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MULTIPLICATIVE PROPERTIES IN THE
STRUCTURE OF CONTRACTIONS

Gr. Arsene, Zoia Ceau§e5cu, T. Constantinescu

ABSTRACT. The canonical form of the product of two-by-two matrix
contractions is given (Section 4). As preparation, two ways of composing elementary
rotations are studied (Sections 1 and 2). Interpretations using multiports are sketched.

1. For two (complex) Hilbert spaces H and H', let L(H, H') denote the set of all ;
(linear, bounded) operators from H into H'. For a contraction T € L(H, H') (i.e. || T|| < 3
we will write T e LI(H’ H')), consider its defect operator Dy = (T T8 T)% and its defect
space D = DT(H)- (the upper bar denotes the norm closure).

One important point in dilation theory is the study of contractions using special
classes of operators (unitaries, isometries or cojsometries) on larger spaces (see [18]). In

this respect, the use of the following unitary operator is always fundamental. For a

contraction T € L(H, H'), denote by J(T) the operator:

(31): HO Dy ~ HO D
(1.1) i 5
*
\ W)= 7
Dy i
.

We will call the unitary operator J(T) the elementary rotation associated to the
contraction T. It is the core of the minimal unitary dilation of T (see [18, Section 1.5]),
and several other terminologies from operator theory or systems theory are used for it
in the literature. - G

A systematic study of dilations of contractions asks for the structure of two-
by-two matrix contractions. We refer to [8] for the structure presented below, and for a
history of the subject. It is worth to add the reference [16] where the use of so-called
Redheffer product in the study of matrix contractions was initiated; this was explicitly

done 'in [14]. The mentioned structure is described by the one-to-one correspondence

‘between the set of contractions A eL(Hl(DHZ, K1®K2) and the set of 4-tuples

{A, 7,7, T} with AeL (H,H,), T eL(HpDpx), TyeL(Dy, KT e Ll(Drl,Dr;),

-
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: giveh by the formula

. | T
1 (1.2) A=
- d ¥* "
I‘ZDA -I2A Il + DI,a;I‘DI.1
We write in this case:
: [
(l_-3) » A= C(A, rl’ I'Z.' r);

it is clear that A* = C(A*, %, I'¥, I'*). Note that J(A) = C(, 1,1, 0), with H,, = D, x and
o
K, =Dp. We will call (1.2) the canonical form of the two-by-two matrix contraction A .
Moreover, one has a description of the defect space of A , namely, the following

operator is a unitary one:

Sy
a(A)-oz.DA-+DI, @DI.

(1.4) 2 : :
i DI,ZDA -(DI._ZA P1+FZFD1“,1) |
alA) = eL(H.®H,,D' ®Dy).
Rl L T
S D.D - 3
LT
4 ]

- The defe'ct space D,&* can be identified with Dl‘* ®D1"* using oA¥) = e i

1
Among the applications of these facts we mention here only the

triangularization of the defect operators induced by (1.4); this was used in [5] and [6] for

computing some determinants connected with angles in Gaussian processes (and with
Szeg6-type theorems for them).

Particular cases of this description (i.e. for row — or column — operators, or for
A = 0; see [9], [3], [4], [17], and so on) are also useful; we list here the case of a row
operator, which (together wifh column case) will be used later. This corresponds to the
case where K, = {0}, and thus I,=0¢ L(DA 10k, ‘T =0 L(DI'. ; 10}). Then
A e L (H ®H,, K ) itt Plac s

(1.2)r _ A=A, DA*I‘l),

where A € Ll(Hl ,'Kl), I'ie L'i(H2 » Dpt ); moreover, one has the unitary operators:

2 4
®A): Dy =Dy @Dy
5 3 1 |
(1.4)r )
A Dy -A*l‘1
oA Dy = | €LH,®Hy, Dy ®Dp ),
L r 0 Dy : 1 o
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i e K @K, P

e T

o
oA - )D

x = DprDyx € LK, DI.T).

r

2 : o
After this review, let us tackle the question of describing J(A) for

A eL (H OHZ’ K @K ) in terms of elementary rotations of A, Pl’ I'.Z, and T, where

'A = C(A Iy Ty I‘) We have the following:

PROPOSITION L1. If A = C(A, T, T, T), then:

H @®H, OO‘ I=

k, ®IT )OI, YIRS, OIT, oI,

where o = O(/K.) and q, = 0(;{*) are defined in (1.4).

