chigi =

i

(K, (%A(al)lﬂ(az)-..%A(an))ff\220)
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:
i

g v}\ (a' ))\ (O )an‘) ('EL ) 6 s 4 a, a - b &A"
Pl e iy By

L

: 0
From the S tone-Weierstrass Theorem,by taking into account the fact
thet ﬂ%(v ) and fkﬂ are both supported by E(A),we infer that
s (v ):x/Afé .The TReorem is proved.

is a stable orthogonal lifting of /&f

Proof .From the preceding "Theorem and from formula (2) in its proof
we infer-that :

Va0 nd

for any LQ&EED?EO(A),ﬂ(lﬁo(il)),/&fC)}eLe't \gegfa?zzzo(gfo), %(EO(BfO)),ogg

0
then Ky, ((91 & BL ond,therefore,there exists a function (€
eYLE ( “:?mﬂ fmo/ g )psuch that K (Cg]) = - (Cyw]) .Formula (3)
now implies that K (Lwl) By (g (LR])) and,sinc® KB, is imjece
tive,we infer that qw(Lq]) Lq 3 QeBeDs : £,

i

ii

111 .We reburn to thevéetting of Theorem 16; i. e.,e A—>B is any
homomorphism of C&mmlgebrae et 2 B(B) and lOtQéf4+(bo(B)) be any
e,such that b{(V) = g.We have ‘Wg(ﬂ‘(A))ﬁz = e H
})' is a projection.

orthogonal measurt g’
[\\

where e ET i

(,

E@g;&ﬁﬁ_l( Let o = s, (V) and assume that s{g)e€ B(4).Then the fol-
lowing statements are ecuivalent ' :
S} 73 5

b) tho ﬁe?%ﬂf@/ﬂ.i% orthogonal and y is g stable 1lifting of o

Proof.Let f = s(g):;then the representation o Awaz?(ﬂf) can be

identified with

ADav> T (‘T'( ))e &—:f(eoﬂg),

whereas ﬁg can be identified watﬂ'gg , Since ufk\ 1 Jmplles that
e e

RV Formuln (1) 7ix Bhs Droof of Theorem 16 we have
(1) E;&((:L(U = GOK\J(QM(C\?"D)GO Y \:u\a—lCL (EO<A‘)"’PD(EO(A))’/VK)'

a) =>b).Indeed,if e @({} ,then from formula (1) we immediately in-

fer that the mapping Y is multiplicaﬁive;hence,/u»is an orthogonal



S

P

measure on B (4). ‘
From the fuct that £ €E(A),we infer that

K (%W
}/M_( )

From ([QSX,Lemma 3.6) we infer that

gfj (A)'}\’{\‘(al))&ﬁ*(&?)”" ) (1/.,“.
" ‘

= { <<u>>>\,‘<r<,§>>“,\,\ (2, )) dv=
o (L)

i

S Orplwlay mn\ [)B(n-(a?))i‘;)..” (Drplr(ay,) )‘;\_)-52\52 ) =

il

o= e Ns = . - [ I o o o a3
(e\)ng(rr(al);n\)ug(ﬁ(ag))c\)...e\)ug(ﬂ(a ﬁ \%’ e al""?_"‘“’anQA’

where e, is the projection onto %'ﬁ c B .
{J.( B) — (11’73 frOu; —-8(‘(7‘-( ‘/‘5.) ) (: ‘F g(B) ,WG

On the other hand,from WC‘T(.
¥ W\)
) :.;ﬁd, b}leTClOI‘P we have

infer that 17?(3) Clﬁegﬁr(A)
4 ) €3 ) - ‘
%ﬁ C %;COC.GOhg(“(A>) Th

Since Qﬁze is an abelian von Neumann subalgebra in e/ (W(A)) e, =
o= "f firye “5{(@ B Y, From (L?SW,Thporem 3.3) we infer that there eylﬁﬁf

an orthogonal medu‘ii/JQ/ (h)),oucn ﬁ“&tfm<ﬂ1 and @'«w% € s

: o °
1 0 7 7 ¢ . T o o b ; e i Ter
From OOcho we infer that e ywhereas from 962. =3 wc infer

that

\)“,

-.._.._.._W.._.,.. hs

(ﬁ,gﬂ'“‘ﬁ;’ Z ~(Z§O = e N

v

-n

hence, e = 2 .Since “b?&o)“ = 1,from'([28], Lemma 3.6) we infer
that :

gk (A)k (‘11))\&(??) 2, ,)\A(\an)-, d/,\() T

: T g 0120
(3)> = ( ( ) PR H i’\‘!éf ) =

/AO fl /AO /l/uO

= (Qi‘(r( 1))9 RN G’(l))@ ﬁg\gﬁ e 858y eeerBy € ho

From (2) and (3) we infer that’



o

%A(al)%A(az)‘;'&A(Rn)‘de =

o

EO(ﬁ))A(al))A(ag),..)A(an) e

for any a,,8gseesdy ¢ A.Sinee /&(E(A)) ﬁ/iO(E A)) = 1,from (4),with

the help of the JStone-Weiers trass Theorem,we infer that/u.z/u ey

hence,we have that Qf %i”ob ' »
Let us now cons 1u@r the commutative diagram

' A s = 1{9
= , 1™(E,(B), BE(B)), V) %
’ ‘ AL, v &’ 4
: . . L(E (8), B(E(A))y ) ———> €,
| O )/w £ '

‘/)«

where q is the mapping
: Sty
g;m,P%(£o& ¥%9

which is correctly defined and surjective,by virtue of the eguality
just obtained.3ince ﬁ ig eyelie for T’(B) it ie “eparating for'ﬂg(Bﬁ
hence;’ﬁg is sepa rating for‘é From the fact that e § Sg we infer
_that ¢ j§ 3n100u1we;hence i%+ is an isomorphis m.We n@w e uziv infer
that q _ is & surjective isomorph hism,It follows that v igs a stable
11ft1nq of Jeoe

b) =a).Indeed,assume that rwkn (ﬂ) BLE, \A)),z‘) is a projec-—
Fdon.Since fkl‘ aseumed to be oruhononal it f0110Wo thﬁt K%(LQK) is

a projection.3ince N is assumed to be a stable lifving o fk yLron 1)
we infer that e,ee, is @ nrojection,for any progectlon i,e.,

e ee ee_ = e_ee . From
0 eo 0 o) ®s a0

= | ‘
(eoeeo & eeo) (eoeeO - eeo) = (eoeeo - eoe)(eoeeo aw =

= @ e 8E . =8 @6 86 = € ee Be Tk C ge = 0
o} 59 0 0 5 et
we infer that eoeeb = ee. shence,we have that

e S
o )

»
TN S 4 . A Nt 3 3 o Y -
for any projection ce? .Since linear combinations of projections are
( - - :

P



DO(A) N I
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—

uniformly dense in %;,we infer that

ge =i e e ce% 3
o) 0 %o
hence, eoe%f;,and the Theorem is proved.
A Y
IV.We shall say that a positive linear functiona fééht is simple
if‘ﬁf(A)' is commutative.We shall denote by SO(A) thecet of 211
simpie quasi-states of A,whereas. S{A) will stand for the set of all

e s
(‘4 ‘I & U (/\-.J

simple

€

any C

-3l g

Pty >

ebra A

= PLA) S
S(4) are ext

3

remal.

we have
subsets of E_(A);

(A) ifvand only ity

Proofaa).For any
b)If £e3(A)Nn
= € 3,}%
C)Let Lfoé f.}o

FCA)  then T

S

() f = %f

for any ae A.Let us denote &4

tion onto W, (A)EL CHy.
o 1

o o)
fied with the subrepres
s

%u then have

WAV e e T
;i (&) e
], )
whence we infer that . (A)'
i -}-1\
i, f?eszo(xx).flt follows™that

E(A) is of

an extre

a face
A) is

follows immediately :

Since
mal

d)This £y

red,

(A) and assume that

.where o<t <1l and Fl,f?egﬁo(
om (1) we infer that f,
Qf&mf CE)t, 0T < 1/6) 1, snieh that

9 =5

L& is commt

qulve.
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(2011291220 ),
e 0

elthe projec-

3 can be identi-
entation A35ﬂ~>ﬂg (aﬁaaf(elyf),whereas
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is ﬂmmutﬁtLve shence, f.e8 (L) .Simitar-
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$6 JUNIVERSAL MAXIMAL ORTHOGONAL LIFTINGS
OF THE CENTRAL MEASURES

In this section we shall prove that the central measures on EO(A)
induce regular Borel measures on F(A),with respect to the central
topology. :

T.According to Sakai's Theorem (see CQ@},Theor&m'B.l.S;;amd also
Theorems 17 and 18 above; for the case of an arbitrary C%~algebra),
any -central Radon probability measure on E (A) whose barycenter is
a state fO,is the stable projection of a max1mal ortho gonal Radon
pﬁob ability measure on the state space }:.(Bf ) of a suitably chosen
C -algebra Bf ,With a unit element. - =

In order t8 ensure 2 better control of the properties of the centud
measures,it seems that a universal construction is better adaptéed to
this aim, et ‘

Namely,we shall consider an arbit“"rv C «dlpeora A and its univer-
sal representation 'W :A-eﬂf(i'),where H ii@_H- yand mw ﬁé%&go?heﬁ

u
‘Wu(A)" can be canenic*lly 1deﬂb1fled W1th the second dual A™ of A,

as a Banach space,endowed with the Arens multlpllCmﬁlOﬁ see [12],
§125 L241,81.17,for details). .

