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THE RELATION BETWEEN MINIMAX AND MINIMUM;

CONVEX PROGRAMMING VIA MINIMAX

Dan TIBA

1. INTRODUCTION

%

Let X and Y be Banach spaces with duals Xx, Y™ and

X :xxy *;[—:m,+¢j]be a closed, proper, saddle (concave-convex)
function. By means of a partial Fenchgl—Legendre transform,
Moreau [ﬁz, Rockafellar [ﬁ], established a one-to-one correspon-
dence between closed saddle functions on XxY and convex, lower
semicontinuous functions on XxYx which preserves, in a certain
sense, the subdifferentials. For more details and for a general
background in convex analysis we quote the monographs of R.T.

Rockafellar {6}, I.Ekeland and R.Temam L3], V.Barbu and Th.
T3]

Precupanu L IE

We associate with each saddle function X a convex, lower
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semicontinuous function L on XxY such that any saadl

X is a minimum point of L and conversely. A similar idea, for

. 0

the case of quadratic forms, appears in Ekeland iZf
approach is different.

In section 2 we define and study this transform. As a

Corollary we prove that the set of saddle points of a given



concave-convex function is rectangular, i.e. the product of two
convex, closed sets from X, respectively Y.

In section 3 we apply the results to the classical convex
programming problem. We obtain necessary and sufficient condi-
tions in terms of the Lagrangian for the validity of the Kuhn-
-Tucker property. We point out, via minimax, a sufficient con-
dition for the Kuhh—Tucker characterization, weaker than the
Slater condition.

Other conclusions, which also seem to be new, are that the
Slater "intericrity" assumption can be viewed as a coercivity
assumption on the Lagrangian and that if ko is a Lagrange multi—
plier corresponding to a certain solution X of a given convex
programming problem, then 10 is Lagrange multiplier for any other
soluticn of the problem.

Throughout this paper, we write the symbol [.| for all

the norms we use.

2. MINIMAX AND MINIMUM

-
We define the convex function L:XxY%w%]uoo,+oﬂ associated

with X by:

(2.1) L(x,y)ﬁsup{‘clzXXt,y)—cllyxx,z)}
’ t,z

where cli , i=1,2, denote the closure with respect to the corres-

ponding argument of }{.

Proposition 1. L is a convex, lower semicontinuous function

on XxY which never assumes the value =-o9 |




Remark 2. L may be identically +e© , as the following
example shows

-{ x(y2+l) X,YER, x20 ,
}‘/-«(XIY)Z ‘l

-0 otherwise.

Proposition 3. Assumei{ to be an upper-lower semicontinuous

function, then dom LC domX .

Proq§

(2.2) L(x,y)=sup X (t,yv)-inf X (x,z).
t Z

Let (3@}@ € dom L, then sup K (t,y)<+o0 and inf X (x,2)> - oo
T t z
therefore xédomlk,and yédomzki, that is [x,j]@dom}(.

Now,we state the correspondence theorem:

Theorem 4. If the closed, proper, saddle functioq}{ has a

saddle point, then the minimum value of L is zero. Any saddle

point of X is a global minimum of L and conversely any minimum

.of L is a saddle point of X.

Assume that

(2.3) K, DEUETEKE y) V x,yEXXY

ot et 5 5 a ; i
It is known that Lx,y} is a saddle point with the same

saddle value for cllyl, clz}i too. We have:

f 3 o S - et
L(x,y) =sup{ c1X(t,y) —cll}((x,z)}} 1, KX, y) -l X(x,7) =

o~ et

/

=cl K (X 1. X(E 9 el KIZT 1 XK ie V>
=cl, (x,y)mcnzhwx,y)+plrk(x,y)~c¢fv\x,y;7fO.



On the other hand, by the minimax inequalities (2.3), we

get

L(%X,¥)=cl f}\, %,9)- cl"} %,5)=0.

Conversely, let [ﬁ,b} be a global minimum for L, that is L(a,b)=0.

Then
(2.4) clzk(t,b)écllk(a,z) ¥ £, 2€XXY

Take the closure with respect to z in (2.4). Since K is

closed clzcl£K=cl2]C and we obtain
c1,X(t,b)gcl K(a,z) ¥ t,zeXxY
and the proof is finished.

Remark 5. Without assuming that X has a saddle point,

the theorem is not true since L may be identically %oa.
Moreover, from the proof, it is obvious that the only

essential hypotheses gre the existence of saddle points, respec-

tively minimum points, therefore the result may be extended to-

more general classes of functions.