1}

PROOF. Both sides of (l.5) act between HI®H2®DI'*@DI'* and
|

K1®K2®DI’ @DI,. The right hand side of (1.5) is, after making the products, the

matrix:
A & DA* I'l » DA*D I,-)le 0
I.D -TA*T +DmID (T A Dis D B Dol
(1.6) 20N 2 i I‘2 I'1 2 I'l I‘2 i FZ ik
Bi o AR T L I ) ST D AR i
IDg r, LSegns Ly A ! r, I ' 2T L
, i 3
0 B Dir i i -T*
i 1
Taking into consideration (1.4), we have that (1.5) follows from (1.6) and the equality:
; * * ¥ ‘ * ]
—-I'ZI‘I'1+DI.2A DFT PZDI'*
(L7 con” o € L(Dpx ®Dpx, Dy ®Dyp).
| * * =1 2
DI.I'j 1L 3

Formula (1.7) is a routine computation. Indeed, it is enough to prove (1.7) for elements

Y€ Drale @DI’* of the form
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DI‘YDA*kl DI.a;AI'Zkz I‘lI‘ D]:,;k2
(1.8) Y= 0DRx(k @k,) = |

b " ol

where k, € K1 and k, € K. Now, the action of the left hand side of (1.7) to y is

oA * ofy = oA ol oc*Do (k; @k )-GDAA (k, ®k,),

which can be computed using (1.4) and (1.2). The result proves to be equal with the

action of the matrix from the right hand side of (1.7) to vy from (1.8). The computations

i

~repeatedly use that for a contraction T one has TD.. = D-.x T and D2>= [ a
+ T 1t

REMARKS 1.2. a) The matrix (1.6) appeared in Proposition 1.1 from [15].

b) In the case of a row operator Ar as in (1.2)r the formula (1.5) becomes

(L9 [l @AAINA N, o OAND')- TRIO, Ny SIT))

1

which is Lemma' 2.2 from [6]. This might give an alternate way of proving Proposition

(]
1.1z write A from (1.2) as a row operator (the two components being some column

operators) and apply (1.5)r and a similar one for columns.

c) The right hand side of (1.5) suggests a sort of simmetry between A and T in -

(1.2). This is also contained in (1.6); indeed, when A, 'y, T,and I' are pure contractions
(T is a pure contraction if ker Dy = {0}), then the right hand side of (1.7) is (after
intertwining the rows and the columns) exactly €(I%, I‘T, I';, AZ) eL(K2®Kl’
HZ@Hl)’ It is maybe worth mentioning that if T sLl(H,H) is decomposed into the

direct sum TU@TP , where Tu € L(ker D.., ker D) is unitary an‘d TP eL(DT ; DT*) is a

’I" b
pure contraction, then

(1.9) M) = T,ONT)),

with respect to the orthogonal decompositions H®DT* = (ker D )@(D 1'@DT*) and
H'@D = (ker DT*)@ T* @DT) : A
~d) Formula (1.10) from [8] shows that if A is as in (1.2), then

(1.10) A-(U@OL )IAUGE )+ 0ED =B )
, Ol 1 mer
here the "imposed" and the "free" parts of A (when A, I'y» and T, are given) are

separated. Formula (1.5) gives the reason why (1.10) is true.



. e) The elementary rotation of a contraction T can be interpreted as the

elementary lattice section

J(T ).

Thus, formula (1.5) shows that the elementary rotation of A from (1.2) is

B P-— | o

70 G
G 16 IA)
> ‘ <
- J0) =L

f) The results of [8] were generalized in [7] to the case of operators (in
Pontrjagin spaces) whose "defect operator" has a finite number of negative squares. The

facts of this section can be accordingly generalized to that case..

Zalet 1 €L1(H, HE)suiS €L1(H', HY), andi R =.ST €L1(H y H"). The aim of this
section is to compute J(R) in terms of J(T) and J(S); this will show a different way (from

(1.5)) of composing elementary rotations. A close connection with the notion of regular

- factorization (see [18, Chapter VII]) will appear.