We shall denote by B the C&malgebra C*(‘Fu(A),“WQ(A)'),generated
by W (4] snd W (K)¢ dn L(H ). Then

| DS 2 ) ¢ T
B -..uu(A) f\.TTu(A)

is the center of T, (A)“,of T, (A)" and of B itself.
Let W'A—>B be tho cores ﬁrlctlon of W %o B and denote by s+ B(B)
,4¥EO(A) the affine continuous mapping i

s:E(B) %g\-——»go“ﬁé}?o(ﬁx)-

. - 'K’A
Let us denote by V(B) the set of all vector states of the C -alge-
bra B
) § : CS{B) 3 b) V(B) is an extremal subset of E(B).
Proof.a)liet ve V(B).Then there exists a iéHu,Hﬁklz 1,such that
= ¢%KB.Let us now remark that the representation W ﬂ% >XTH Jie

be identified with the subrepresentation



T B p—— T . —
B T A g TN o P L e TR TR T e G L S S e

e

s

Boby—>bec¥ (e ),

where epa 547(1“4 ) is the projection onto ﬁc:ﬂ’ua(}f course,we have that °
eﬁé ”‘;1.&:@?"3%, is a central projection.Ilt follows that ™ v(}3)":' can

be identified with B*eicg(e H'u),w]rzic-h is an abelian von Neumann al-
gebrashence, ve 5(B). ' : '
b)Assume now that ve V(B) decompaseﬁ as

v= tv! 4+ (1-%)v" , ogt<l, v',v" ¢ E(B).

& e 1 i & « -
Then v'< t "vihence,it exists an X&B'eﬁ ,such that 0 <x <t 11,zmd

Yilry = (bxi\%) - (vx1/?8 x> 22), beB.
We infer that v!' = \;% shence, v'eV(B).Similarly, V‘LV(B) and the
&l
Tiemma is proved. e '
Let us denote FO(A) mikf wxefo,11 ., F€ ?P(A)l(

LEVMA: 9.a)For any p ¢ P(B) we have that s{p)eF (A);
b)For any w"é“( \) we have that OJw\’? e P(B) nV(B) and GRS AB) =
Proof.a)We obviously nave that’ Tp( w (A )QT" {9 (AS yand,the-

refore, T p< T u( DA ey p( w u(A))",ﬁrmn the oouai :my

‘Wp(B) = C)k( Trp( "ﬁ'u(ﬁﬁ)), ﬂ‘“p( ‘W.u(A) ‘))

" and from the fact that p €P(B),we infer that

é: 1ﬁp = (‘TP(B) Ve W 73( i U.{ A) ) : 7\ TD( T 11( A) ! )". 3
¢ oy X § e e A te
= (T AN AT (T u(A‘.))'_’

hence, (ﬁ' (tl)\" is a factor in ¥ (Hp).Let us now remark that

\Trg(n) can be 18@1’1‘51&@0 with the subrepresentation

‘:"-1‘:5;;__....5 (T— (”\) %

n p

‘where eié%(H ) is the projection onto ‘Trp( ‘Tc'u(!\_))ff? shence, ¢_ €&

P
€T (T‘ ( A))'.It follows that ‘TT“(U)(A)“ is a factor and,therefore,
KA\

we ﬂ“Vﬁ that ﬁ(n)é“o(ﬂ‘h
)
g 1 vy il ] o LS 2
Remark.We have W s(pi e €T> il

b)Let us denote p = L..‘)ga\B.Then N p cAn pe.identified with the repre-
Sp 5 ;
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sentation
; Dl
B3b v—-—-}befé%(efﬂu),

wh@r@»eﬁézﬁg is the projection onto Bgﬂﬁ;ﬂueglffe feF(A), e e

gk
minimal projection of B'jhence, B'e, is a factor.From (“"e )' = Ble =

Cci,?uf infer that B'e, = 2?(nfml) cnce,VCL?(%).Tt is ObVlOUS that
we have e J(I ) ¢ 81 Lf‘% ?"1‘?30 : :

“s(p)(a) :.(Tfuﬁa)fg\zg) = f(a), Bg

The Lemma is proved,

II.For any géEE(B) we have
S i : : ' ¢
TAB) = FUT LT @), T (4)0)
"and,therefore,
TR Ry ¢ : . Tt ) $ ; s R
TR = LT T AT T (A

Prom the fact that TT'(TTH(A)') C“WPKWTu(A))';we infer that

. It is obvious that the von Neumann algebra

D, o= LT L) AT (T (a))"

&

is contained in the center of W (B)"th corresponding orinOGOn al

measure ﬂ‘ on BB 4, Lherc{ore,ﬁuoonntrdl If we denote by eg £
€. LT (“))' the projection onto (:1 (A))g Cr{ ,then the re-

pres ;ﬂfﬁtIOﬂ “Fw( o ~>£?(Hﬁ( )) can bL 1&9nt1f1ed Wlth the subre-—
» €
presentation A2 av>T (”T (&))e of A Oﬁ.&f(e H )qﬁlpce we have

that ewéé9> ,we can arnly Lheorcm 719.From the eou&llﬁy

Do, = (e T T () e ) NCTLLT (A))"e,),

we infer that s, (\} i /,L‘ is the central measure on I]O(A) corres-

o

u’u> Of ‘course, ’Q@ is a stable 11itjr" of

ponding to 5(tﬂﬁggv'5(g)6%

)
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 Let us now consider the function n:E(B)—> [0,1] ,given by n(g)
= Wsle , geB(B);it is obviously affine and lower semi-continuous,
It follows that the set :

nI{1}) = B,(B) = {geB(B) 5 s(a)e B(A)}

is a measure exiremal face and a Gg»aubSet of BE(B)shence,for any Ve
GL}Q%(E(E)),suCh that (V)cfﬁl(B) we have that \)(El(B)) = 1,

We shall consider now the set &l (a(B)}Cdﬂg(E(B)) of all orthogo-
nal Radon probability measures 00 on E(B),such thaﬁ

a) g, = bV, ) €5, (B ) and

b)(g\)(—u@ (‘))
From a) we inflr that bls (Q ))élizﬂ,vﬂereao from b) we infer that

Cp(y )e%w,f01 any 0 é.QA( (B))for any g, cra(B) 1et&1(3(5),g e
CLEJO E(B)) be the sct of all v Ciﬁhl(L(B)) such that by ) =

L

&0
For ony ge By (B) the restriction pre. to‘&L.(m(B);g) is

“

3 T
a bijoctlon between ““1( ()) g) and the set ﬁg“(l (&) \g))
-

Proof.B& Theorem 19,since e{f:%’ for any vé Q) 1(2(?) g),the measure
s%(Q) is orthogonal snd V<y_ implies that s (V)AQ S (0 ). = f r)

o

Let us now remark that the mapping

A 2D dcr—ce _€h e

o o
?3 i/ r_: i g

is o ¥-isomorphism of abelian von Neumann algebrasj hence, i% induces

i
a bijection between the set of all von Neumann £ subalgebras of D

-,.

{25
and the set of all von Neumann subalgebras of .ﬂ e = /& soinee:
; o 8 ;
the diagram (g

L (BB i) D NS @ © Dy
e
Sg;(EO(A);S(g))55*(V)F%JtS*ﬂQ) - /*s(g)

is commutative,the Lemma now immediately follows from ({28}, Theoren

We shall now consider the 21‘@VTT’W*T subsets FCE(B),defined as.

follows s F ig said to be 1 extremal if the following conditions are
satisfied
a) T is a compact subset of E(B),and

b) g(EF[\El(E)mgyO(F) = 1,for any Qéd&x (“(B)s e
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It is obvious tnat the set 7, (E(B)) of all (compact) Z j-extremal sub

sets of E(B) is the set of all closed subsets of a tOpology on E(B),
whlchwe shall call E?eleuﬁonologz.We shall also consider the topo~
logy % induced on s (F(A)) by Z; and we shall denote

Z,(s7HE(A))) = {FAsTHR(A)); Fe s (B(B)) Y.

Let ‘S :g_l(F(A))-¥>F(A) be the restriction of s to s-%F(A)Y,followe
by the corresponding corestriction. '

LEVEA 1., I F C. R (A) is @ compact Z-extremal subset,then s 1(F )

is a compact Zl-extrﬂmql subset of E(B). -
.Proof.let g &s” (P )/\E (B) then s(g)é r\L(A) and therefore,we
have that_/A(Fo) 1 for any qubcentr&l measure/*ejk (E (A)),such
that b(n) = s(g).We infer that Vs~ (P )) = s, (W)(F) = 1,for any
'Qénfbl(E(B),g),because s, (V) is a subcentral measure and b(s%(v)) =

il

= s(g).The Lemma is proved.

