INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

ON HOMOMORPHISMS OF CERTAIN C*-ALGEBRAS

by

Marius DADARLAT

PREPRINT SERIES IN MATHEMATICS

No.11/1986

Mea 23715

ON HOMOMORPHISMS OF CERTAIN C*-ALGEBRAS

by

Marius DADARLAT*)

March 1986

Department of Mathematics, National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

ON HOMOMORPHISMS OF CERTAIN C*-ALGEBRAS

by

Marius DADARLAT

The present paper deals with unital *-homomorphisms $\Phi: C(X) \otimes M_n \to C(Y) \otimes M_k n$, where X and Y are compact. Our interest in such homomorphisms arose in connection with a question of E.G. Effros [3] concerning the structure of inductive limits of C*-algebras of the form $C(X) \otimes M_n$.

If X=Y and k=1 we have the case of automorphisms studied by R.V. Kadison-J. Ringrose [6], J. Phillips-I. Raeburn [9], [10] and K. Thomsen [13]. Also in connection with the question of E.G. Effros certain classes of *-homomorphisms related to a covering $X \longrightarrow Y$ have been considered by C. Pasnicu in [7]. Our results concern the situation when no connection between the spaces X and Y is imposed a priori.

The paper consists of three sections. In the first section we show that under certain topological restrictions on Y the study of homomorphism $\dot{\Phi}$ can be reduced to the case when n=1. The topological conditions involve that the homotopy type of Y be that of a CW-complex of dimension \langle 2k and the absence of n-torsion in K°. Section 2 provides a way for describing *-homomorphisms $\dot{\Phi}:C(X)\to C(Y)\otimes M_k$ (Thm 22). Of course if k=1 such homomorphisms correspond to continuous maps Y \to X. To give an idea about the additional complications arising in the case when k>1, our general result being somewhat technical, let us consider the homogeneous case. This means that for every $y\in Y$ there is some $f\in C(X)$ such that the matrix

 ϕ (f)(y) has k distinct eigenvalues. Then ϕ is completely characterized by the following objects:

- (1) A k-fold covering space $\pi: Z \longrightarrow Y$
- (2) A continuous map $\mathcal{Y}: \mathbb{Z} \longrightarrow \mathbb{X}$ which is injective on each fibre $\pi^{-1}(y)$, yeY.
- (3) One dimensional projections p(z) depending continuously on $z \in \mathbb{Z}$ such that

$$\sum_{z \in x^{-1}(y)} p(z) = I_k$$
 (I_k denotes the unit of M_k)

Then $\dot{\Phi}$ is given by the following formula

(4)
$$\Phi(f)(y) = \sum_{z \in \pi^{-1}(y)} f(\gamma(z)) p(z), f \in C(X), y \in Y.$$

The third section contains results concerning *-homomorphisms compatible with the k-fold covering $\Psi:X\longrightarrow Y$ in the sense of C. Pasnicu [7]. This means that

(5)
$$\Phi((g \circ \psi) \otimes I_n) = g \otimes I_{kn}$$
 for all $g \in C(Y)$.

This property appeared as the essential feature of the homomorphisms in the description of the Bunce-Deddens algebras [2] as inductive limits, ψ -compatible homomorphisms can be also viewed as a kind of "sections" for $\psi: X \longrightarrow Y$. More precisely they make the following diagram commutative

$$C(X) \otimes M_n \xrightarrow{\Phi} C(Y) \otimes M_{kn}$$

$$C(Y)$$

where \ll (g)=g \otimes I_{kn} and +*(g)=(g \circ +) \otimes I_n.

 ψ -compatible homomorphisms are homogeneous under natural connectedness assumptions. Assuming n=1 a global description of the structure of the ψ -compatible homomorphisms is provided in Proposition32We also give certain results concerning the existence of ψ -compatible maps and discuss some examples.

For instance if G is a finite abelian group acting freely on X then the natural injection $C(X) \longrightarrow C(X) \rtimes G$ can be turn into a homomorphism compatible with the covering $X \longrightarrow X/G$ provided the crossed-product $C(X) \rtimes G$ is isomorphic to some $C(X/G) \boxtimes M_k$.

The author thanks M. Putinar for useful discussions in connection with Lemma 1.2. Also the author is grateful to V. Deaconu and A. Nemethi for stimulating conversations.

1. UNITAL *-HOMOMORPHISMS

We need in this section some elementary sheaf cohomology. It is known that every short sequence of sheaves of abelian groups induces a long sequence of cohomology groups ([4]). We may also consider sheaves of nonabelian groups and homogeneous spaces but in this case we get only a short sequence of cohomological sets. We shall give some details for the convenience of the reader.

A sequence of pointed sets (or pointed topological spaces) and maps

$$(A_{i}, x_{i}) \xrightarrow{F_{i}} (A_{i+1}, x_{i+1}) \xrightarrow{F_{i+1}} (A_{i+2}, x_{i+1})$$

is called exact if the equality

$$F_{i}(A_{i}) = F_{i+1}^{-1}(x_{i+2})$$

holds for every i.

For an arbitrary pointed topological space (A,a) we denote by A^C the sheaf of the germs of continuous functions from X to A. For x \in X we denote by $(A^C)_X$ the stalk at x of the sheaf A^C . We distinguish in $(A^C)_X$ the function which is equal to a on a neighborhood of x.

Let G be a Lie group and let H be a closed subgroup of G.
We have the following short exact sequence of pointed topological spaces

(6)
$$1 \rightarrow (H, 1_H) \rightarrow (G, 1_G) \rightarrow (G/H, \langle H \rangle) \rightarrow 1$$

Recall that G acts on the homogeneous space G/H in the canonical way g.(xH) = (gx)H.