It is natural to try to embed DR into the direct sum of DS and DT' This can be

done using the isometry
_ Y(ST):Y:DR**DS@DT
(2.1)
2 t
. YDR = (DST, DT) )

(! stands for the matrix transpose). Simple examples (e.g. S = T = 0) show that this

operator can be nonunitary. Define

(2.2) F(ST) = Im y)~ = {DSTh ®Dh; h gl e D@D
and ;
(2.3) R(ST) = (DS@DT)@F(ST) :

We have then the unitary operator

(2.4) YST)=Y:D, =+ F(ST), Yd=%d, deD

R R




Analogously, Dp+ can be identified with BlIES e DTx @DS* through the unitary
operator Y, = Y(T*$*). We have now the follow: rg

PROPOSITION 2.1. For the factorization R = ST
(2.5 GOYIRNL @Y = )OI, Np@IONIMEI, )|HOFT*s*)
T ol o

where the zero operator in right hand side is considered in L(DT , DS* )

PROOF. We proceed as in the proof of Proposition l.1. The product from the

right hand side is the matrix

ST SD * Ds*

(2.6) M= | DT DgDp -S* | e LH@D x» ®@Dgx ,H' @D @D ) .

*
DT -T 0

Let now x = h@DT*S*h"@DS* h'" € H@F(T*S*), where h ¢ H and h" € H". Then

(2.7) Mx = (Rh + DA xh", DeT(h - R*h"), D_(h - R*h").

S

From (2.7) it follows that M(H@F(T*$*)) = H"@F(ST) and that

*
% % DSDT* -S
= * c®
(2.8) -YR*Y% = | F(T*S*).
-T* 0
" Formulas (2.1) and (2.2) finish the proof. ' 25

REMARKS 2.2. a) The operator J(0) is the operator of changing the sumands in
a direct sum.
b) Replacing J(0) by J(Z) with Z € L (DT i *) the product from the right hand

side of (2.5) (replacing IDS* by IDZ* and IDT w1th IDZ) is connected with the
computation of the elementary rotation of the contraction ST + DS*ZDT' Operators
like this last one appeared in the study of positivity for arbitrary block-matrices (see
[13). . If Z is factorized through a Hilbert spacé X as Z= 2221, one obtains the
element ary rotation of the product between the row (S, DS*Z ) and the column
2 S) ; see also Section &. .

c) The factorization ST of R is called regular if R(ST) = {0}. This notion was

intensively used in the study of invariant subspaces, namely any factorization of the
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characteristic function of a completely non-unitary contraction provides .an invariant

subspace for the direct sum of the considered contraction by a unitary operator, which
is zero iff the factorization is regular ([18, p.321]). Regular factorizations appeared

later in the uniqueness criterium for contractive intertwining dilations (see [1]), and

- then in the Schur-type analysis of the set of all contractive dilations ([2], [10], [11], [3],

[4]). Now, in the setting of Proposition 2.1, it is clear that the contraction

-DgDyx - S*
(2.9) Z(S,T)=Z = ‘ € L(Dyx ®Dgx , D@ D)

FrE 0

has the property that its pure contractive part acts between F(T*S*) and F(ST) (and is
canonically unitary equivalent with the pure contractive part of R¥*), while its unitary
part acts between R(T*S*) and R(ST). This is a way of proving the symmetry of
regularity with respect to the adjoint operation (see [18, Proposition 3.2 of Chapter VII],
[3], [9] for more about this). What Proposition 2.1 says is related with the beginning of
this remark: the matrix M "is" the elementary rotation of the product plus a unitary
operator which is zero when the factorization is regular.

d) The multiport interpretation of the regular case of Proposition 2.1 is

R
Ca e o
> - JR).
- 10 -

3. In this section we indicate the canonical form (as a two-by-two matrix
contraction) of the product of a column operator with a row operator. This will help
doing this for the case to be considered in Section 4: the canonical form of the product
of two-by-two métrix contractions.

Consider the operators:

7 (3.1) Tr:(Ti Dpx Al) eLl(Hl@HZ, _K)

wheré Al el Hy, Dpx ), and
. t

Lihiere Eeoelth.ak

Denote
(3.3) R=ST €I H Gl)’ and



[ r R:SCTreL(Hl@HZ’Gl@GZ)'
Then

R SD,lnvr A1
(3.5) '

o
i

AZDST AZDSDT* Al

o >
For writing R in the canonical form it is clear that we have to use the analysis

of defect spaces of R from Section 2. To this end, consider

(3.6) ke T
. = = ana .
; : ~F(ST)

(3.6), I S
Then, using the operators Y and Y, from (2.4), define

. t ]
(3.7) I‘l:Y:P*(Al, 0) : Hy = Dpx
(3.8) I‘2=(A2, 0)Y: Dy =* G .
From (3.7) it follows
(3.9) ' Bl S,

-, which is the canonical form of the (1, 2) entry of 13 from (3.5). Analogously,