LENMVA 12.The ma avping € is a continuous surjection,if s_l(F(A))

is endowed with the Zl-uohologv Vh“lODS F(A) is endowed with the cer

tral ‘tovology.
A ' A
Proof.Any centrally closed subset FOC:F(A) is of the form F_ =
= For\F(A),where FOC.EO(A) is a compact Z-extremal subset.3ince

5UE) = s THE LA sTHER)),

it will be sufficient to nrove that é_l(Fo) is Z1~extremal.1t is cle
arly compact,whereas from

ges (T )n By (B)

we infer that s, (V) = j+ is a subcentral measure-corre“nonding to %(g
for any Oeﬁzl(E(B), ) .Since s(g)L,F AT (A) we infer that /A(F ) =

and,therefore,

- (7)) = 5 (M(F,) =V (sTHE)),

for any‘Qédli(E(B);g),wnd the Lemma is proved.

JENMA 1 Fc E(B) be any oomnact 7, -gxtremal subset of E(B).
Then (ex co(F)) jo w)c;W/\~~1’W(A))

Proof.By ! 11@an s Converse Theorem,we have that ex Co(F)c F.Let

now ge (ex co(n))/\b\(B).Tnen we have gé:Af\Eﬁ(B) and,therefore,
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o

_\\\;\
oy e . . . -~
“Qg(F‘\g 1.We infer that ¥ (co(F)) = 1.Since b(Og) = geex co(F),by
- :
Bauer's Thegrem (see{23),Proposition 1.4) we infer that N £ ,the
Dirac measure‘?a‘ﬂ.,e infer that 55 GiH and, thercfore,‘r (TT (A))’
is a factorihence, T ( T (A))"e is a factor,and this 1mplles that
ss(g)(A)" is a fdctor ffum g(:E’(B) we infer that s(g) € F(A).The L

ma is proved.

= 1,and let PC.T(B) be any COMﬁiut Zl—extremql subset.,Then

,\s-l(F(A)) =g = J(F) =

~ Proof.By way of contradiction,let us assume that V(F)> o.Define
QF = *Q(F)"le“o .Thén,‘QF is a maximal Radon probability measure
on E(B),such that \)F(F) = 1 and

Vp(E (B)) = V(F)HV(FAE(B)) =

We infer that ‘QF(EB(F)) = lihence, pl| To(F) is a maximal Radon
probability measure on K = co(F).If we denote Y= n\K,then { is a
lower semi- continuous affine function on X,such that kg(K)CLfQ,Il
and ¥ (Q) iy

For any DeR (E(B)) we have D/\k 633 (K) and also

(D/\K)/\(éx w"l({i\)) = #,

by Lemma 13.From ({28],Proposition 1.8) we infer that ‘9F(D) = 03i.e
Vp = 0,2 contradiction.The Lemma is proved.

LEMMA 15, Let FcE (&) be any.compact Z-extremal subset of E (A),

and letheJ4 ( A)) be any central measure,such that kﬁfﬁ &7 (A) and

(r =1, Th@n we have /x(D; = o,for aav‘D&53 (2 (A)),EQCﬁ that
DI\F ~AF(A) = 4. o

Proof.Let f = ng) and g = cb{JR.Then . (B)' = g,and v a
maximal orthogonml measure on b(B),uuCh thqt s (V ) = Ifl)é

€ B (E_(4)) and DAF AF(A) = §,then s“l(:o)ejs (E(B)} and

1

1oy~ s7Hr, ) A s (R()) = 9.

Since we have

N R e 2y NlTewmx i 2\
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- we infer that QW(EB(S"l(FO}))'z 1
%

By Lemmas 11 énd 13 we have

T (ex T(s7HEIN ABUBIC 5T (F )N sTH(R(a))

and, therefore,

(ex *c‘o(‘s“l(‘zv D)) By (B) A sTHD) = g

If we denote ¥ = cols (F ))y W= nik, v = Q \co(s 1(F )),we can ap
ply EZQ] Proposition 1. 8) in order to 1nfer that V e i(D)(\Y}~ o)
since s~ (D)Agezg (X),by taking into account also the fact that
N (E (BY)y =1.1% follows that/ﬁ(D) ‘Vg(o (D)) = 0,and the Lemma is
proved

As an immediate consequence of Lemma 14 we obtaln the following
Theorem,which extends Sakai's Theorem (see C24],Theorem 2,.3.8.) 1o
the case of an arbitrary C*—algebra A, possibly not containing the
unit element. : '

..-_—.......-_.._.....-...—-

éB(A) Then fL(D) = 0, for any D é$>(E (A)),>ugh bhad D/\F(A) = ﬁ_
Proof.In the preceding Lemma take F = B (A)

—_ III.We shall now concider the <T~a1gebra 33 (F(A)) deflned by
~ ’
R (F(A)) = {DAR) 5 DeB (B (AN .

TLet now}xéfﬂl( (A)) be any central measure,such that bgu)e,“(A)
By Theorem 21 we can define correctly a probablllty measure

;10: R (r(a)) —>(o,1],
by the formula
FADARA)) =), BER(E (A1

AN ; ~
From /A ~we can derive the outer measure /A: yas usually.

THECREN 22.For any compact Z-extremal subset FOC:EO(A) we have

JaglBonF(R)) = fe (B ).



5
. Proof.Assume first that F(FO) = 0.Then there exists a set D &
eEB (T (A)),ouch that D >F  and /L(D ) = o.We obviously have that
D, /\F(A)CJB (F(A)) and D /\F(A)t>r AT(4A).
From /& D NAE(A)) ~/&(D ) = o0 we infer that /L*(F NF(A)) =
and the cquailty is proved in this case.
If/ﬂ(FO)>»o,let us consider the central measure f‘F u/*(ﬁ ) 1X [

ny *‘1
We have £

1 -1 o 5
Gy I = XE e d/”‘p -p) (o ape

o (o)

rw)‘»(Fo)‘l ( . e d/;;}A(FO)—J}A(FO!\E(A)) =

FoﬂE(A)

since W.4 is affine and lower semi-continuous,and fk(E(A)) = 1,1t f¢l
lows that b( /Aﬁ yerln).

Since Jp (P ) = 1,by Lemma 15 we have that fLP (D) = o,for any
DeR (B (A)?,ouch that DAF AF(R) = £.

Let tnen Doéjgo(EO(A)) be such that

D, NF(A)DF, /\F(A).
With Dy ~C D, we have Dy € 3 (F (4)) and D1/\I‘ NnF(A) = §.From Len-

ma 14 we 1nfer that /*P (D ) = o,and this implies that /Aﬁ (D )=k
It follows that

() = p(R AD ) € (DY) = i o(D AF(A))
and this implies that
PE) 4/’1*5(1*‘0 AF(A)).

On the other hand,there exists a D E.B (F ALl such that F c D dna'
_fL(F ) = }L(D) From F AF(A) cDNF(A),and from

/»*(1’* /\F(A))</,L (B ABLLY) = fL(D) /A(Fo),

we infer that /L(FO) = /LO(FO/\F(A)),and the Theorem is proved.

THEQOREM 23.Any Baire .neasurable subset Wc F(A),with respect to

the oent,il tonoloyv,ig ]Io~measurab1e,For any central measure fké;
€ vh(jfi (A)),such that b’yu) € E(A).
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Troof.Je recall that the Baire mea surab]e subsets of a topological

\\\space are defined to be those belonging to the smallest I-algebra

of\sqbsets of the space,which contains all the closed Csuﬁuboot
Tt will be sufficient to prove that any centrally closed,centralls

G ~subset P r(F(A) of F(A),where B dsoa compact Z-extremal subset
of B (A) 1s f& -meagurable.Indeed, 1f (Fn)n:al is an increasing seque-
nce of compact Z-extremal subsets of EO(A),such that

O (7,nF(8) = FAINT,,

“then we have

PER(AONF) = sup Wi(F nF(A))..

From the fact that Fn/\Fo/\F(A) = ¢,for ny>1,and from Theorem lo we
infer that Fnr‘Fo/\E(A)_: g and,therefore,/A(Fn/\Fo) = 0,1t follows
that -

~

/A"‘(F(A)‘\FOM ﬁ*(F AT A)),

and this shows that F_ A BCR) 4s /A -measurable.The Theorem is proved
Remark.With an obv1ou” notation;we can write the preceding result

as follows
350<F<~A>;’£<F(A)>} < B R (A,).

We shall prove below that ]:b can be éxtended as a regular probabili
ty measure on the T -algebra (F(A4); Z(E(A))) of all Borel measura-
ble subsets of F(A4), W1th respect to the central topology.

We shall deno+e by JS (ﬂ(A)) the « —alg@bra of subsets of F(A),
generated by & S(E(A)) fmd by B(F(A);2(F(A))).By B(E (4)) we shal
denote the f‘~algebra of subsets of uO(A),generaued by Z(TO(')\ and

3BO(EO(A)).It is obvious that

R, (F(4)) = {llm(A) s MeB (B ()Y .