Remark 6. If the transform L is proper and min L=0 the

converse part of Theorem 4 follows without assuming that X

has saddle points.

Corollary 7. EELK satisfies the coercivity condition

(2.5) thereare X,y€XxY such that

lim {}\. - X( "; ),1“ = 0
{x|+jyl|roe

then L is preper in reflexive spaces X,Y.




Proof

By Corollary 3.4, Barbu-Precupanu [i], p¢l38,j<laas a sad-

Corollary 8. The set of all saddle points of a closed func-

tion ¥ in Banach space ¥xY is rectangular.

Proof,

Let ¥ (y)=sup cléK(t,y), +%x)=sup{;—cllk3x,zl}..Then Li{x,y)=
=¥(x)+Y(y) "and, gf course, the set o; minimum points of I is
rectangular. By Theorem 4 .the proof is finished.
Now, we turn to the reciprocal of the correspondence (2,1);
Let L:XxY—ai}—°0,+w% be a convex, lewer semicontinuous,
proper function. We define

an L(t,y)-inf L(x,z) if one is finite,

(2.6) X (x,y)=0 & 2

l - o0 otherwise.

Proposition 9.K is a concave - convex function.

Proof

We show that 1(y)=inf L(t,y) is convex. For any £>0 there
c t
¢ €

sl

are points tl Pty

L (£ <1(y.)
lryl)"'EQ (Yl ’
£ i

Then, for all %étb,g

; . 4 £ o
ALY )+ (=AY Ly ,) 20D (8] ,y D+ (0L (8, ,y,) - £

L(ktgl+ (14»).)1162,)\}/1-% (1=X)y ) =€ 21y +(1-Ny, )~ € .



Proposition 10. If L satisfies in reflexive spaces

(247) lim L(x,y)=+o2
1%+ ]y l-—seo

then X is upper-lower semicontinuous.

Proof
We show that 1 is lower semicontinuous.
Let y -+ Y in ¥ and l(yn)$M. For any £>0 there is t such
; £ . N LE .
that L(tn,yn)§M+é, Condition (2.7) gives an}n bounded in X.

€ € - .
On a subsequence, tn —~ t weakly in X and as L is weakly

lower semicontinuous, we have

. £ L £ .

L(t ,y)sllmlnf'L(tn,yn)§M+E
therefore 1(y)<M+E and the proof is finished. -

Proposition 11. If [32,3}} is a minimum point for L then it

is a saddle point for ¥ and Kl(x,v)=0.

Proof

¥.(%x,y)=inf sup {L(t,§)—L(§,zi}=inf L(t,y)~inf L(x,z)=
t Z t z

=L (X,y)-L(x,y)=0.

X (x,7) =inf sup L(t,§)~L(x,z>} -1 (%,9)-inf L(x,2)40.
t zZ 2

X (x,y)=inf sup{L(t,y)-_L (?i,z)} =inf L(t,y)-L(X,v)20.
t Z t

Remark 12. Generally, dom L <domX and also the set of

minimum points of L is included in the set of saddle points of

3, as the following example shaws ; L:RxR«%] —00,+c€ﬂ



0 on the unit disc,
Li{x,y)= <
L + otherwise

Then, the associated saddle function is

[0 for x|<1, |vl£1
X(x,y)= +o0  for f{y[>1, [x[£1

- otherwise.

3. CONVEX PROGRAMMING

We consider the standard problem
(P) Minimize f (x)

subject to

(3.1) ) gi(x)SO i=1l,n ,

(3.2) Y. (x)=0 J=1,m «

- “‘“ . .
Above f,gi:X w%~}—cw,+o§} are convex, lower semicontinucus
functions, rj:X-ﬁ»R are affine, continuous functions.
We define the Lagrangian associated with (P) by

. +
KR Mxx -:+[—oc ,+c>o“}

n m
E(X)+ 2 A g, (x)+ ). Kr(x) if A»0, i=T;m
i=1 74 j=1'7 J +
(3. 3) X, x) =
J
‘ - o0 otherwise .

\

The question is to characterize the solutions of the con-

strained optimization problem (P) as saddle points of K.

Theorem 13. If K has saddle points then (P) has solutions

and a point X is an optimal solution for (P) iff there exist

O_ .0 o, i o_, 0 GOy
) mkA1""’kn) positive and th(yj,v..,ﬁm) such that




] (@] 4 = i =
.[ﬂ ,FL,XOW is a saddle point for K .