(G.10) ey (iRaD = BaDeT

is the canonical form of the (2, 1) entry of }%

For the (2,2) entry, note first that

() - ToRET SRl R SER 0 o O =0 aips ta o)
where we used (2.8) and (2.9). Because

*
(3.12) (Az’ 0) = AZDSDT* Ay,

-T* 0 0
the operator T € L(D r »Dpx) from the canonical form of the (2,2) entry of R must be
obtained from - .

t
(3.13) (B Q)L =P )N 5 0) =Dy D
2 1 ! Pz Pl $
We will use now the usual method to "identify" the defect operators DI‘ and
|



(3.15)

L (3.17)

1.* For any h,) > 11 5 i

) ”Drlhznzznhzn ey li%= lingl1? - [142P, (8,000 -

2

= [l 112 1P (8 @0 117 = fIny 117 - 18,0, 1% + [l - B8 h@O) || % -

i s
= HDA 12+ - P, 0]

The relation (3.14) shows that the 'operator :

3 Sy ey
@.I!Z-rDAl(DK(T Sty

<I>:(DA ’

is an isometry; denote ®(H.) = M. Then, the operator
Y 2 ’ P

. ¢:DI' =
Gake) = !

[0p =9

is a unitary one.

Similar considerations for D I* imply that the operator
0, :G,—D 5 @R(ST)
0, =0 yx, (1-PXAZ, 0!

is an isometry; denoting ¢, (G 2) = M* , the operator

: Jr‘i)*‘: DI'*—* My

(3.18) 2

L({))e =0,
,)
is a unitary one. :
Now it is easy to verify that the solution for T' from (3.13) is:

D A% @R(ST)

- (3.19) I = §%P, 2 @20 e LD ,Dps).
2

¥ ]

Indeed, since &, is an isometry, P, = @, @, and then
%



L (3:.200D - I'D

2 K s \,,' E* i it 5 t
- :UI,*%(P*@:(O@A)WI, = 0 (0©2)0 =(A,, 0Z{ - P, XA, 0) .

2 1 2 i

Thus, we proved:

. :
PROPOSITION 3.1. With the notation from (1.3) we have that R = C(R,T 1,1" o I
where R, I'}, T, and T are defined by (3.3), (3.7), (3.8), and (3.19), respectively.

The connection with regular factorizations appears also in the following

observation:

COROLLARY 3.2. a)If the factorization R = ST from (3.3) is regular, then for
any choice of Hz, A 120Gy A from (3.1) and (3.2) the operator I' from (3.19)is zero.
b) If there exist H £ {O} and G £ {0} such that for any choice of A and A

the opemtor T from: (3. 19) is zero, then the factorization R = ST is regular.

PROOF. a) follows immediately from (3.19), because R(ST) = {0} implies Z = 0 .
b) follows from the fact that ([ - P) D ®10) =R(S,T) (see Lemma 1.1 in [3]).

REMARK 3.3. The methods from Proposition 3.1 gives the pbssibility of
carrying out the analysis done in Section | for the operatorR in (3.4). So, one can

obtain- descriptions of D, end Dy o, @S well as some equivalencesbetween multiports
R R :
interpretations of R resulting from (3.4) and (3.21). We omit the details.

4. We shortly indicate now how to apply the results of Schon 3 to the general
case of two- by -two matmces
Lot Kel H QH2,1< @Kz), Ao C(A I'y»I'p, T) and Bel Ix1®1’2,

,G1®G2), B=€ A DT A); see (1.3) for notation. Denote .
5 o 00 g

(4.1) C=BAeL (H ,OH,, G, ®GC,).

Write é in the canonical form:

(4.2) o€l b

we 1nmcate below the operators C, @1 ) @2 ,-and © in terms of the stucture operators of
A and B Hdvmg in mind the analysis done in Section 3 we will write A as a row

operator and B as a column operator.

o
To this aim, put A in the form:



i : P\:(AC,DA:Z}_),
where

Py t
(4.4) - b= (Aol ZDA) -
~and

rel l(H’Z’ DA?
(4.5) , :
SRR it
-0 (AC)(Tl, I‘Drl) .
This is indeed the case because (T IDp )t is a column contraction acting petween
H, and D * @D px » while o (Az) is a unitary operator acting between DA"" ©®D Té and

DA? moreover - as in (1.4)2 - DAa(e:OL* (Az) € L(DA* oD I‘; . Kl@Kz)' has the matrix