The following sequence of sheaves is exact

$$(8) \qquad 1 \longrightarrow H^{C} \longrightarrow G^{C} \longrightarrow (G/H)^{C} \longrightarrow 1$$

We mean by this that the following sequence of pointed sets and maps is exact for every $x_{\mathfrak{E}} \boldsymbol{X}$:

$$(3) \qquad 1 \rightarrow (H^{C})_{X} \rightarrow (G^{C})_{X} \rightarrow (G/H)_{X}^{C} \rightarrow 1$$

This is nothing more that the fibering $H \to G \to G/H$ admits continuous local sections and this is clear since H is a closed subgroup of the Lie group G.

Now we can derive from (8) the following exact sequence of pointed cohomological sets

 $(40) \quad 1 \rightarrow \operatorname{H}^{\circ}(X,\operatorname{H}^{\mathsf{C}}) \rightarrow \operatorname{H}^{\circ}(X,\operatorname{G}^{\mathsf{C}}) \rightarrow \operatorname{H}^{\circ}(X,(\operatorname{G}/\operatorname{H})^{\mathsf{C}}) \xrightarrow{\delta} \operatorname{H}^{4}(X,\operatorname{H}^{\mathsf{C}}) \xrightarrow{\gamma} \operatorname{H}^{4}(X,\operatorname{G}^{\mathsf{C}})$ We have that $\operatorname{H}^{\circ}(X,\operatorname{H}^{\mathsf{C}})$ is equal to $C(X,\operatorname{H})$ the set (group) of all continuous functions from X to H pointed by $f_{\equiv 1}_{\operatorname{H}}$. Similarly $\operatorname{H}^{\circ}(X,\operatorname{G}^{\mathsf{C}}) = C(X,\operatorname{G})$ is pointed by $f_{\equiv 1}_{\operatorname{G}}$ and $\operatorname{H}^{\circ}(X,(\operatorname{G}/\operatorname{H})^{\mathsf{C}}) = C(X,\operatorname{G}/\operatorname{H})$ is pointed by the constant function $f \equiv \langle \operatorname{H} \rangle$. The cohomological sets $\operatorname{H}^{1}(X,\operatorname{H}^{\mathsf{C}})$ and $\operatorname{H}^{1}(X,\operatorname{G}^{\mathsf{C}})$ are pointed by the trivial cocycles $(X,1_{\operatorname{H}})$ and $(X,1_{\operatorname{G}})$ respectively ([4]). Given $f_{\in C}(X,\operatorname{G}/\operatorname{H})$ the cocycle $\delta(f)_{\in H}^{1}(X,\operatorname{H}^{\mathsf{C}})$ represents the obstruction for lifting f to a function in $C(X,\operatorname{G})$. By the exactness of (10) the function f has a lifting if and only if $\delta(f) = (X,1_{\operatorname{H}})$ i.e. the cocycle $\delta(f)$ is trivial in $\operatorname{H}^{1}(X,\operatorname{H}^{\mathsf{C}})$. Furthermore the action of G on G/H induces an action of the group $C(X,\operatorname{G})$ on $C(X,\operatorname{G}/\operatorname{H})$. If $f_{1},f_{2}\in C(X,\operatorname{G}/\operatorname{H})$ then $\delta(f_{1}) = \delta(f_{2})$ if and only if $f_{2} = g \cdot f_{1}$ for some $g_{c}C(X,\operatorname{G})$.

Next, we describe the sequence in (40) in the case of the fibering

(41)
$$U(k) \xrightarrow{\gamma} U(k\eta) \xrightarrow{j} U(k\eta)/U(k)$$

where the embedding $\gamma: U(k) \longrightarrow U(kn)$ is given by

(12) $\gamma: U(k) \ni u \mapsto u \otimes I_n \in U(kn) \cong U(M_k \otimes M_n)$.

First we need some notation.

Let $\operatorname{Vect}_{\operatorname{m}}(Y)$ denote the set of isomorphism classes of complex vector bundles of rank m on Y. In $\operatorname{Vect}_{\operatorname{m}}(Y)$ we have one naturally distinguished element - the class of the trivial bundle of rank m. Let $\operatorname{T}_{\operatorname{n}}(\operatorname{Vect}_{\operatorname{m}}(Y))$ be the subset of $\operatorname{Vect}_{\operatorname{m}}(Y)$ consisting of classes of all vector

bundles E for which the Whitney sum $nE=E\ \oplus\ \dots\ \oplus\ E$ (n-times) is isomorphic to the trivial bundle of rank mn.

If A and B are unital C^* -algebras we denote by Hom(A,B) the set of unital * -homomorphisms from A to B. Hom(A,B) is a topological space with the topology of pointwise convergence.

Two homomorphisms $\phi_1,\phi_2\epsilon$ Hom(A,B) are said to be inner equivalent if there is a unitary ueB such that $\phi_2=u\phi_1u^*$. Let Hom(A,B)/inn be the set of classes of inner equivalent homomorphisms from A to B.

PROPOSITION 1.1. Assume that Y is a compact space. Then there is an exact sequence of pointed sets

(43)
$$1 \rightarrow C(Y,U(k)) \rightarrow C(Y,U(kn)) \xrightarrow{j} Hom(M_n,C(Y,M_{kn})) \xrightarrow{S'} Vect_{k}(Y) \rightarrow Vect_{kn}(Y)$$

which induces an isomorphisms

$$\operatorname{Hom}(M_n, C(Y, M_{kn})) / \operatorname{inn} \xrightarrow{\sim} T_n(\operatorname{Vect}_k(Y))$$
.