Also,ﬁe shall denote by Sﬁl(EO(A)) the g -algebra of subsets of EO(A
generated by the set qz(EO(A)) oflthe compact extremal subsets of

B (A) and by \h (P (A)) .From the inclusion GT(EO(A))CLZ(EO(A)) we
1mmedlate]/ 1nfer that 3 ("‘ (R} (L,Z(A)).
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= 1.Then V(D) = o forany D e B (E(B)),such that DAs 1(I’(A)) 7.
Proof.From ({31}, Theorem 2 ) we infer that

LEVMMA 16.Let Qe$( (E(B)) be a maximal measure,such that Q(El\B)):

3 (2(B) AL (B)) = 1.
(Here’$ is the C -Bérel probability measure induced on P(B) by

ssee (3171).
The inclusion P(B)Au (B)c,s“l(F(A)) now implies that

V(D) = S(DAKB)) =

for any D éﬂ% (T(P)),uuch that DAs 1(‘?‘(A)) #.The Lemma is proved.
We can now consider the g -algebra jg {s™ (F(A))),defined by

Bo(=7Lr(a0)) = { DAsTHE(A)) 3 DEB (BB}
The preceding Lemma shows that by the formulé
3.0 ne”lz(a))) = (D), D €B (E(B)),

one defines correc%ly a probability measure

i |
3,1 B, (e7HE())) —> [o1],
e S
from which one can derive .the corresponding outer measure V. .’

O

and V(B) = 1 Thcn we have Q(D) = o,for any Déji (W(B)),such that
DAFns H(P(A)) = 4. ,
Proof.let K = colP) sthen V(XK) = 1 and V\K is a maximal Radon
probability measure on K.If D ¢ R (E(B)) then D/\KGETBO(K).If we de-
note Y = ni\X,then y is & lower semi-continuous affine function 1X-
>l I},:ucn that V(q) .Since KnEy (B) = “1({]}) from the fact
that ex q (Ql&) = (B)/\(bx K),from Lemma'l} and from ([08},Pro—

position 1. 8) the nre ent Lemma now immediately follows

.JFor anv compact Z]mextremal subset F CE(B) we _have

SHEAsTHEA))) = V1E).
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(Here'Qe‘A11(E(B)) is any maximal measure,such that V(El(B)) = 1).
 Proof.If V(F) = o, then there exists a D ¢ R (E(B)),such that
. Pcb and V(D) = o.We then ‘have

Fas H(F(A)) e D as™H(R(A)).
~and, therefore,

VEEAsTHER) N €D, (D As™HIA))) = N (D) =
Let us now assume that N (F)> o.We shall then define the maximal
measure QF = ‘O(P)—IXF ,for which we also have Q}(E (B)) = 1.By
Lemma 17 we have that WV (D) = o0,for any:D &R (E(B)) such that
DAF as l(F(A)) = @, bccause Y (F) =1,
Let then DO é’%o(m(B)) be Quch that

Donsnl(_F(A))BFnSfl(F(Aj)-

with Dy =(D_ ,we have that Dy € B (E(B)) and Dy nFAs™H(F(A)) = 4.
From Lemma 17 we now infer thaﬁ OF(D ) = o,and this implies that
F(D )= 1.3t folleows that

VI = V(FAD) €9 () =9 (o, nsTHER))),
and this implies that

V(F) € NP AsTHE(A))).
On the other hand,there exists a D€ R (E(B)),such that Fc D and
V(F) = V(D).From FAs " (F(A))cDns  (F(4)),and from

NFAsHFU)) €3 (Das™HEF(A))) = V(D) = V(F),

Vo
we infer that V(F) = OE(F F(A)),and the Theorem is proved.

IV.We shall now use thb preceding results in order to prove that
any central mea surc}*‘&i 15(A)),0UCh that ng)e—L(A) induces a re-
gular Borel measure on B(A) with respect to the central topology on
P(A).To this end,wé shall adapt to our case the method of proof giwver
by Batty to a similar problem (see tﬁ},Theorem 7;(5],Theorem £
{35},Theorem LA
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let B (F(B)) ve the T-algebra of subsets of E(B),generated by
4P (L(B)) and by the set of all (compact) Z -extrem 1 subsets of E(B)
Of course,any compact 'extremal subset of ()) belongs to B . (P(B))
We shall also consider the a -algebra 33 (o 1(F(A))) of subset Of
s“l(F(A)),given by

R (s"l(F(A))) =dmnsTHE(A)); MeB (T(B))\r

R\\\\\\\\\Jd;jglclear that we have the inclusions

\L\“\ :

B (E(B)) ¢ B,(8(B)) ¢ B,(B(B)) cB(E(B)),
where bylﬁil(E(B)) we have denoted the G -algebra of subsets of E(B)
generated by :E (E{B)) and by the set F (E(B)) of all compact extre-
mal subsets of E(B).Moreover,it is easv to see that 35 (s—l(P(A)))
is the @ algebrg of subsets of s~ (F(A)) generated by‘ﬁﬁ (s™ ](F(A))}
and B(s 1(r<n>> 120,

Let F&J% (E (A)) be any central measure,such that f = bgu)é'E(A),
let g = zAB qnd consider the corresponding maximal orthogonal mea-
sure WV = g . /

For any M c—ﬁsz(E(B)) we shall define

L

o (M) = sup {N(F) ; Fezl(E(B)),F ns"HE(A)) e}

i

and

on(m) = sup V(P 5 Per (E(B)), Fen ).

We have the following properties ;
a) VM) svi(M) , for any. V(iﬂ& (E(B))'obvious.

b) V(M) €V (M),for any M € B (“(B)) obvious.

e) v"(D) =V (D),for any D é\b ( 3(B)).Indeed,it is clear thet V1 {D)g
<V (D),by assertion b).Since V is maximal,and since Zl(E(B)) includes
all compact extremal subsets of E(B),the equality follows from ((29]9
Corollary to Theorem 1). :

a) N"(E(B)NTF) =V (B(B)\F),for any F¢ 2,(E(B)).Indeed,since E(B)\
\F is open in E(B),and since V is maximal,by ({291, Theorem 2),for
any £>0,there exists a compact extremal subset F1<;E(B)‘xF,such that

VORI = £ ¢ ViR )

b
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and,therefore,we have
V(E(B)NT) < 9"(E(B) \F).
Assertion b) provides the reversed inequality.
e) V(PF) = N(F),for any Fé:Zl(E(B));obvious.
£) v (M) =V(M),for any M é:Bg(E(B)).Indeed,as in ({Sl,proof of
Prvpssiﬁipnwﬁ) we shall cansider the set
=41 e B(B(B)); v(m) = v(m), yo(lm) =v (P} .
It is easy to prove that R is.a G -algebra,such that

B (BB cp" and 2 (BB C R,

by virtue of assertions c¢),d) and e),It follows that R" = j52(E(B))
g)We have ;

Q'(ml) +\)'(Mg)g\)'()§£ Mg)
and

V(M) () g9 ( VML),
for any Fl,h?ejﬁg( 3 B)Y) yjsuch that Ll/\Mz =-¢.Indeed,the second ine-
quality is an immediate consequence of the definition of y" j;for the
first,given g>o,there exist Fy,F,¢ % (E(B)),such that :
‘__1 : ST * ",..' ;
F.ns (F(A))Cmi and \)'(Mi) ~5<Q(Fi), 1,1,2.‘
We infer that

VD' (ml) 4y (m ) - 2€<Q(Fl)_+\>(F2)7

whereas from le\pr\o (W(A)) = @ and from Lemma 14 we infer that
Q(p ) +\Q(ﬁ ) s (R qUT ) The assertion now immediately follows.
h) V(M) =V (M), for qnv MmeR (u(P)) Indeed,by a) and f) we have

Y{(M)g V' (M), for any ME€R S(E(B )) By g) we have

1= +3 Cmgorm) + Vv (lmga;

hence, N'(M) =V (M), for any M éfEé(E(B)).



and

LEq.
i) . For any M éjSZ(E(B)) we have that

Mas™H(R(R) =g = V(M) =

Indeed, . this is an immediate consequence of assertion h).
We infer that by the formula

Vo) o ¢ :
N(HAsTT(R(A))) =), M e B, (E(B))

we define correctly a probability measure
VAN ~ B S
& :532(8 (BCa) )y = Lo, )

such that \5\’5 sTHF(A))) ~\>

By summarizing the precedlng results we get the following

TH“O?UF 20 Thcre exists a probability measure

P

FONE "1<r(A>>> — (o, 1]

such that
T A o A
) DU L RERD= Y 5

L i
b) N Wips (ECA))) = V(W) NI&@QUMBH;
and possessing the foWlowinﬁ regularity properties -
a) V() = supdO(F); Tl , FeZ (sTHFAN)Y, We Ry (sT(R(A))

and

AN

1nf {3(5) ;D27 , DeB (s HFMNY, Fel (sHE(a)).

i

b) V(F)

Proof.T&gexistence o f QSWaS'established just before the statement
of the Theorem:assertion a) follows from the equality V'=V ,whereas
assertion b) follows from Theorem 24. -

Tiet us now recall that,by Lemma 12,the mapping

S L sTYH(P(A))—>TF(A)

X FaN
is continuous,if s 1(F(A)) is equipped with the 7%,-topology,whereas

IS

F(A) is equipped with the Z-topology (i.e.,the central topology).
Also,since s:E(B)—E A) is continuous,we have that
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D, e B(E (4)) = s‘l(li_)o) ¢ 3’50‘(‘13(13))
.and;therefore,we have that

3, (R ®()))) 2 B (R(A))
and

E%(%(s‘l(F(A)));é\l)Dﬁ%(F(A);Z),

where,in the left hand members of these relations the full direct
images of the correspondingiG‘~a1gebras'are denoted.We infer that

N = =S “.
(Bt >80,

A
and,therefore,the full direct image of the measure V ,i.e.,

A\

SW):s (D
¥ »*

L(s7HE(DN) = (o,1] ,

is defined on H(F(A)).It is easy to see that
S (VR (F i
S¥( ) O(E(A))’= P

We shall denote by'fxthﬁ restriction.of s (9) t0 55(F(A))

A

LL;-lB he mavping s @ 8 1( (A))-—» F(A) is closed.
od)

Hﬂ
;

!

