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ON HOMYOMORPHISMS OF CERTAIN C*-ALGEBRAS
bv

Marius DADARLAT

The present paper deals with unital *—homomorphism5(¥:C(X)¢$ Mnﬁ
= C () @;Mkn , where X aﬂd Y are compact. Our intezest in such
‘homomorphisms arose in connection with é question bf E.§. Effres [3]
concerning the struqture of inductive limits of Ct=algebras of the
form C(X) & M.

If X=Y and k=1 we have the caée of automorohisms studied by
R.V. Kadison-J. Ringrese [L6], J. Phillins~T. Racburn [97], {10] and
K. Thomsen {423] . Also in connéction with the question of E.G. Effrés
eertain classes of *-homomorphisms related to a covering X'f—vY have
been considered by €. Pasnieu in { 71. Ouriresults comeern the situa-
tion when no connection between the spaces X and Y is imposeda angatenail

The péper consists. of ‘three sections. .In the first section we
show that under certain topological restrictions-on Y the study‘of
homomorphism Q} can be.reduced to the case when n=1i.the topologi=
cal conditions involvé that the homotopy type of Y be that of a
CW-complex of dimension < 2k and the absence of n-torsion in K°.
Section 2 provides a way for describing *—hdmomorphisms @;:C(XS»~»
ww}é(Y) @)Mk (Thmzﬁ,ﬁf course if k=1 such homomorphisms correspond
to continuous maps Y—»X. To give an idea about the additional com-
plications arising in the, case when k»1, our general result being
somewhat technical, let us consider tﬁe homogeneous case. This

means that for every yéY there is some feC(X) such that the matrix



C?(f)(y) has k distinct eigenvalues. Then 43 is completély

characterized by the following objects: -

(&15) A k=feld covering ispace N s d ==Y .
(25) A continuous map Y :2 —»X which is injéctive on each

e s w v
(3) One dimensional projections p(z) depending continuously

on zé7Z such that

| o
21”_1 p(z):Ik (Ik denotes the unit of Mk)
zer~ (v

Then (@ is given by the following formula

@ BE = 2 £0rpz), fecE), ver.
: zes | (y)- '

‘'The third section contains results concérning *~homomorphisms
compatible with the k-fold covering < :X—=¥ in the sense of

C. Pasnicu {7]. This meang that

(5) (@ ((.go\y) ® In):q ® I, forcall g.e Clu).

This property appeared as the éssential feature of the homo-

morphisms in the description of Ehe Bunce-Deddens algebras [2]

as inductive limits , ¥ —compatible homdmorphisms cén be also

viewed as a.kind of "sections? for $:X -—»Y. Mere precisely

.they make the following diagram commutative. |
L

e = == Cl e N

N ' o
C(Y)

2 where o (g)=g & Ikn and W'*(g)=Hgo¥) ® In



¢ -compatible homomorphisms are . homogeneous under natural
connectedness assumptions. Assuming n=1 a'gldbal deseription of
the structure of the % -compatible homomorphisms is provided in
Proposition32We also give certain results concerning the existence
of y —compatible maps- and discuss some examples.

For instance if G is a finite abelian group aéting ffeely
on X then the natuial injeétion CAX) e 1 X) 386G can be turn.into
a homomorphism compatible with the covering X=—» X/G provided
the crossed-product C (X) »nG ié isomorphic to some C(X/G) @)Mk.

The author thanks M. Putinar er useﬁul discussions in
connection with Lemma 1.2. Also the author is grateful to

V. Deaconu and A. Neméthi for stimulating conversations.



1. UNITAL *-HOMOMORPHISMS

We need in this section some elementéry sheaf cohomology.
It is known that every short sequence of sheaves of abelian
groups induces a long sequence- of cohomology groups ({4]),'We
may also cqnsider sheaves of nonabelian groups and homogeneous
spaces but in this case we get only a short seguence of ccho-
mological sets. We shall give some details for the convenience
efthe readen.

A sequence of pointed sets (or pointed topological spaces)
and maps

Ty . 3

(Byi)ie s (B g ) = Bl )

is called exact if the equality

=1

Py R)=F, 1 (Kye)

holds - for every i.
For an arbitrary pointed topological space (A,a) we denote
by'AC the sheaf of the germs of continuous functions from X to A.