Proof. We have the following commutative diagram of pointed sets and maps

$$1 \rightarrow C(Y,U(k)) \rightarrow C(Y,U(kn)) \xrightarrow{j} C(Y,U(kn)/U(k)) \xrightarrow{b} H^{1}(Y,U(k)^{C}) \xrightarrow{\gamma} H^{1}(Y,U(kn)^{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

The vertical arrows are bijections. To describe x recall that $\operatorname{Hom}(M_n, M_{kn}) \simeq \operatorname{U}(kn)/\operatorname{U}(k)$ as topological spaces, the isomorphism being induced by the map $\eta: U(kn) \longrightarrow \text{Hom}(M_n, M_{kn})$ given bijection $\gamma_*: C(Y,U(kn)/U(k)) \rightarrow C(Y,Hom(M_n,M_{kn}))$ and it is clear that $C(Y, Hom(M_n, M_{kn})) \cong Hom(M_n, C(Y, M_{kn}))$ by the map α_1 which takes the continuous function $\Psi:Y\to \operatorname{Hom}(M_k,M_{kn})$ to the homomorphism $\ll_1(\forall)$ (a) (y) = ψ (y) (a) , a \in M $_n$, y \in Y. By definition we set $\propto = \propto_1 \gamma_*$. In Hom(M_n,C(Y,M_{kn})) we distinguish the homomorphism a \mapsto I $_{\mathrm{k}}$ \otimes a. Thus arphi is a morphism of pointed sets. The maps etaand β_1 are the natural ones. Namely if (U_i,g_{ij}) is a U(k)-cocycle then $\beta(U_{i},g_{ij})$ is the isomorphism class of the vector bundle E obtained by clutching the trivial bundles $\mathbf{U}_{1}\mathbf{x}\mathbf{C}^{k}$ with the transition functions (g_{ij}) . β_1 is defined in a similar way. The other maps are defined to make commutative the diagram. We describe them below.

If $u \in C(Y,U(kn))$ then $j'(u):M_n \to C(Y,M_{kn})$ is defined by $j'(u)(a)(y)=u(y)(I_k \otimes a)u(y)*, \ a \in M_n \ , \ y \in Y.$ The map χ' takes the vector bundle E to the Whitney sum $nE=E \oplus \ldots \oplus E.$

If $\phi_1, \phi_2 \in \text{Hom}(M_n, C(Y, M_{kn}))$ then $\S'(\phi_1) = \S'(\phi_2)$ if and only if ϕ_1 and ϕ_2 are inner equivalent. The isomorphism class of the vector bundle $\S'(\phi_1)$ represents the obstruction for lifting ϕ_1 to an unitary $u \in C(Y, U(kn))$.

We shall use the following well-known result concerning triviallity of the vector bundles which is contained in [5, Ch.8 Thm. 1.5].

LEMMA 1.2. Let Y be a finite CW-complex of dimension r and let E be a complex vector bundle of rank k over Y. Assume that $r \le 2k$ and that $E \oplus F$ is trivial for some trivial vector bundle F. Then E is trivial. The main result of this section is the following:

THEOREM 1.3. Let X and Y be compact topological spaces and let $\dot{\Phi}$ be an unital *-homomorphism

(14)
$$\Phi: C(X) \otimes M_n \rightarrow C(Y) \otimes M_{kn} \simeq C(Y) \otimes M_k \otimes M_n$$
.

Assume the following

- (1) Y is homotopic equivalent with a finite CW-complex of dimension $\leq 2k$.
- (2) $K^{\circ}(Y)$ does not contain nontrivial elements whose order divides n.

Then there is an unitary ueC(Y,U(kn)) and an unital *-homomor-phism $\Phi':C(Y) \longrightarrow C(Y) \otimes M_k$ such that

(15)
$$\phi = u(\phi' \otimes id_{M_{\Pi}})u^*$$

 $\underline{\text{Proof.}}$ a) Consider first a particular case. Let us suppose that $\dot{\phi}$ acts on matrices as an amplification. That is:

(46)
$$\phi(1_{C(X)} \otimes a) = 1_{C(Y)} \otimes I_k \otimes a$$
, $a \in M_n$.

Using (46) we get for every feC(X) and aeM $_{
m n}$

(17)
$$\phi$$
 (f \otimes a) = ϕ (f \otimes I_n) ϕ (1 \otimes a) = ϕ (1 \otimes a) ϕ (f \otimes I_n) =
$$= 1 \otimes I_k \otimes a \cdot \phi \text{ (f } \otimes I_n) \cdot$$

The computation in (17) shows us that the algebra $\varphi \; (\text{C(X)} \; \otimes \; \text{I}_n) \; \text{lies in the relative commutant of 1} \otimes \; \text{I}_k \otimes \; ^{\text{M}}_n \; \text{in}$

 $\text{C(Y)} \otimes \text{M}_k \otimes \text{M}_n$, which is equal to $\text{C(Y)} \otimes \text{M}_k \otimes \text{I}_n$. It follows that there is an unique unital *-homomorphism $\varphi^! : \text{C(X)} \to \text{C(Y)} \otimes \text{M}_k$ such that

(18)
$$\phi(f \otimes I_n) = \phi'(f) \otimes I_n.$$

Now using again (17) we get

$$(13) \qquad \varphi = \varphi' \otimes id_{M_n}$$

b) Consider now the general case of an arbitrary homomorphism . Under the hypotheses 1) and 2) we shall find an unitary ucC(Y,U(kn)) such that the homomorphism uou will verify the additional condition given in (16). Define $\phi_1 \in \text{Hom}(M_n, C(Y, M_{kn}))$ by $\phi_1(a) = \phi(1 \otimes a)$, acM_n. Our problem is to find ucC(Y,U(kn)) such that $\phi_1(a)$ (y)=u(y)(I_k \otimes a)u(y)*, yeY, acM_n.