Ni?

LE
Pr

must prove that

~

Fel)(sTHR(A))) = 3P e ZF(A).

Indeed,let P Ff\s—l(F(A)),wheré F ¢E(B) is a compact Z,-extremal

subset.3ince we have
B(F) = s(F)nF(4),

it will De sufficjent to prove that °(F)<:E (A) is Z-extremal,Indeed
for any fotES(F)/\ A let Foé“SL (K) i ) be any subcentral measur
g < e 3 o H ol o) Y = g f

such that b(FO = fo et g €T De ouoh tnut i (ﬁo) Then we have

that g 67“1(”) and,by Lemma lo,there exists a measure Vééfll(E(B);gc
such Tq@t s¥(VO) = - TFrom b(QO) = g, €T we infer that VO(F) = 1 and

therefore,we have that



| S
Jolst®) = 9 (s7Hs(1))) 20, (7) =

and the Lemma is proved.

Remark.The proof of the Lemma shows that we have the 1mpllcnt10n
P ez2,(8(B)) = s(F) € 2(E (4)),

which will be used below.
>
We can now prove

6'”(A),nhe COffOoFOﬂdlﬁﬂ mba%uro/x has_the f0110W1nn propertlcs

a) PARL(P(1) = R ;

and
f*(mo)5 for eny. N é-/5 E (A)

il

b) //» S NEEAY)
as well as the following regularitv nronort19~
e S(F )P R
¢) p(iiy) = sup {/*(Fo);Focmo : F ez (F(A))\{
‘ for any h 4.53 (F(A)),

i

and
A AN

a) /’l(%:o) = inf{/’l(Do);’ﬁosF D e? o(F( A))}
for onv}? éZ(P(A))

Proof.Assertions a) and b) have been establlshed just before the

fo) ?

atatemont of the Theorem,

c)LeL i e’E(V (L)) end €30 be given.Then we have that B 1(M e
e.b?(c ( (A))) BV Theorem 25 al there exists a Pé:Z (s 1(v(A))),
such that T 8 l(n ) and :

;l(i%o> - & =VET)) - e <SP < FED).

of course, there exists a compact u1~extremal ‘subset Fc (B), such
that P = Fns 1( F(A)).Since by Lemma 18 we have that s(F)éé?( (A));
the assertion now immediately follows.

d)This is an immediate consequence of Theorem ?2 The Theorem is
proved. h

Thp regularity nropertv ¢) implies that the YBorel rectrlctlon"
of ﬂ-,l.b., the mees ure/M\?) T(A); A(F(A))) determines fuon iﬂ (x(A))
as the following Theorem shows

THEQREM 27.a) /5\50(}9‘(1&)>< B .(A) Z2(P(A))) ﬁ),

o) B,(r(8)) € B(2);BRNG)
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Proof.The two statements are immediate consequences of property
¢) in Theorem 26,

V.Broperty ¢) in the statement of Theorem 26 could be called "the
regularity by closed subsets".A more careful analysis of the situa-
tion will show that we have,in fact, the stronger property of "the
regularity by closed quasi-compact subsets",which we shall ﬁresent
below.In fact,let us return to the proof of statement c¢) from Theo-
rem 26.Let us first remark that s“l(F(A))c: (P) On the other hand,
since b(V)é'E (B),we have that Q(F (B)) = l.olnce ~1(B) is &0~
subset of m(B) whereas V- is a maximal (orthogonal) measure on E(B),
1 €E{(B),such that V(P )>
> L =2 Bhen B ads alce Z1~extremal and, therefore, (F/\F ) is com-

there exists a compact extrémal subset F

act and Z-extremal in T (A).8ince slE /\“ Ve Bl ditds easy to show,
.with the help of mheorem lo,that the set S(F/\F )p\w(A) is Z(B(A))—
quasi-compact.loreover,we have that

P - 22 <RBEFAT)).

Thus,weé have obtained the following

THE O?“M 28 For any central Meqsur@/ucdl(E (A)),such that ng)
eE(A),QnV L e‘E (F(A)) and any £50, there exists a Z-clos sed, G ~gquasi-

compact set F c.h ,8uch that fx(h ) ~g<fLB i

of course, tblv ”heorcm extends the well-known fact ﬁhut on (Haus-
dorff) locally compact spaces bounded Radon measures are regular by

compact subsets.
The following Theorem will be used below.

T 1012«09 a) s (B,(E(B))(V)) = B,(E (8))(m)5

By () ()

b) 3 (B (s~ HEMNEO) = .
(35 (L(B)) ﬁBQ(EO(A)))~me&sura~

" Proef, 8)5ince o V(B)—e»nO(A) is

ble,it immediately follows that

e (A))(/*) < s (B,(E(B))(V)).

Let now Mé s (Q; (L(W))(Q)) Then,by the definition of the full direcc
image, we havo thdt S (P)é-rﬁ (E(B))(Q) Hv Theorem 25 and the proof
preceding it (since V" =N ), there exist increasing sequences (V )

and. (1 )r1><) ssueh tinant
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-1 ; e
FnezﬁﬁE(B)), Beel . oo (M),for any nso,and V(FE)TQ(S ](M)}

Fr e, (E(B)), FLcP! ,cls (i), for any n>o,and VP4V ™).

By the Remark following the proof of Lemma 18 we have that U(P ),
: (P e 7 (5 (K)) n>o,and we have that

é”l'(S(Fn))c sml(S(P

n{l))c‘z (M), B> o,

s Gl ic e ot Ve la 0 S0,
and v(s“1<s<1vn>>m(s‘lmn, O(S"l(s(F;l)))w(“ s™H(1)).We infer that

we have
3 i f [] : T :
s(F ) cs(P )i, S(F;Q)cs'(le)chT, n>o,

and /u s(F '))/\‘/A(vw), /A(q(zﬂ))/\‘/,t (C11) ;it follows that M & R, (f«‘ (A)‘-)ffq
b)Similar proof to that of a),with.the help of the fact thﬂt the

mapping S = sl\s l(F(A)) is (3&2(o~1(F(A))),3%2(P(A))~measurable,by

taking into account also Lemma 18 and Theorem 26, e
From the regularity property we can easily obtain the following

extension of Lusin's Theorem,in which we keep the preceding notation.

TR INTET o

THEQREM_30.F or any Fﬁ~qaqﬁurable function q>F(A)-><3,and any €»0,

there exists a 4 cTORQd Z-guasi- coxﬁﬁct subset F‘Cr(A) such that

/*(F)j>l~ vndt{\p be continuous.

Proof.Similar to that of ({331, ™heorenm 1. 5)

Another important nronerty of the measures fcl% exhibited by tﬂe
fol?omnfr Theorem,in which f-l:,a” above, the mgrburg induced on
R (P(4);7(F(A))) by any central measure /Ach( (u (4)),such that
byJer(M '

THEORENM 31.Any measure * is. perfect.

Proof.Similar to that of ([331,Theorem 1.6},
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§7.CENTRAL REDUCTION.

In this section we shall develop 2 spatial central disintegration
(reduction) theory for an arbitrary cyclic répresentation WA - X(H),
We shall then show .that the disintegration can be extended to the
Borel enveloping C ,'~a1£ebra L) of A,

T.liet o e Bla) and Tet P= g be the corresponding central measu-
re in &l(? (A)) Then,by Theorem 21,we have an induced probability .
measure .j} (Fr(A)) = Lo I} ,whereas by Theorem 27,wé have & Borel
exten31onjy.35(ﬁ(A) Z(P(&))) )-—)(b 1\ ,with good regularity pro-
perties,such that wp = /»\JR ( Ead )% -

" We shall also denote the measure /Lby /*f ,9ince it is uniquely de-
termined by f & BCAY): :

In order to carry out the central dis 1ntegrat10n of ‘ﬁf ‘A—af«ﬂf )
the meagsure /A would be %ufflclent but if we want to dlqlntegrate o
over F(A) the rostrlctlon of T . to thé Borel enveloping C —algebr
a) of 4 (see [36} for the aef?ﬂltlon OIfE(A);TT%'hA—a W, ) s
the canonical extension of T‘f to A ) then the neSsure }2 a8es
not suffice any more,whereas}l will do the job,as we: shall see! bclow°

Remark.0f course, it would be senseless to try to disintegrate
over F(A) the representation 7’¢ ,since. the algebra i is too big,
as shown by the commut°+1vo case In other cas es,however,as,for instan
‘ce,that of the elementary C nulgebrao A= W(H),in which P(A) = E(4A),

1%
T can be disintegrated over F(A),but these are the exceptions.

tlon Thcn q\P(A) is (F(A))wmeqouTGbWQ.
D)Lt e (J;)") 6 1s A (u (A))-measurable,then (q\F(A) s e
ﬁSZ(F(A))~measurab1L. ~
In either case,gi.% is f&»integrable,then.Q\F(A) is }:~integrab1e~

and

gr (qu /L (P(A;( de;

Proof.%imll r S0 that of ( C°8] Lemma 1l.1),by approximating

by elementary functions.