For xe¢X we denote by (AC)X the stalk at x of the sheaf 5. ple

distinguish in (Ac)X the functien which is egual to a on a
neighborhood of x.

Teat- G besi e grotpsand et i bela cloéed subgroup of 6.
We have the following shbrt exact sequence of pointed topological

spaces

bos 1 iy 1) =2 (G 10— (G/H, (H)) ==

Recall that G acts on the homogeneous space G/H in the

canonical way g. (xH)= (gx)H.



The following sequence of sheaves is exact
(8) T —= Hcv-—-"?’ GC.,,_,,.-,;, (G/H) C_MB, 1

We mean by this that the following sequence of pointed sets

and maps is exact for every xeX

G},) =) G

(&
X )X“"‘""‘ﬁ\’ (G/H)x.w;.‘]

This is nothing more that‘the fibering levamyG/H admits con-
tinuous local sections and this is clear since H is a closed
subgroup‘of fhe Lie grbup G.

Now we can derive from (&) the'following exact sequehce

of pointed cohomological sets
(o e R HE ) o K 0 YT (% (G T S B By L ity o)

We have that H°(X,H°) is equal to C(X,H) the set  (group) of all
continuous funetions freom X to H pointed by fa1H. Similarly

Ho\(3, 0 JECRC) s pednted by f=1. and HC(x, (@@} j (X610 i=

G
pointed by thei constant funetion £ ={H). The cohemological sets

1 1

H (X,HC) and H (X,GC) are pointed by the trivial cocycles (X,1.)

A
and - 5,1
1

G) respectively ({4]). Given fe¢C(X,G/H) the cocycle

o(f)eH (X,Hc) represents the obstruction for lifting f to a

functioen in -C(X,G) . By the exactness.of (10} thesmunection . has
a1l ifking if and.enly if %(f)=(X,1H) ice. the coevele SIE) is
1

trivial Sin H (X,Hc). Furthermore the action of G on G/H induces

dnactien of the group- E(X . G). on C(X G/, Ff it €C(X,G/H)

2
then S(f1)=SKf2) if and only if f,=g-f, for seie geC (X,C).
Next, we describe the sequence in (410) in the case of the

fibering

(41) Ul s B i



where the embedding X":U(k)«%:U(kn) is given by

(1) y:U(K)sursu @ I eU(kn)= U0 @ Mn)

First we need some notation.

Let‘Vectm(Y) denote the set of isomorphism classes of com-
plex vector bundles of rank m on Yo <Ll Vectm(Y) we have one
naturally distinguished element - the class of the trivial
bundle of rank m. Let Tn(VeCtm(Y))
be the subset of Vectm(Y) consisting of classes of all vector
bundles E for which the Whitney sum wE=E @ ... @ E (n-times) is
isomorphic to thehtrivial bundle of rank mn.

L E-A fandiEB are-unital C*_aigebras‘we denote by Hom(A,B) the
set\of uhital *~homomorphisms from A to B.'Hom(A,B).is a topo-
logical space with the toéology of'péintwiSe convergence.

Two homomorphisms ¢)1,¢26qu(A,B) are said to be inner
equivalent if there is a unitary uéB such that @2:u¢Hu*. Let
Hom (A ,B)/inn be the set of classes of inner equivalent homomor-

phisms from A to B.

PROPOSLIEION | .1 . Assume that ¥ is a cdmpact space. Then

there is an exact sequence of pointed sets

| 5 :
kn)) Ly Vec#kiY)~m¢

(03 1-C(Y,U(K) »C(Y,U(kn)) 3> Hom (M_,C(Y M

i)
Y‘y Vectkn(Y)

which induces an isomorphisms

Hom(Mn,C(Y,M Y)liinn > Tn(Vectk(Y))

kn

Proof. We have the following commutative diagram of pointed

sets and maps



12 C(Y,U0(k))->C(Y,U(kn)) e n) /U(k)) é» i’ (Y,0()) }:/ H' (6510 (kn)©)
| I o }’ galie P4
7 ¥ ¥

1=C(¥,U(k) ) C(Y,U(kn)) = U (M_,C(Y,M ) wv@u @) Xl vect, ()