But in virtue of Proposition 1.1 this can be done if and only if the vector bundles $E=5'(\phi_1)$ is trivial. Having in mind the map $\gamma': \operatorname{Vect}_k(Y) \to \operatorname{Vect}_{kn}(Y)$ we define a homomorphism of groups $\gamma': K^\circ(Y) \to K^\circ(Y)$ given by $\gamma'(x) = nx$. The second hypothesis of the Theorem allows us to conclude that γ' is injective. Since $E \in T_n(\operatorname{Vect}_k(Y))$ it follows that the class of K-theory of the vector bundle E is zero hence E becomes trivial after summing some trivial vector bundle. Since $\operatorname{rank}(E) = k$ and $\dim(Y) \leqslant 2k$ it follows from Lemma 1.2 that E is trivial.

REMARK 1.4. Assume k=1. Since the line bundles on Y are classified by the second Cech cohomology group $H^2(Y,Z)$ it follows that the conclusion of Theorem 1.3 remains true if we drop both hypotheses (1) and (2) but we assume that $H^2(Y,Z)$ has not n-torsion.

In this way we recover a result of Knus (cf.[9])

2. THE "COVERING" ASSOCIATED WITH A *-HOMOMORPHISM

Let X and Y be compact spaces and let

$$\phi: C(X) \rightarrow C(Y, M_k)$$

be an unital *-homomorphism. For every yeY the map $\phi_y:f\mapsto \phi(f)(y)$ defines a *-representation of C(X) on \mathbb{C}^k . This representation decomposes into a direct sum of characters of the C*-algebra $C(X): \phi_y=m_1x_1+\dots+m_rx_r$ where x_1,\dots,x_r are distinct points in X and $1\leqslant m_1\leqslant \dots \leqslant m_r$ are the multiplicities with they occur as characters in the decomposition of ϕ_y . Of course we must have $m_1+\dots+m_r=k$. Let us denote by F(y) the set $\{x_1,\dots,x_r\}$. It will be useful to take into consideration the spectral projections.

Let G(k,j) be the space of all j-dimensional selfadjoint k projections acting on \mathbb{C}^k and let $G(k) = \bigcup_{j=1}^k G(k,j)$. Then there are j=1 $p_1 \in G(k,m_1),\ldots,p_r \in G(k,m_r)$ satisfying $p_1 + \ldots + p_r = I_n$ and such that

(20)
$$\phi(f)(y) = \phi_y(f) = \sum_{i=1}^r f(x_i) p_i$$
, fec(X).

Of course \mathbf{x}_i and \mathbf{p}_i depends on yeY and they have some continuity properties. We try to store these properties in some construction given below.

For $1 \leqslant r \leqslant y$ define Y_r to be the set of all points y in Y such that card $F(y) \leqslant r$ and define $Y(m_1, \dots, m_r)$ to be the set of all points y in Y such that F(y) has exactly r elements with the multiplicities m_1, \dots, m_r . By definition we have that

$$(24) Y=Y_k Y_{k-1} Y_{k-1} Y_1 and$$

$$(22)$$
 $Y_{r-1} = UY(m_1, ..., m_r)$

LEMMA 2.1. Let $y^e Y(m_1, \dots, m_r)$ and $F(y^e) = \langle x_1^e, \dots, x_r^e \rangle$. Assume that V_1, \dots, V_r are disjoint neighbourhoods of the points x_1^e, \dots, x_r^e . Then there is an open neighbourhood V of y^e such that for every $y \in V$ we have that $F(y) \in V_1 \cup \dots \cup V_r$ and the number of points (counted with multiplicities) in $F(y) \cap V_i$ is equal to m_i , $i=1,\dots,r$.

. Proof. a) There is some open V_Jy° such that F(y)_CV₁V····V_r that there are whenever y_CV. To get a contradiction suppose two nets (y_v) and (x_v) indexed by the neighbourhoods of y° such V_v converges to y° and x_v∈F(y_v) (V₁·····V_r). Now choose f∈C(X) such that f=0 on F(y°) and f=1 on X (V₁·····V_r). Since y_v → y° it follows that φ (f) (y_v) → φ (f) (y°). But this is imposible since φ (f) (y°)=0 and φ (f) (y_v) φ (f) (x_v) =1. (Recall the formula (20)).

b) Let V be the open neighbourhood of y° found at a). Consider open sets W_1,\ldots,W_r such that $V_i \in W_i$ and \overline{W}_i are disjoint. For every 1 (if choose $f_i \in C(X)$ such that $f_i = 1$ on V_i and $f_i = 0$ on $X \setminus W_i$. Shrinking V we may suppose that

(23)
$$\| \operatorname{tr} \phi(f_i)(y) - \operatorname{tr} \phi(f_i)(y^\circ) \| < 1$$

But the functions f_i were choosen such that $\operatorname{tr} \varphi(f_i)(y^\circ) = m_i$ and such that $\operatorname{tr} \varphi(f_i)(y)$ equals the number of points (counted with multiplicities) in $F(y) \wedge V_i$. With this remark the Lemma follows from (23).