IT.A8 in ([28},?4),wm hull consider the field of Hilbert vnﬂceﬂ



~65

B (A)2 £ Hf,Wthh we shall denote by (I f) m (4)° JWe have also
thc associated field of triples E (A)):fy_a( Wf, f,ff) correspon-
ding to the GNS-comstruction.If we define ©.:A — H. by d.(a) =

'==Tr(a)§9 ,exéA.,f&;E'(A) then we have a linear mapping €:A—>T H.,
£ of | feep T

s Ay o, — ( ¢ : 3 <]
given by & (a) 7 (a))fc (a),a cA.Let V,O(A) = im €& ;then | O(A)
is a vector subspace of T Ff . ‘
€ Eolk) 2 2 :
As in ([28} w4),we can consider the L -completion [ (Avu) of
rO(A).Of courge, | © (A,f)(lo a vector subspace of T df.

Since the measure/L is orthogonal,the system fetolh)

(o) (e e (a) » L2855 )

is an integrable field of Hilbert spaces,in the sense of W.Wils (see
'CEB],Theorem 45 1) 08 courseythe scalar product in TO(A) is given by
the formule

(( @(anfé}g (0 (G ep (1)) = ff (A)m?*a) e 1),

for any a,beA,whereas for two vector fl@ld; (§’f)fe 0 (A)’ 9f Qﬂ

B,
el (Aff) aik is given by the formula

: ; % Y. Ap(f).
(% )gen (a) (‘Qf)fer«,o(A)) _ gEO(A)(ﬁf\%)f i

; : . 2 : ‘
~ Endowed with the corresponding semi-norm, [ (A3f*) is a possibly
non-Hausdorff,but complete,pre-Hilbert space.Moreover,since ﬂ;is or-
thogonal,for any bounded Borel measurable function %HEO(A)~9 €  we.

have the implication

(g (aye CPp) =5 (@0 T0)p g (4) €010

We shall denote by T‘Q(A;fx) the associated (Hausdorff,complete)
i ~ ; :

Hilbert space,and by e;(‘_(A; )~éi“2(A;/x) the corresponding cano-
nical surjection. i ;

We shall also consider the "restricted" field of Hilbert spaces
P(A)DT > He ,which we shall denote by (Hf)fé*‘( A)"

We can now define the linear m'*:rmlzrw~ g ﬁ“?\u;lf , Ziven by‘e(ﬂ) =

&©

= (9p(2)), en(a)r® €ATet us define T o(4) = im & .Then T J(4) is

a vector subspace of T H_,"  and we have
- fEFR
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ay d/A(f)‘

for any al,a2é;A,by virtue of Lemma 19.We can,therefore,define a sca-
o - M 5
lar product on YﬂO(A) by the formula

*\7*

@)s . £ i) = £(a® a) dule) =
o fEO(A) 2 }k (T(A)

. (E(a)\B(ay) = {F( 18 e afate) -

el

( E(A)q—/ (o) \Oplap)) SR, eympeh

We can con<1d@r the "restriction mapping" ¢ V (A)—é‘“ (A),blvcn
by - ¢ ( G(a)) = 67(a), ac:A,whlch is o wnitary llnear curaectlon,by
formulas (1) and (27 e ' :

Y. ° (A,/$) be the L?~complet10n of  ?§(A) with respect to the
measure ft,conatructeu as in C?S},g4).then T (A*/») is a vector

subspace OL{_T— i yon which the scalar product
EFAD

(@0 UL eera)y W) eewiny! = f (& ITRY dﬂf)v

F(A)
8 X

for (f9)eemin) » (Deleem(n) € PZ(A;;:),is defined,along with the

associated semi-norm \(-W ,given by

(?") “( ff)feF(A.)“g 5 (n%A)_\\ff“icyﬁ(f),

fomipny ) e Elia ).
Proposition 4.2 from f?u\ implies that
possibly non-Hausdorff,pre-Hilbert space.

= o
o (A;}A) is a complete,

The rﬂ55rlct10n mawpln ¢ extends to. the restriction mapping

(/a.r' (A /lx)*—Br (A'/.A), civen by {7 &2 )péji (A)> (ff)f(?(l&),'
for | gf)fc: (%)é'r' (A,/;) ik 1s obvious that we have

(3) | jr(m D) aplf) = SF(A)( gf‘%‘)-f Gl 1) _’

for any ( if)f@ (8) ( V) een () € (‘Q(A';/A).It immediately fol-
lows ‘*that we havd the implicati%n :

(4) ey e?‘%;") =5 () E) ey €1 a5 2,
' £) fer(A) e £) rer(A) e

for any boundea /& moaourqb]o function Q- P(A)—> & (by utabllvty PTo~

perties,any }A—mbqfurqble function on F(A) coincides fL«M.w with
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the restriction to P(A) of a Baire measurable function on EO(A)).

From (4) we immediately infer that the system

: ’\2 AN ~
() gep(ny + U (459, )

is an integrable field of Hilbert spaces ,1n tho sense of W.Wils.

Let q:["g(A;fL «>?<2(A*fk) respectively s Y‘ (A;/&)—%V‘Z(Aif*),be
the canonical unitary linear maﬂplpgs onto the correbpondln Hllbcrt
direct %ytevrelo of the fielas [ (X fL) resp., o (A,/A) here I (A/Q
TesD., T (A,/»),ure the associated (fausdorff,complete) Hilbert spa-
ces and they are,sometimes,less properly denoted as

& A B

SE " )¥f ap(f) , resp., SF(A)Hf ap(r) .

It is easy to see that the mappings

w0 (8)29(a) ¥ T, a)zf ce o

o
and O

AT = ‘ :
u :FO(A)BQ(a) =il (a)g’f enfo , Bl
are correctly defined unitary linear mappimgs.They extend in a uni-

que manner to unitary linear mappings

; : ? .. A ./\2 > ,\L -
Uf&.(ﬂ. (A,/u) —> Hy and U/,i.(" (A,)-) —> Hy

0 0

: : ; : ' : ~
which clearly factorize through g,respectively q

o

-~ N
Un =1,
s

~

A_i

~
U == t} Oq $ TQS‘O-, q
/;L ;

4

)t

determined unitary is omor“hjﬁms of Hzlbert spaces.

where U, ° (‘ (A,/L)‘wﬁ .. ,resv., UA‘{1 (A,/A)——> He ,are uniquely

The preceding construction yields the central reduction of the

oo

representation Wif * namely,we can consider,for any a€ A,the field

of operators (Wf(a?)feF(A) y,which is /&wlntegr&ble in the sense that

() ren(ay € DO R) = (Tl ) pgp(yy €781

for any a €A.It is easy to see that we have

m) wlntad) o U] = Ty (2) D040 pemay)
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for any a €A and any (%)f F(n) € GaT /»)

By Theorem 6,with the helwv of the considerations made in §4.5,we
infer that thcme exists a surjective homomorphism of von Neumann
algebras Ql.d( <3 *J}IJ(/A—),ouCh that

(6) TUm () ®(2) (D)%) pepay) = F (2) Te () T{Ep) gem(n])
; o) 2 )

for any a LAAZ(.Z(A ),mﬂd (2i fé“([)&:r (A /Ly %*

(Here the function F ?(A)%:[vagy(z)(f) is,for any e ZlA ), an are
bitrarily chosen ;1~meauurable representative of ﬁ?(z))

Formula (5) yields the éentral reduction (disintegration) of the

representation e Formula (6). shows that,by this disintegration,

the von Neumann al%ubra of the diagonalizable operators corresponds
to the center of T} CARY.
Given a field of operator° A= (af)feﬁ( ) eae(H 5 fé;F(A,,we

‘shall ey that it dis ft~1ntcgrab]e (nexe Fis the measure on F(A)
corresponding to a central meas ure/M€J4 (“ (A)),sueh that £ = bf&)é
€ E(A)),if the following conditions hold
a.) //lu'vrai sup{'k\af\\ e F(A)\(—\—OO;
and
B) (4p)pmeay € OB R) =S <af€f>fer?<« 2.
It is obvious that to any such field of operators tnwﬁg COTTGOOOH&“
an operator ?f~f(¥‘ (A“}x)) bt ds eqqy to see that U %P-U e
e (T () ATy (D). |
lh\ field of operators (uf)f’r(A) will be said to be universally

centrally integrable ,if it is )»—1nteﬁfab18 for any central measure
eML(E (1)), 5uch that b(p) €B(A).
Remark.In the preceding argumentation we had to consider. al%o the

integrable field of Hilbert spaces (0),in order to derive with the

heln of Theorem 4.1 from (28 ,the implication (4),which means that

te (A,fk) ie an My (}A y-module.This property,together with the com-.

pleteness with respect to the semi-norm (2"),is an essential ingre-

dlent in Wils' definition of the integrable fJGldu of Hilbert spaces
see ‘(39]3; and,alco,&?o]w4)