The vertical arrows are bijections. To describe x recall

Ehait Hom(Mn,Mkn):: Uilkn) /U(k) as topological spaees, the iso—

morphism being induced by the map N\:U(kﬁ}»quom(Mn,Mkn) given

s = ) * ol ~ # i
by 1\(V)(a) V(Ik & o, aCMn, Mkn*'Mk‘X Mn . Now gl induces a

bijection A«\*:C(Y,U(km/U(k))«»C(Y,Hom(Mn,M}'m)) and it is clear

- M ot h - .""'«‘
that C(Y,Hom(ﬂn,Mkn)).“ Hom(Mn, C(Y,Mkn)) by the mep o 4 vﬂhtah
takes the continuous function ‘?:wa%Hom(Mk,Mkn) to the homo-

morphisml011(¥)(a)(y)=¢(y)(a), e g yeY. By definition we set

o« quﬂ*' N Hom(Mn,C(Y }) we distinguish the homomorphism

' Mkn
axm?Ik<x 4. Thus o ids @ morphism of pointéd sets. The maps ﬁ'

and ’51 are the natural ones. Namely if (U ey j) iis) @ Ulk)-—coeyele
then ﬁ(Ui,gij) is the isomorphism class of the vector bundle

E obtained by clutching the brivial bundles Uika with the
transition functions (giﬁ)' R4 is defined in a similar way.

The other mapsare-defined to maké commutative the diagram. We

describe them below.

Tf weC(Y,Ulkn)) then j‘(u):Mn—;>C(Y,Mkh) is defined by

3t (u) (a) (y)=uly) (I, ® a)uly)*, aéM_  , YEY.. ihe map ¥~ #akes

the vector bundle E to the Whitney sum nE=E & ... & E.

1f ¢ {?5 Hom(M_,C(Y,M )) then %' () =8 ($,) if and
enly it 4)1 and €%2 are inner equivalent. The isomorphism class
éf the vector bundle $'(¢1)'represents the obstruection for
lifting Q}1 toan cunitary ueC(Y,U(kn)). p

We shall use the féllowing well-known resulit concerning
teiviallity of the vector bundles whiclh: is comained int L 5, €his

il e s



let E be a complex vector bundle of rank k over Y. Assume that
rg2k and that BE@oR dis trivial for some trivial vector bundle
s
F. Then E is triviallehe main result of this section is the
&

following:

PHEOREM 1. 3. Let X amd Y be compact topdlogical spaces and

let @-be agunital *-homomorphism
(s @ tC(X) @ M) —7 cly) @m, o C(Y) @M BM

Assume the following
(1) Y is homotopic equivalent with a finite CEW-complex
of dimension £ 2k.
(2) K°(Y) does not contain nontrivialAelements‘whose‘
erder: dividesin.
Then there is an unitary u&é(f,U(kn)) and an unital *-homomor-
phism é?':C(Y)»» C(Y)(X)Mk such that

(1%) ¢=u((l>‘@ idm,)u*
Vi

Proof. a) Consider first a particular case. Let us suppose

that @ acts on matrices as an amplification. That dis:
& - = 2) >y -

(46) b il DialEl gy OO0, @ - oEl,

Using (&) we get for every feC(X) and aeM,

Lt | - « :
0 e a=dE e 1P ®a) =0 @ a)d(f ® 1 )=
-1@I, ®a . (f@ I
The computation in (17) shows us that the algebra

L/

&\(C(X) @;In) lies in the relative commutant of 1 @& Ik(g)Mn in



c(Y) @ M, ®M_ , which is equal to C(Y) @ M..® T . Tt follows
that there is an unigue unital *mhomomorphismcb‘:c(x)wa»C(Y)<X?Mk
such that
(18) Qe 1 )=¢(f) @ I_
4 .
Now using again (17) we get
3 EE S e
(9 b =¢' @ iq,
: : n
b) Consider now the general case of an arbitrary homomor-
phism « Under the hipotheses 1) and 2).we shall £ind an uni-
tary ueC(Y,U(kn)) such that the homomorphism ﬁ@u_ will verify
the additional condition given in (16). Define c§16Hom(Mn,C(Y,Mkn)}

by ¢;1(a):@M1 & a), aéMn. Our problem is to find ueC(Y,U(kg)) such
that ¢, (a) (y)=uly) (I, ® a)uly)*, ye¥, aeM . \