Let $Z=\langle (y,x) \in YxX: X \in F(y) \rangle$. It follows from Lemma 2.1 that Z is closed in YxX, hence Z is a compact space. Consider the canonical projections on factors $\pi:Z \to Y$, $\pi(y,x)=y$ and $\gamma:Z \to X$, $\gamma(y,x)=X$. Define also the projection valued map

 $p:Z \longrightarrow G(k)$ by taking p(z) to be the orthogonal projection on the spectral space that corresponds to the character given by x=P(z) in the decomposition (20).

THEOREM 2.2. 1) The map $x:Z \to Y$ is open.

- 2) $Y=Y_k>Y_{k-1}>\ldots>Y_1$ is a filtration with closed sets.
- 3) $Y(m_1, \ldots, m_r)$ is open in Y_r .
- 4) $\pi^{-1}(Y(m_1,\ldots,m_r)) \xrightarrow{\pi} Y(m_1,\ldots,m_r)$ and

 $x^{-1}(Y_r, Y_{r-1}) \xrightarrow{\mathcal{I}} Y_r, Y_{r-1}$ are covering spaces.

5) The projection valued map $p:Z \to G(k)$ is continuous on every $Y_r Y_{r-1}$.

Proof. Essentially the theorem is a reformulation of
Lemma 2.1.

- 1) Let $W \subset Y$ and $U \subset X$ be open sets. Then π (($W \times U$) \cap Z) is open in Y. Indeed if (y°, x°) \in ($W \times U$) \cap Z, then by Lemma 2.1 there is an open set $V \subset W$, $y^{\circ} \subset W$ such that $F(y) \cap W$ is nonvoid for all Y in V. Hence $V \subset W \subset W$.
 - 2) It follows from 3) since $Y_r Y_{r-1} = VY(m_1, \dots, m_r)$.
- 3) Let $y^{\circ} \in Y(m_{1}, \ldots, m_{r})$ and $F(y^{\circ}) = \langle x_{1}^{\circ}, \ldots, x_{r}^{\circ} \rangle$. By Lemma 2.1 we can choose disjoint neighbourhoods $V_{1} \ni X_{1}^{\circ}$, $i = 1, \ldots, r$ and $V \ni y^{\circ}$ open such that $F(y)_{C} V_{1} \lor \ldots \lor V_{r}$ and $F(y)_{C} V_{1}$ has exactly m_{1} points (counted with multiplicities) whenever $y \in V$. We prove that $V \cap Y_{r} \cap Y_{r} \cap Y_{r}$. If $Y \in V \cap Y_{r}$ then F(y) has at most r elements. Since each $F(y) \cap V_{1}$ is nonvoid it follows that F(y) has exactly r elements and the multiplicities are as desired.
 - 4) It suffices to prove the first assertion.

Let V_i be as in Lemma 2.1. By 2) every point $y^e \in Y(m_1, \dots, m_r)$ has an open neighbourhood V such that $V \cap Y_r \in Y(m_1, \dots, m_r)$ and

 $\begin{array}{c} x^{-1}(v_{\wedge} Y_r) = w_1 \vee \dots \vee w_r. \text{ Here } w_i = x^{-1}(v_{\wedge} Y_r)_{\wedge}(YxV_i) \text{ are open} \\ \text{sets in } x^{-1}(Y(m_1,\dots,m_r)) \text{ and } (x/w_i): w_i \longrightarrow v_{\wedge} Y_r \text{ is continuous} \\ \text{and bijective.} \end{array}$

The map $(\pi|W_i)$ is open by a similar argument to that given at 1).

5) Let $z^\circ=(y^\circ,x^\circ)\in x^{-1}(Y_rY_{r-1})$. Choose open $U\ni x^\circ$ such that $U_rF(y^\circ)=\langle x^\circ\rangle$. If $f\in C(X)$ is equal to 1 on a neighbourhood of x° and $supp(f)\subset U$ then $p(z)=\varphi(f)(\pi(z))$ in a small enough neighbourhood of z° in $\pi^{-1}(Y_rY_{r-1})$.

With the above notation we get the following formula for ϕ :

(24)
$$\phi(f)(y) = \sum_{z \in \pi^{-1}(y)} f(\gamma(z)) p(z)$$

Note that ${\cal P}$ is injective when restricted to the fibres of π and $\dot{\phi}$ is isometric if and only if ${\cal P}$ is onto.

REMARK 2.4. The homomorphism φ is called homogeneous if for every yeY, F(y) has k elements.

For homogeneous φ it follows from Theorem 2.2 that $\pi: \mathbb{Z} \to \mathbb{Y}$ is a k-fold covering space and that the map p(z) is continuous on \mathbb{Z} . Conversely if $\pi: \mathbb{Z} \to \mathbb{Y}$ is a covering space, $\mathbb{Y}: \mathbb{Z} \to \mathbb{X}$ is a continuous map that is injective on fibres of π and $p: \mathbb{Z} \to G(k,1)$ is continuous and verifies $\sum_{z \in \pi^{-1}(y)} p(z) = \mathbb{I}_k$ for all $z \in \pi^{-1}(y)$ yeY then the formula (24) defines a homogeneous homomorphism.