III.As one can easily see, the central reduction of a roprebanlen
on T% of 4 can be C“fT}Gd out only with the holp of the meqeurpfxo
33 (P?A))—e>[0 1 alhe need for an extension of/u. appears when one
wanis to disintegrate e\bgnulons of Tf to larger C*Falgcbr&Q,ne _
shall prove now that, WJLh the help of e completion of the measure



LH 9=

~

kﬂﬁ%( M(A)); Z(F(&)))~>{b 1\ ,one can carry out the central disinte-
gration of the representation TT}*J% %)w%jff? Ysi.e.,of the restric-
tion of the representation ”L to°the Borel onvelonxnp o -algebra
h(4) of A.We refer %o E361 81y the results on JA4) we shall use be-
low,

A_?o Let X be any compact convex subset of a Hevsdorff local-

: S o
1y convex tovological real vector gwace,levflgf{+(ﬁ) be any (Chocuet-—

Meyer) maximal Radon vrobsbility measure and let hO:K~5ﬁl be any sée-
mi=-continuous affine real function.Then ho is measurable with respect
to the commletion jﬁl(K)Qx) of j%l(K ,with'respgct to;xﬁ%l(K);

Proof.We recall that J‘sl(}{) is the O -glgebra of subsets of
nerated by fﬁo(K) and by the set F(K) of all compact extremal su
csets of K.Por the proof,we shall use. the notations and results from
((311,p.11-14) . Indeed,let J n:ﬁ\gg'l(g').mhen,bgf ((31] , Theorem 2 ),
we have that (Fi)*(ya) = fL(W ;

In order to prove that Vj

g
ol

-

g
92}
i

0%
{

: aé:R
_)é/A
valent) to prove that f*( <(fx ( ‘.Lo this end,we shall consider
the set Qa _‘G /ﬂ“(no).lu 1C obv1oum that F = ﬂ(? ) Since G is a
compact Baire measurable subset of K s DY ([?9] CoroWIer to Theorem

\
J
(F ,it will be sufficient {equi-

(F,
5)

T ), for émy'g>o,there exists a Comnact extremal subset D]"C_Ga y such
that Q(D1)>\)(Ga) - £ .Then, for D! = DI\Di,WG have that D! is a com-
pact extremal subset of G n\ (h ) and V(D )>\5(G Y = P& Ve infer
that D(D') is a compact cxtremwl subset of ,ard/L(D(D )Y > pA(E, )
Ve in mea:ntplj infer that (A ) (B )>/A(u ) and the Lemma is provea

Remark 1.As proved in { 1dl,uqtz s 1),ony semi-continuous affine
real function hO;K~§Klis bOunded.Thls is an immediate consequence of
the barycentric calculus,which nolds for such functions.

Remark 2.The vreceding Lemma was contained in an answer given to
a guestion put by G.PEWtjneanu in a private conversation.

We recall that by A one denotes the subset of all lower semi-~
continuous elements in K * over Ajby W(A) one denotes the real vec-
tor subspace of A%* ,LOH%{Qtlnﬁ of all the (strongly) un1ver&%11v
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measurable e¢ements over A (see [221,n.no4,[3u],0.7).

Lol Poy any aeW(a),the function ), (a) ig }ﬂj3 (B (h Y) )=
mbavu:qbﬁe,xor any central measure IP6J41(LO\“)) such that f = ng)é
eE(AY.

b)For any aglk(ﬂ) the functloﬂ. N (w)\T(A) is Flmmeaguréble,for
any central measure fLCJ% (‘ oy @uth that f = bvx)éEE(A).

‘¢)We have that




T O

(%) e = @ e e | aleraf

.‘ih A
0

: PR ‘ :
for any a M(A) and any central measure /AQJW%KAO(A)),ggch that f =
= bl B(A) . | "
" Proof.a)let ae&ATa sthen there exists a (bounded) increasing net
PR o %

(?dl¢in A, ssuch t
Nyla) \\A 1 (2)

on E (A) Let b =T (a )<;B,then (B,), is @ (bounded) increasing
net 3n B and, ther@forc we havp'b ‘Q‘blnB*z,where'bcP1 It iz eagy
to see that

(1) y(a)os = Ay(b).

Tet Qé)il(u(b)) be the maximal orthogonal measure on E(B),correspon-
ding to m ,as in §6.4.Then we have & (0) = and, by Lemma 20,%the fun-
ction XB(b) is (0\351(E(B}))-mea urdb19531uce we have that

B, (E(B)) C ﬁZ(E(B)),

it follows that N (b) fig (0\55 (S(B)))wmeqsurmb1e By formula (1) and
Theorem 29,we infer that % (ﬂ) is (ﬁAJB (% (A)))~mea%arable.
b)This follows 1umc61at91v from otatement a) and from Theorem 26,

h)a

¢c)This follows imm ediately from the fact that the barveentric
calculus holds {with respect to any measure Jn.‘}{ (u (4))) for any
semi-continuous affine real function on EO(A),@nd &190 from: Lemm 19

The Lemma is thus prbved for semi-continuous elements in A (ovox
&) i

For .the case of an arbitrary a ¢ (A),one can use the method of
proof given in ([gi} oroof of Theorem 3).The Lemma 1s proved.

2,Por any acU(A) =a any b,c e A,the function

P(A)D £ i—> f(c*ap) e C

A
;g_lx~meaﬁurablegfox anv dentral meas uro/uqﬁi (“ (A)),such that f =
= b(fQ ¢ B(A),and we have the equality




)

f (c*“ ) = g £(c*ab) %ﬂ(f).

F(A)

Proof . B3 ({EGX,Lemma 7) ,we have_fhat
o - :
WA RCR b 11EA),

for any b €A.From the polarization formula

f(c¥ab) = %—Cf((b+c) a(b+c) ) -F( (b-c)¥a(b-c))+
: Y 2 : - N .
+if((b+ic) albric))-if((b-ic) alb-ic)) , ,
and from Temma 21 the assertion now immediately follows.

By analogy with the definition given in ([36),p.24),we shall say
it AT S .
that an element oA ig universally-centrally disintegrable if the

following conditions are satisfied
2V MThe = B DY O < 3 S a
a)The field of operators (wf(a))féj(A) is univers %11y centrally

integrable; ~ e~
and,if we denote by qtf(a; the operator in lf A;;:) ydetermined
= Vi S ,
. £ 3 e o 2 s} ave
by t?e %éeln <Wf§“;)feF(A)(’§§»Should also have
b Un sTX alle=aqr Uola)Ug )
f: ffo 0 }f

where f = tﬂ/« ) is the barycenter of the central measure/&reji (REA)
to whioh fkf Qorresponds, for any e C.U(A)

With a similar proof as for ([361,uemma 5),we cen state

223 1)Tf 2, béjA are universally centrally disintegrable,

then a+b =2nd ab are universally centrally disintegrable,and «a 1S
AR y =

universallv centrally disintegrable,for any «€(.

ii)The norm limit of a secuence of universally centrally disinte-

' % . . . :
grable elements of ! z** 95 universally centrally disintegrable.
fid JLE (an newao a bounded monotone seauence of universallv cen-
- e . . Y - - - - .
trally disintegrable-elements in Aff’,then its limit dis & universal-
D A

ly centrally disintegrable element.

We can also prove

' : K%
anv_universally \ntrﬂlWV disintegrable element aeh ,




s

flotab) @ s tf) =% (otan)

holds for ony b,cé& A.In particular,the "central barycentric calculus"

holde for asil.e.,

A e L AT 0

53 ("'&) -m

a fla Glii 5i0)
i ’ K{F(A) (2) /ufo( )

?Toof;ﬁirce (9.(1)) » e T2%ns b, ),we also have (Wi(a)d (b))
- i 4 . & i f . / _feF( }\L) e /U‘fo '} QoI b f {8 f\ f
&(‘Q(A;fo ),and for any b,c €A we shall have
0 : :

£(c*ab) afi(f) = (F( (RGO (0 ¢ afi)

u

S:E‘(A)
(T2 GD)) s | (Bple)) ) = <ﬁﬁ<~n:§<a>@f<b>>f\<z9f<c>>f> -

il

it

(e ('1)(9 (b)ié’ ( )l i= fO(C*ab);

O

: A
On the other hand,since we have that (ﬁ%)ﬂsF(A)ﬁrF‘2(A;;:)7($@e
[28],Pr0position 4.5 and Theorem 4.3),we immediately infer that

fF(A)ﬂa) Afis () = 2o(a).

The TLemma is ntovoﬁ
Let Qﬁ Rch be the set of all universally centrally dlolntﬂnrdHlﬂ

elements in A**.Ne define
M-
€ (8) = L (a)ne(n)

e N
where Y (A) = { aXen ' ; aeQZ(A)\'.
Tﬁﬂ ?W 3? Qg (A)’ig a C*»aioebxa whose self-adjoint part is se-

0uent3ﬂ11v mornotone closed.

ProgieImmediate consequence of Lemma 23,

As in ({EF} n.7) we denote by jg (A) the smallest real vector

 subspace of A WﬂlCh contains (A }m and is clos cd with respect to
the seouﬁnt1ql boumdbu monotone oonverg01he in A sconvergence which
is to be wnderastood either with respect to the order relation in A %

! >
or,@quvalently,stronwty on the space Hu'

(u) is universallyv centrally disintegrable.