But in virtue of Proposition.101 this can be done if and
only if the veétor bundles E:g‘(éq) is trivial. Having in mind

the: map Yy leeot

¥ k(Y)«ﬁ»VeCt

kn(Y) we define a homemerphism of
groups g':K°(Y)m» K2 () giVen'by A?'(x)=nx. The second hypothe-
sis.of the Theorem allows us to conclude thath“' is injective.
Since E@Tn(Vectk(Y)) it follows that the clés; of K-theory of

the vector bundle E 'is zero hence E becomes trivial after

summing some trivial vector bundle. Since rank(E)=k and dim(¥Y)g2k

=

Tt follows freom Temma 1.2 Fthat B dis teividl; i

REMARK 1.4. Assume k=1. Since the line bundles on Y ave

classified by the second Cech cohomology group H2(Y,Z) it feol--
lows that the conclusion of Theoréem 1.3 remains tirue if we drop'

both hypbtheses (1) and (2) but we assume that H2

(Y,2) has not
n—-torsion,

In this way we recover a result of Knus (cf.{[9])



2. THE "COVERING! ASSOCIATED WITH A *-HOMOMORPHISM

Let X and Y be compact spaces and let

j{; :C(X) = C(Y,M,)

be an unital k—homomérphism. For every yeY the map (bvzfp»(&(f)(y)
defines a *wrepresentétion efCIE s an @k,.This representation
decomposes into a direcf sum of characteré of thedl@s=algebra

el {Z{}y:m1x1+.“+mrxr where X1""’Xr are distinct points in

X and 15m1$.,.5mr are ﬁhe multiplicities with they occur as
characters in the decomposition'of @;?. Of courée'we must have.

m

o

be useful to take into consideration the spectral projections.

+...+m_=k. Let us denote by F(v) Fhe set (x1,..,,xr}. Tt will

Let G(k,j) be the space of all j-dimensional selfadjoint
. ]{ .
prejections dctingon @k and let Gk)= UGk, J) .« Then thovre are
j=1 -

p1éG(k,m1),..Q,PréG(k,mr) satisfying p1+..,+pr=In and such that
i 1 *:Ill
@9 &) =P, (£)=3] £lx;)p; , fEC(X).

Of course xi and Py depends on ye&Y and they have some continuity
properties. We try to store these properties in some constfuction.
given below. .

For 1€xgy definelYr ﬁo be the seﬁ of all ‘poimts y in ¥ such
thét card FE(yl¢r and define Y(mT,;}.,mr) to be the set of all

points.y Bn ¥ such that F(y) has exactly r elements with the
mul Bipldcitdecam o il amd By diefind Eionswe: hiowe that

: 1 i S :
(1ﬂ Y:Yk')Yk__q'p....":)Y1 and

(Kﬂ ¥ \¥ =l



LEMMA 2 1 Let yoﬁ_Y(m

S 1

.hfmr) and F(y°)=§x?,o.c,xgﬁy

Assume that VT"““’vr are disjoint neighbourhoods of the points

O & : . . :
x1,...,xi‘ Then there is an open neighbourhood V of y° such
- /

that for every yeV we have that F(y)gv1m&°.uvr and the number of

&
points fcounted with multiplicities) an F(yh\vi is egual to my

Qe e e

‘Proof. aj] There is some.open ngé such that F(y)~V1U e UM
thot there are
whenever yveV. To get a contradlctlon supposéYtwo nets (y.) and

that
(xv) indexed by the neighbourhoods of y° Suchv§$ converges to y°
and xng(yV)\4Vﬁx;.,.‘JV£). Now choose féC(X) such that £=0 on

F(y°) and f=1 on X\(V1u ...ujvr)n Since yvm%y° it follows thaﬁ
$ (£) (y,)—> $(£) (y°). But this is imposible since § (£) (y°)=0

and | ¢ (£) (v,) § 7 | £(x,)I=1 . (Recall the formula (20)).

b) Let V be the open néighbourhood of y°® found at a).