REMARK 2.5. Suppose that Y is simply connected, locally pathwise connected and that Φ is homogeneous. Then it follows from the general theory of the covering spaces [12] that Z=YU...UY (K-times). Therefore there exist continuous maps

 $\begin{array}{c} \varphi_1,\ldots,\varphi_k\colon Y\to X,\ \varphi_i\left(y\right)\neq f_j\left(y\right),\ y\in Y\ \left(i\neq j\right);\ p_1,\ldots,p_k\colon Y\to G(k,1),\\ k\\ &\stackrel{\searrow}{\sum}\ p_i\left(y\right)=I_k\ \text{such that}\ \varphi\left(f\right)\left(y\right)=\stackrel{k}{\sum}\ f\left(\varphi_i\left(y\right)\right)p_i\left(y\right),\ y\in Y.\ \text{If in}\\ \text{addition we assume that}\ H^2\left(Y,Z\right)=0\ \text{then it can be shown that}\\ \text{there is some unitary}\ u\in C\left(Y,U(k)\right)\ \text{such that}\ p_i\left(y\right)=\\ &=u\left(y\right)p_i\left(y^\circ\right)u\left(y\right)^*,\ y\in Y,\ i=1,\ldots,k,\ \text{for some fixed }y^\circ\in Y.\ \text{Therefore}\\ \text{we get the following formula} \end{array}$

(25)
$$\phi(f)(y) = u(y)$$

$$\begin{bmatrix} f(\gamma_1(y)) & 0 \\ 0 & f(\gamma_k(y)) \end{bmatrix} u(y)*, fec(x), yey.$$

Consequently, under the previous assumptions, the homogeneous homomorphisms are classified modulo a inner equivalence by the set $\langle \gamma_1, \ldots, \gamma_k \rangle$. To sketch a proof let T=U(1)x...xU(1) be the maximal torus of U(k). The fibration

induces an exact sequence of pointed cohomological sets

$$C(X,T) \rightarrow C(T,U(k)) \longrightarrow C(Y,U(k)/T) \xrightarrow{\delta} H^{1}(Y,T^{C})$$

Since $H^4(Y,T^C) = \bigoplus_{i=1}^k H^1(Y,U(1)^C) = \bigoplus_{i=1}^k H^2(Y,\mathbb{Z}) = 0$ (see [47]) we get that S = 0 and so every continuous map $\psi : Y \longrightarrow U(k)/T$ can be lifted to a function in C(Y,U(k)). Let N be the space of all k-uples (q_1,\ldots,q_k) of one dimensional projections acting on C^k , $q_1+\ldots+q_k=I_k$. U(k) operates transitively on N by the formula $U(k) \ni u \longmapsto (up_1(y^\circ)u^*,\ldots,up_k(u^\circ)u^*)$, $y^\circ \in Y$ is fixed. Since the corresponding stabilizer is T it follows that N is homeomorphic

to U(k)/T. Thus the map $y\mapsto (P_1(y),\ldots,p_k(y))$ can be lifted to a continuous map $u\in C(Y,U(k))$.

3. HOMOMORPHISMS COMPATIBLE WITH A COVERING

Let $\psi: X \to Y$ be a k-fold covering space and A, B be unital C*-algebras. A homomorphism $\phi \in Hom(\mathbb{C}(X) \otimes A, C(Y) \otimes B)$ is called compatible with the covering ψ or ψ -compatible if $\phi (g \circ \psi \otimes 1_A) = g \otimes 1_B$ for all $g \in C(Y)$ (see [7]). In this section we consider only the case $A=M_n$, $B=M_{kn}$.

REMARK 3.1. Let $\phi \in \text{Hom}(C(X) \otimes M_n, C(Y) \otimes M_{kn})$ be a ψ -compatible homomorphism. Assume that the hypotheses of Theorem 1.3 are fulfilled. Then the homomorphism ϕ ' that appears in the decomposition $\phi = u(\phi' \otimes id)u^*$ is ψ -compatible. This is clear from the following computation:

$$\mathbf{u} \,\, \varphi \,\, '((g \circ f) \,\, \otimes \,\, \mathbf{I}_{\mathbf{n}}) \, \mathbf{u}^* = g \,\, \otimes \,\, \mathbf{I}_{\mathbf{k}\mathbf{n}} \,\, \Rightarrow \,\, \varphi \,\, '\,\, (g \circ f) \,\, \otimes \,\, \mathbf{I}_{\mathbf{n}} = \mathbf{u}^* \, (g \otimes \, \mathbf{I}_{\mathbf{k}\mathbf{n}}) \, \mathbf{u} = g \otimes \,\, \mathbf{I}_{\mathbf{k}\mathbf{n}}$$

PROPOSITION 3.2. Assume that X and Y are connected, locally pathwise connected and that $\phi: C(X) \to C(Y) \otimes M_k$ is compatible with the k-fold covering $\psi: X \to Y$. Then there is a continuous projection valued map $p: X \to G(k,1) = P(\mathbb{C}^k)$ (the projective complex (k-1)space) such that

(27)
$$\sum_{x \in \psi^{-1}(y)} p(x) = I_k, y \in Y \quad \text{and} \quad$$

(28)
$$\phi(f)(y) = \sum_{x \in \psi^{-1}(y)} f(x)p(x) \quad f \in C(X), \quad y \in Y.$$

Proof. We shall use the notation in section 2. It follows from the condition of Ψ -compatibility that $\mathscr{Y}(\pi^{-1}(y)) \subset \Psi^{-1}(y)$, $Y \in Y$. Combining with Lemma 2.1 this shows that every subset $Y(m_1, \ldots, m_r)$ is open in Y. Since Y is connected and it is a disjoint union of such subsets we infer that Y is equal to some $Y(m_1, \ldots, m_r)$. Therefore $\pi: Z \to Y$ is a r-fold covering space. Now, since $\Psi \mathscr{Y} = \pi$ it follows from [12] that $\mathscr{Y}: Z \to X$ is a covering space. This implies r = K and we conclude that \mathscr{Y} is an isomorphism of covering spaces. Thus we may take Z = X and $\pi = \Psi$.