: _ TDA* : 2250
e Dy o (A"é) =
C £ ul
ot 1 ZA* D 1'!% 9
7
which implies (4.3).
Similarly
; ° ~ t
where ;
and
AeL l(DB 4 Gz)
(4.9) N
R=lh s B A; A)oz(Br) ’
where ‘
¥
DB -B Al
(4.10) c,(Br')DB =
r
0 D
Ay

Now, we can apply Proposition 3,1 to C =B, ZDB )t(/\c, DA*T) . From
(3.3) it follows that o ¢

(e.11) C:BrAczBA -}-DA%I’lAZDB.

r,,.<e.,,.xmﬂﬁ_~w.‘.(,<,. 2

T



For describing @1, note first that D can be identified with F(AiBj)C Dy * @D,%* via
C b

the unitary operator Y(/\"zf;s";) from (2.4). Using the analysis from (l.l;)r and (1,4)?" one has

that D, x @D x can be identified with (D, x ®D *)®D , * using the unitary ‘operator
A B A r 5 A i
@(Ai_)'@@{fﬂfi ). Composing these identifications we have that if we denote

(4.12) FAXBY) = (D, #B g - A A"‘";DB%gl)@Dr; ATDB%gl@DATDB%gl ;g €Gyle
then the operator -
Y D +1~?(A§B*;)

(4.13) =
Yo = [(AT) ©aB))VATBT)

is a unitary one. Denote by P, the projection of D ®Dpx @D p* onto 'IE(A:“;BA";). Then
2 i

the relations (3.7), (4.3), (4.5), (4.13) and the definition of 13* imply that

(4.14) ' 0

| =BT, TDL , O €L (Hys Do)

|

~ The description of @2 is similar. One has to define

(#.15) FB.A ) =YF®BA ) DR®D, ®sz ;
o : 1
where
- (%16) v=[o(B) @uA JB A ),

and P the projection of D, @®D D. onto FB A, ). Then, using (3.8), we obtain
B ./_\l 1‘2 g€ &

(4.17) B = (A

2 S DA;A: O)KIELJ.(DC’GZ)'

For indicating © , we have to identify D g and D g. Us‘ing (3.15), (3.16), and
1 2 :
the previous analysis of (-)l , we infer that the operator

(4.13) =

[abe =Dy , (- BTy, Dy 0)")
1 et

is a unitary one (#= 'HDD@ % Analogéus, from (3.17) and (3.18) - and the structure of

1
6)2 - it results that the operator



Ve thos B, S0 E00 O O

(4.19)
ByuDgx = (D xD %, (- B)AS, %D, OO
2 2 - 2.

is a unitary one QV}% =é*p @*)' Consider also the operator:
2

Z:D,x@Dpx®D px = Dp®D 4 @D 1
o 2 I ] 2

7 =[o(B ) + oA )IZ(B_, A Jo* (AY) + o (BY)

(see (2.9)). The explicit matrix of 7 is

* * * *
-(DDpx + B™ A T,A™) B AlDI,; B DAT

5 5 - 2

(4.21) iz DA TZB . DA DI'* Al
1 Lo
; % * :
DI.ZA I'z 0 :
b o
Using (3.19) we finally have
a s ~*. = :.’ ~

“.22) 6 bfre *(0@4)¢ eLl(DGI ,Dez).

Summing up, we obtain

THEOREM &.1.If A=C(A, T |, T, T)and B=C(B, A, Ay, A), then c ma

. has the canonical form C =€(C, 0,0,, ©); where C, ©,, ©,, and © are defined by

(4.11), (4.14), (4.17), and (4.22), respectively.

REMARKS #&.2. a) Corollary 3.2 and Remark 3.3 can be transcribed for the case
of this section. '

b) The computations connected with angles in Gaussian processes and with
Szegd-type theorems ask for the value of the determinants of the defect operators of
some products of contractions. As remarked in Section 1, the knowledge - of the
canonical form of these productsimplies a triangularization of defect operators, and
thus the possibility of iterative computations of their determinants. This was done
directly in [5, Theorem 4.5] and in [6, Theorem 3.4] for cases which can now be included
in Theorem &.1.

¢) The so-called Schur analysis of contractivity (see [10], [11], [3], [4], [9], [12])
gives algorithms and formulas for computing the general solution of some operatorial
extrapolations problems in terms of Schur-type parameters; for this, various
manipulaticns with rotation operators are used. Some of these computations are

3=
£ Ao



- S
2 e

included in the results of the present paper.

d) A natural question in the Schur anélysis of contractivity is the structure of
parameters for a product of two solutions; Theorem 4.1 is a step in this respect.
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