Consider.open: sets W .o oW such> that vigwi and Wi dre idig=

1’
joint. For every 1¢&ig¢r choose fiﬁC(X) such that fi=1 on Vi and

fi:O on X\Wi. Shrinking V we may suppose that
S B = T g o '
(22) I oerdE) -trd (£) () V< 1

But the functionﬁfi were choosen such that tr(?(fi)(y°)=mi and
such that tr(b(fi)(y) equals the number of points (counted with
multiplicities) i) F(Y)r\Vi- With this remark the Lemma -follows

From (29 o

Let Zé((y,x)éYxX:X@F(y)}. It follows from Lemma 2.1 that
% igclosed in ¥xX, hence Z is a compact space., Censider the
canonical projections on factors gt :Z —=>Y, o (V%) =y and

Y:72 =X, PlYy,X)=X. Define also the projection valued map



SO

p:Z2 —»G(k) by taking p(z) to be the orthogonal projection on the’

spectral space that corresponds to the character given by x=¥(z)

in the decomposition (20).

THECREM 2.2, 1) The map ¢ i7 ~» ¥ e open.
2) Y:Ykp Ykm¢?'~-'? Y1 is-a filtration:with closéed. sets.

Iy ﬁ, e e oo i
3) (ti, ; r) I >

] A% :
A) e (Em e m ) RATEE Yim, o coeym ) and
g = K sy N i i G .‘m
= (Yf\Yr“1) mm@~1r\ th_1 are covering spaces.

5)- The projection valued map p:Z2 -G (k) 18 continuous on

every foYr s

Proot. Essentially the theorem is & reformblation of
Lemma 2 o1 ‘

1) Let We Y- and U X be open.setsa Then x ((WxU)}n Z) is
open-in: Y. >Indeed i £ 4y® %) e WU A&, then by Lemma 2.1 there
is.an open set VeW, veV such that F(yv), U is nonweid for all
¥ in V. Hence V c:((WxU)mZ); '

e e

2y 1t fol lows From-3) =sinee Yf\Yr~1=UY(m1 =

3 et y°55Y(m1,..,,mr) and F(y°)=«\x$,5..,xg} . By Lemma

2.1 we can choose disjoint neighbourhoods Vfax; sadieadl e e

[e]

Vay® oven such that Fi(y) th;.aa&jvr and F(yh\Vi has exactly e

2
points (cdunted with mu}tiplicitieg}whenever yey. We praove that
VAYIQY(Mj,OO.,mr). T.f y@%er then F(y) has at most r elements.

Since each F(y}p‘Vi is nonvoid it follows that Fly) has exactly
r elements and thé multiplicitiesvare as desired. |

4) It suffices to prove.the first assertion,

\
)
ol

Let Vi be ‘as in Lemiha 2.%. By 2) every point y”@,Y(mﬁ,.‘,,m

has an open neighbourhood V .such that V/\Y”(:Y(m1,...,mr) and
4



H

ST

L8]
H

EN (V[\Yw)quhj,a.kgwr. Here W, = <VF\Yr)ﬂ<XXVi>an open
: = ; S <o e :
Sobs Iniek (Y(mq,OLh,mr}} and {Jiiwgcwi~w& V/EYT 18 continuous
- e 3 - - .

and bijective.

rid e e T
The map QﬁgwﬁﬁlS-Qpen by a similar argument to that

given at 1).

- &= 1 3 v 1
i) e (Yr\yer}' Choose open Usx® such

) kel 2=y 8

that UnBdy )=du®y . 1f fee (X} is equal to 1 on a neighbourhood

o x> and supp(£)cU then p(z)r@(f)(j§(z)) in a small enough

neighbourhood of z° in 3;ﬁ1(Y£\Y 5

= b2,

With the above notation we get the following formula for ﬁ)i

<
GA%s . Gim 2 e i
=

Note that P is injective when restricted to the fibres of =
and @ is isometric if and only if Y is onto.

BEM535“§;£° The homomorphism @»is called homogeneous if
for every Y¢Y, F(y) has k elements.