REMARK 3.3. It is easily seen that every projection valued continuous map $p:X \to P(\mathbb{C}^k)$ which verifies (2.7) defines a Ψ -compatible homomorphism. Under the connectedness assumptions of Proposition 3.2 it follows that Ψ -compatible homomorphisms must be isometric.

We give below some criteria for the existence of ψ -compatible homomorphism. Suppose that the cover $\psi: X \to Y$ is regular. If G denote the group of the covering automorphisms , this means that G operates \pm ransitively on fibres $\pm^{-1}(y)$ and we can recover Y from X and G as X/G. Of course $|G| = |\psi^{-1}(y)| = k$.

PROPOSITION 3.3. Suppose that G is commutative and that $H^2(Y,\mathbb{Z})$ is torsion free. Then there exists a Ψ -compatible homomorphism $\varphi \in Hom(C(X), C(X) \otimes M_k)$.

<u>Proof.</u> First we prove that for every character $\omega \in \hat{G}$ (\hat{G} =the Pontrjagin dual of G) there is a continuous function $f_{\omega}: X \to U(1)$ such that

^{. (29)} $f_{\omega}(g(x)) = \omega(g) f_{\omega}(x)$ $x \in X, g \in G$.

For $\omega \in \widehat{G}$ let us denote by $E(\omega)$ the complex line bundle over Y obtained as

$$E(\omega) = XxC/(x,\lambda)$$
 $(g(x), \omega(g)\lambda)$

It follows from Theorem $^{\circ}$ 2.6 Ch.II in [1] that the C(Y)-module of continuous linear sections in E(ω) is isomorphic to the C(Y)-module of continuous function $F:X\to\mathbb{C}$ which satisfy (28). Our aim is to find such a function which does not vanish. This is equivalent to prove that the line bundle E(ω) is trivial. If $\omega_1, \omega_2 \in G$ it is not hard to check that

$$E(\omega_1) \otimes E(\omega_2) \simeq E(\omega_1 \omega_2)$$

This isomorphism allows us to define a morphism of groups

(30)
$$\hat{G} \ni \omega \mapsto c_1(E(\omega)) \in H^2(Y, \mathbb{Z})$$

(Here $c_1(E)$ is the first Chern class of the line bundle E).

Since \hat{G} is finite and $H^2(Y,Z)$ is torsion free the above morphism must be zero. This implies that $E(\omega)$ is trivial.

Let $g:G\to B(1^2(G))\simeq M_k$ be the right regular representation ([8]). Using the first step of the proof we shall define a continuous map $u:X\to U(1^2(G))\simeq U(k)$ such that

(31)
$$u(g(x)) = g(g)u(x)$$
 $x \in X$, $g \in G$.

Let $\S(g) = \sum_{\omega \in \widehat{G}} \omega(g) p_{\omega}$ be the decomposition of ς as a direct sum of characters. Here p_{ω} is the projection on the one dimensional spectral subspace corresponding to ω . For every $\omega \in \widehat{G}$ we choose a continuous function $f_{\omega}: X \longrightarrow U(1)$ which satisfies (29) and we define

Jud 23715

(32)
$$u(x) = \sum_{\omega} f_{\omega}(x) p_{\omega}$$

It is easy to check that u verifies (34).

Let us denote by $\langle e_g : g \in G \rangle$ the projections on the subspaces $[\delta_g]$ spanned by the elements of the canonical basis $\langle \delta_g : g \in G \rangle$ of $1^2(G)$. Now we are able to define

$$\phi : C(X) \rightarrow C(X/G) \otimes B(1^2(G)) \simeq C(Y) \otimes M_k$$
 by

(33)
$$\phi(f)(\psi(x)) = u(x) * (\sum_{g \in G} f(g(x)) e_g) u(x) \quad x \in X, \quad f \in C(X).$$

The homomorphism ϕ is well defined since if $\Psi(x) = \Psi(z)$ then h(x) = z for some $h \in G$ and we have

$$u(z)*(\sum_{g} f(g(z))e_{g})u(z)=u(x)*g(h)*(\sum_{g} f(hg(x))e_{g})g(h)u(x)=$$

$$=u(x)*(\sum_{g} f(g(x))e_{g})u(x).$$

In the above computation we used (31) and $g(h) *e_g g(h) =e_{gh}$.

REMARK 3.4. The conclusion of Proposition 3.3 remains valid if we drop the assumption on $H^2(Y,Z)$ but we suppose that X is a commutative compact group and G is a finite subgroup of it which acts on X by translations. In this case the line bundle $E(\omega)$ will be trivial since every character of G may be extended to some character of X ([11]).

REMARK 3.5. Assume the hypothesis of Proposition 3.3. The action of G on X induces an action of G on the C*-algebra $C(X):g(f)(x)=f(g^{-1}(x))$. Therefore we can consider the crossed product $C(X) \times G$ and we realize it as the following subalgebra

of $C(X) \otimes B(1^2(G))$; $C(X) \times G = \langle F \in C(X) \otimes B(1^2(G)) : F(g(X)) = g(g) F(X) g(g) *, X \in X, g \in G \rangle$.