=

Proof

1f X has saddle points, Uzawa Eg} proved that the projec-
tion on the X coordinate is a solution of (P).

For the second part of the theorem we compute the convex

function L (2,4, x)=Y A, ) +¥(x) asscciated with X by (2.1):
/ P

£ (x) if g, (x)<0, s (x)=0, ¥ i,j

(3.4) Vv (x)=
+ oo ctherwise
(3.5) ¥ (A p)==inf }((')\,}x,x) .
. X

Theggem 4 and the

Since ¥ has saddle points one may use

conclusion follows.

Corollary l4. If ¥ has saddle points, we have

{3.6) min (P)=min maxjk(%,yqx)
X A, ;m

This follows by min L(A,pM,x)=0.

(P) has the multiplier

Corollary 15. If the solution X of

[R?,ué], 2°30, then [??’V?] is a multplier for any other sclution
hatt i 2

of (P).

Proof

By Corollary 8

Remark 16. If the Kuhn-Tucker property is valid and (P)

e e

s solutions, obviously'klhas saddle points. Therefore, Theorem

na

hows thai the statement i) is equivalent with ii) plus iii)

13:s

1o



i) X has saddle points
ii) (P) has solutions
iii) for every solution xQ of (P) there are Aoao, ﬁp such theat

rxo,ﬁf,xoj is a saddle point for K .

Remark 17. By the standard condition for minimax, the search

of the solutions and of the multipliers is reduced to solving the

equation
Y- 4
[0.0] € X\, %) .

Any minimax condition for leay be viewed as a "constrained

qualification" for prcoblem (P). For instance

Corollary 18. If there are X,u, A0, M0 such that

(3.7) KO R) =X, T, %) 40

for {%3+§F%+2XS;5M, then (P) has solutions and for every solution

( , o o ] o o IR .
X of (P) there are ) ;O,}A such that [A 'F"Xé} is a saddle

point for X .

Proof

(3.7) is also a minimax condition weaker than (2.5).
Now, we give some brief considerations on the Slater condi-
tion. We take m=0 (no equality constraints) and we assume
(3.8) lim £ (x)=+e0
{ X {30
The Slater condition is

(3.9) there is X in the domain of f such that

94 (x)<0 , i=1,n



Corollary 19. Under the above hypotheses X has saddle points.

roof

For 230, we have

X} (0,2 =X, X) =£ () =€ (R)+ 7, (-g; )Xy
and :(2.5) is fulfilled.

Remark 20. Under the quite usual assumption (3.8), the
Slater condition implies the coercivity condition (2.5) on the

Lagrangian ana it is stronger than (3.7).

Remark 21. The general problem (P), under assumption (3.8),

(3.9) may be easily reduced to Corollary 19. Denote

z={x£}; rj(x}:o, j=TTﬁ} nad by r?&x*, j=1,m, the elements defin-

Let i(x) be the indicator function of Z and f1:f+i. Then

(P) reduces formally to the case m=0 and we obtain the multipliers

Kif}o, i=1,n corresponding to g - By the remark that

P : ‘ s I,:no[ N
Tix)={ ¥Uex®; =¥k, ’v’;ﬂ-ﬁR}'
N N B N J
J=1

and some computations, we finish the proof.

Remark 22. Without assuming (3.8), direct comparisons of
(3.7) with the Slater conditions are not simple. We guote the
paper of J.Stoer [7], where the proof of Theorem 2.16 may be

interpreted in this sense, in the case m=0.

Remark 23. In the proof of Corollary 19 we use »=C, which

e T e B AN

generally is not a Lagrange muitiplier for (P). Therefore the

search of A, j. in (3.7) doesn’t reduce to the search of the



Lagrange multipliers.

Remark 24. Important features of condition (3.7) are that
it involves all the elements defining (P) and that it is also
intimately related to the existence theory for (P).

Finally, we give a general example where the Slater con-
dition is not fulfilled.

Let £ be a COnvéx, lower semicontinuous, vproper function

and 'g be the indicator of a convex, closed set in X. Consider

the problem

min £(x) , g(x)£0.

e

(®,)

Corollary 25. Assume that (Pl) has solutions. Then, for

e

4= Ay 4 . o~ i X .
) there is xd}O such that i)‘o’xol is

every solution X of (Pl

a saddle point for X .

Proof

£(x )=f(x) if g(x)€0,
X (3 x ) 0= 200,%)= © -
- oo otherwise

and (3.7) is satisfied for any X220, x € X.
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