ES e o RS SN, 25 an




S

| ! |
Proof.By ({36),84) we have that

ﬁggﬂ.) clpia)

\\\\\\\\\\iié}by ({36},?ropoéition 1) we have that

e e /
S ae B2 (n) = s eB  (a),

=

\

~_

We shall now consiter the vector space Va‘A) e |

Hf ,defined
by : e

To0) = 4(E)8(1) + Ble)) gpay 7 breenl .

It is obvious that

A s g
Pl e N 0
0 i ‘fer(n) T

Since we have that

3 % ¥ :
_f((ab2+c2) (ab1+c1 ) = f(b;a b1)+f(b2acl)+f(c;abl)+f(o§cl),

for any f¢ E (A) and any by,b,,¢ ,0, & A,we infer that the function
F(A) of = ($.p.), € ®

is L-intes able,for any (% s ‘ = c- \ ) .We can,there.
is f& lntéwrab e,fog any (gf?féﬁ(é}" (Qi)féF(@)<lra(A? We can,there
fore,consider the L -completion Y‘q(A;fL) of PaﬂA),w1th respect 1o
;l(see E281,§4).We can define correctly a linear mapping

AN
va:(‘a(A)_—aHf ;
" (@]

by the formula
a~wl )i % 2 as ey = : .
Va E(l\f( ﬁ’«)(?f( b) 5 (72:{‘( C) )f(_-F(A)—‘\ i fo( M)efo( b) + @fo< C) ?
for any b,c &€ A.The correctness of the definition follows from the

faet. that if f((ab+c)%(ab+c)) = o,for any f €F(A),then,by Lemma 24,

we have

fp((ab+c)%(ab+c)) = fF(ig(ab+c)*(ab+c)) dﬁ%éf) = 0,



Aol 5

~T4~

and this implies that W ( )Qi (b) + @j (¢) = o,
o o)
It is eapy Tto see thay V% i% an isom@tric linear mapping;there-

fore,it extends uniquely to an isometric linear surjective mapping

e
,nia.{“&(q;};u).w*)’ B

\ ‘\: Q(A;F) = i: 2(1%:/}1);

and,therefore, for any b€ A,there exists a strongly 1ntegrable veotor

field (S )iéZF(A)E(ﬂ (A,f&),such th&tif%(a)QTQb) x‘§f . F~ ~a.c.We
infer that :

(£p) 0P R) = mHa)Ey) enie )
Sf féF(A.) '“jA’ S bpve/ Sy fC:F(A) : ; 7{/‘* °
On the other hand,from the formula

( (e ) A0 (f)= T (B a b At el (1) | ;
RN o Pfo( ol N - -

which holds for any b &A,we infer that

5 o < ) =W (a)0
A T al=qn (alUs
f I,‘0 FTO

and the Lemma is proved.
We can now prove the main result of the pdper:

Lrﬁ(ﬁ) is universally centrally disintegrable.

~ %

n Ny

Bl e v sl i gt oAl e alaan }

Jk(“) { ek Wt o= e dkmo 7 B kl‘ljs)u
Jo=1 ik k=1 2 _

then A{A) is a *w«uubal>ebr” of B(A),and its norm closure 3%1(A)

a C%«subalgebra of B A).From Lemma 25 and from part i) of Lemma 23
we infer that any element a&/x(A) is universally centrally disinte-
grable.From part ii) of Lemma 25 we infer that any element in §SW(A}

is universally centrally disintegrable.If we denote
\)v( = l\aééﬁﬁ(A)ma < g is univ. cente, diel tegre}- ’
el

we infer that



el

?Jl(/‘) C M C j)}(h) e

sa
By part iii) of Lemma 25 we infer that Mis a sequentially monotone
closed subset of A_ ~ .Lemma 4 from {367 implies thatlﬁiz_jB(A)pa 2
whereas part i) of Lemmm 25 now ends the proof. =

Remark.The preceding Theorem is a generalization to the general,
posngly non-separable,case of a Theorem of Sakai (see [24],Theorem
3.5.2).1% is clear that even for the commutative (non-separable) case
the use of the measures P.,instead of the measures ;:o yis essential
for the obtention of this generalization. :

IV.In this section we coﬁtinue the study of the behaviour of the
"Borel enveloping C%WQ]pebra" functor A.P%j%(A) with respect to e
algebra morphisms W+*A —> B,which we began in YBS]

We recall that by virtue of (EEd), Theorem 2),for any surjective

¥ . %
C —-algebra mo:mhlm T+ A —> B,if we denote by %% the second trans-
pose mapping s m451f*,m@ have T G(4)) = R(B).

3 e ol :
Let A and B be two C -algebras and let WA —> B be an injective
)"r 5
¢ -homomorphism,which can be,in particular,sn inclusion A C B. Th@n

it is easy to prove that T is injective,too.

THEOREM 34. W TRl e,

Frools @)Let ¥ 2 GSAU,_:L be a bounded increasing net,such that ag?a
wso e sy A 48 D A : 7

é:Aﬁ 'thon,wvyr(na) is an increasing net in B and ﬁT(%x)¢Tﬁ%(a).It
followo that TN ¢ )C B We infer that: ﬂ}(ﬁg‘)CZE yand,therefore,
have that ‘u""‘*(ﬁm1 )(’B - )oqc;Jg (B) (here o v g36] we dé-

o /0 :
note by ﬁﬁoq(ﬁ),ie pectjvoly e (B),the smallest real vector 5ub~

space of ﬁf: ,respectively of B:r which contains the cone Acd,r
[ J{,N 3
pectively B sand dsscloged dn A ,resn@ctively LI B ywith res—

Sa

pect to the bounncd sequential monobonc COﬂverrence) If we denote

V = aedl s ™are BB Y

' : e
then it is easy to see that m}is a real vector subspace of A '

3
Sa

; 3 m e
which contains A, and it is closed with respect to the bounded se-
2

: : no
quential monotone convergence.Ilt follows that fﬁoq Clty and, there-

fore,we have that

(1) ' Wﬁ?ﬁBr A))czﬂ%fa(n

'J

b)Let us now denote by JY(A),res sp.,A(B),the ¥-algebras defined



T

: %
as in the proof of Theorem Sy torthe 0o

algebras A,resp., B.Then,
from (1),we infer that '

2y THA(A)) e A (B).

- Since the self-adjoint part B(4)

. ot B(a) is the smallecs
vector subs

st real

e : - y s .
pace of A“a ywhich contains the self-adjoint Part Aol A
S 5 «

off Feli) and s closed with respect to bounded sequential monotone
convergence (aee&jé},Lemma:4,and fake into account the fact that
from (2) it immediately follows that

S8

TR twich 1(B),

“where g%l(A), resp., 531(3)”,18 the norm closure ofo&(A),resp.,u%(B))
from (2) we immediately infer that :

R ,
W ARG eR(E)
and the Theorem ig proved.
~ We can now prove the following

= ; B |
THEOREM 35.For anv morphlsm‘H:A-—) B of C -algebras we have that

THR (1) cR(p).

' e
Proof.let gra —> /4{

erTk -
: ! : L . o
and denote by j - A/infﬁ§'B the canonical injective C
that jeoqg =

W sy ([363,Theorem 2) we have that

. 4 . % ‘ .
be the canonical surjective C -morphism

-morphism, such

L e R . :

whereas by Theorem 34 above,we have that

o LS A -
(2) Il e B

s 2 R Y ‘ : .
Since we have that T = d oG from (1) and (2] he dnfor bk

TR = ™™ (B)) = 5 S ) c B(w),

©

D

and the Theorem is proved.

. : ”
V.For the elements belonging to the center 2(B(A)) of the ¢™a1.



-1~
element

for the
£24,

gssion

Yoin an explicxt expre
EQ{ ,foé,E(A) (see

gebra. A p) we car ob
Sakalts mapping

@i (Z)QIJ(/h.) ,given by
*) and any o €A

Zé;Z(Kx

abo%e).

Tndeed,lot us first r@mvrk that for any
we have that

(1) f(za) _ f(z)f(a)s £ €F(A) .

Oon the otheY hand we have the equality

g R NG

%2
hen, bY Temma 24 and Theo~‘

estB(A)) Pe given.Td

T oW L&
o}
vem. 35 WE have that

X (?a) %Ff

N

e OM - gz“(m
(O (z)})u (a)gf - \

=

£ (za) = SL (&) N,

)\ A a X
g ()()/uf (fo

_F(A)
) '

- (U“ (2) ’Wf (?)if \Ef

and this implies that

4] = ’}\ ) A,c-
s (2 T2 (mod fig )

for any & ERNy

the following
and ony % C’Z(ﬁ (A)) we have

We have thus prove&
ve &4 CE(D) E

J“t;"l

TH}OHH“ }6 Tor any S

that

@_fo(z‘») () (mod s )

on F(A)-
1t would be 1ntorest1ng to s€€ whethcr the equalily

b, (ot A = T b )

'Rémﬂrv

e —————

any . = nlp)e %n offirmative anewer Wonle. giVe an 1mp¥
1o mapping élf .
o

the dGCC]lp tion of gakal

holds floe

yversion q7(©
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