The algebra C(X) can be canonically imbedded into $C(X) \times G$ $C(X) \ni f \longmapsto j(f) \in C(X) \times G$, $j(f)(x) = \sum_{g \in G} f(g(x)) =_g$. Let $u: X \longrightarrow U(1^2(G))$ be the unitary constructed in the proof of Proposition 3.3. Identify $C(Y, M_k)$ with $\left\langle F(C(X, M_k)) : F(g(x)) = F(x), x \in X, g \in G \right\rangle$. Then the isomorphism $\Psi: C(X) \times G \to C(Y) \otimes B(1^2(G)) \simeq C(Y, M_k)$ $\Psi(F) = u*Fu$ is such that $\Psi \circ j = \varphi$ where φ is the homomorphism given by Proposition 3.3.

EXAMPLE 3.6. Let $\mathbb{P}^n = \mathbb{S}^n/\mathbb{Z}_2$ be the real n-dimensional projective space. Since $\mathbb{H}^2(\mathbb{P}^n,\mathbb{Z}) = \mathbb{Z}_2$ Proposition 3.3 doesn't apply. $(n \ge 2)$ However the following statements are true:

- a) The set of all unital *-homomorphisms $\psi: C(S^2) \to C(\mathbb{P}^2, \mathbb{M}_2)$ which are compatible with the canonical covering $S^2 \to \mathbb{P}^2$ is in bijection with the set of continuous functions $\mathbb{P}': S^2 \to S^2$ which takes antipodal points to antipodal points, i.e.
 - (34) p'(-x)=-p'(x).
- b) If n>3 do not exist homomorphisms $\phi \in \text{Hom}(C(S^n), C(p^n, M_2))$ compatible with the canonical covering $S^n \to p^n$.
- <u>Proof.</u> a) In virtue of Proposition 3.2 it is enough to consider continuous maps $p:S^2 \to P(\mathbb{C}^2)$ for which $p(x)+p(-x)=I_2$. But $P(\mathbb{C}^2)$ is homeomorphic to S^2 by a homeomorphism that sends orthogonal projections to antipodal poins. Therefore every p is given by some p' that satisfies (34).
- b) By the Theorem of Borsuk -Ulam [12] does not exist continuous maps $f:S^n \longrightarrow S^2$, n₇3 such that f(-x)=-f(x).

COROLLARY 3.7. Let n=2k+1. The homomorphisms $\phi: C(s^2, M_n) \to C(s^2, M_{2n})$ which are compatible with the covering $s^2 \to p^2$ are classified modulo a inner equivalence by the set of continuous maps $p: S^2 \to S^2$ which verify p(-x) = -p(x), $x \in S^2$.

<u>Proof.</u> Since $K^{\circ}(\mathbb{P}^2)=\mathbb{Z}_2$ we may apply Theorem 1.3. Now the assertion follows from Example 3.6 (a).

We have to mention that it was proved in [7] that all the homomorphisms $\psi: C(U(1)^2, M_n) \to C(U(1)^2, M_{nrs})$ which are compatible with the covering $U(1)^2 \ni (z_1, z_2) \mapsto (z_1^r, z_2^s) \in U(1)^2$ are inner equivalent. No general results there are known on the problem of classifying ψ -compatible homomorphisms.

REFERENCES

- 1. G.E. BREDON, Introduction to compact transformation groups

 Academic Press, New-York, London (1972).
- 2. J. BUNCE and J.DEDDENS, A family of C*-algebras related to weighted shift operators, J. Functional Analysis 19 (1975), 13-24.
- 3. E.G. EFFROS, On the structure of C*-algebras: Some old and some new problems, in Operator Algebras and Applications. Proc. Symp. Pure Math. AMS Providence RI, 1982.
- 4. F. HIRZEBRUCH, Topological Methods in algebraic geometry, Springer Verlag, New-York (1965).
- 5. D. HUSEMOLLER, Fibre -Bundles, Mc. Graw-Hill Book Company (1966).
- 6. R.V. KADISON; J.R. RINGROSE, Derivations and automorphisms of operator algebras, Commun. Math. Phys. 4 (1967) 32-63.

- 7. C. PASNICU, On certain inductive limit C*-algebras, Indiana Univ. Math. J. (to appear 1986).
- 8. G.K. PEDERSEN, C*-algebras and their Automorphism groups
 Academic-Press Inc. London (1979).
- 9. J. PHILLIPS; I. RAEBURN, Automorphisms of C*-algebras and Second Cech Cohomology, Indiana Univ. Math. J. 29 (1980), 799-822.
- 10. J. PHILLIPS. I. RAEBURN, Crossed products by locally unitary automorphism groups and principal bundles, J. Operator Theory 11 (1984), 215-241.
 - 11. L. PONTRJAGIN, Topological groups, Princeton Univ. Press, (1939).
 - 12. E.H. SPANIER, Algebraic Topology, McGraw-Hill Book Company
 New-York (1966).
 - 13. K. THOMSEN, Automorphisms of homogeneous C*-algebras (Pre-print).

Department of Mathematics
I N C R E S T
Bd. Pacii 220, 79622 Bucharest
Romania.

ADDED IN PROOF

After this work was complete, thanks to a preprint of K. Thomsen, I learn about the following reference

14. K. GROVE and G.K. PEDERSEN, Diagonalizing Matrices over C(X), J. Funct. Analysis 59, 65-89 (1984).

The problem of diagonalizing normal elements or ābelian *-subalgebras of C(Y) \otimes M $_k$ is somewhat related to the study of homomorphisms C(X) \to C(Y) \otimes M $_k$.

In this context we may infer from the results of section 2 that the various bundles that arised in [14] as obstruction to diagonalization are in fact basic constituents of homomorphisms.