For homogeneous ﬁ) it follows from Theorem 2.2 that
RN:Z—»Y is a k~fold coveriﬁg space and that the map p(z) is
continuous on 7. Conversely if w 75V ia 3 éovering space,

% tZ ~»X is a continuous map that is injective on fibres of % and
p:Z-»wG(k,1) is continuous and verifies Eii p(z):Ik for all

‘ \ z ex (y)
yeY¥ then the formula (24) defines‘a‘ homogenedus homomorphismn.

REMARK 2.5. Suppose that Y is simply connected, ocally

e a -

: o S
pathwise connected and that € 1is homogeneous. Then it follows
from the general theory of the covering spaces (121 that

dElll-. o UV (Kevimes) Therefore there exist continuous maps



\[/J] e e “?":’,A!Y ~7 X, 7‘.‘4 : (V)/?' (Y) 5 */3‘,7 (”?7{'}) > }'! T e l‘p},.:Y et G(k,'” 3
. e S

‘:Ik such that i’{f)(y)m;§1f(%i<Y))pi(y)’ yﬁy, TEodrn

2
addition we assume that H (Y,Z)=0 then it can be shown that
there is some unitary ueC{Y,U(k)) such that pi(y):'
&

=ulyip, (voluly), ve¥, i=t, ..k, for some fixed v oY Therefore

SRS

we get the following formula

(22l © (B@=uy) 5 ) x, Feol), yev.

' 5 2 e ; j :
9 £lp dyh)

Consequently, under the previous assumptions, the homogeneous

homomorphisms are classified modulo a inner equivalence by the

set {f1,...,%k}. Tonsketen a 'proof et l=U(l)xs: 2Uil] )= be the

maximal torus of Ulk):. The fibration

(26) B ele Uk) e s U T

induces an: exact sequence of pointed cohonological sets

A

C(X,T) — C(T,U(k)) —> C(Y,U(k)/T) s H1 (Y,TC)

- k
since BY (v, T%) =@ 5 (v,uM )= ®=H
i=1 i=1

2(Y,E):O'(see 141) we get

that 3 =0 and so every continuous map ¥ :¥ —= U(k) /T can be
liftedsito a function: i CEY,Ulk)).: et - Nibe:the épace of all

k-uples (qq,.;a,qk) of one dimensional projections acting on .
k

c q1+.,.+qk=1k. U(k) operates transitively on N by the formula

U{khvu;~§(up1(y°)u*,,ﬂ.,upk(u°)u*),'y%;Y is fixed. Since the

corresponding stabilizer ig T it follows that N is homeomorphic -



.(,

to U(k)/T. Thus the map %“i‘ : .),,ee,pk(y)) can-be lifted £o

& continuous map -ueC (¥, U(k)) .

3. HOMOMORPHISMS COMPATIBLE WITH A COVERING

Lek ﬁﬁ:X‘W9Y be:a k-fold. covering space and A, B be unital
£*-algebras. A homomorphism i; cHom (& {X)aﬁ A C(Y)f@ B) is called
compatible with the covering ¥ or Y-compatible if

¢ (9ot @ 1,

&):gfﬁ Tp for all geCc(¥). ( seel?l ). In this section

we consider only the case A:Mn 7 BZMkh’

REMARK -3 .. 1. Let 3( Hom(C(X) @ M , Clv) & M. ) be a ¥ -com- *°
n kn

patible homomorphism. Assume that the hypotheses of Theorem i.3
are fulfilled. Then the homomorphism i@' that appears in the

e ! | e T : e
decomposition q¥=u(qﬁ @ id)u* isY -tompatible, This is clear

from the following computation:

LhUGT) @I Pur=g @ L = @' (geF) @ LA (@ T, Jug @ I,

kn

PROPOSITION 3.2. Assume that X and Y are connected, locally

pathwise connected and that @):C(X)mﬁ'C(Y) @)Mk is compatible
with the k~fold Covéring W :X —~»VY. Then there is & continuous

k
)

projection valued map p:X~m§G(k,1)ﬁ P(€ (the projective com~

plex‘xqsp wce) such that

i . '
g et plegl=l o eV and
< T
(23) G = B fxpx)  feCcm), vey.



Proof. We shall use the notation in section 2. It follows
' : s . Bl ' o =1 s
from the condition of ¥ ~compatibility that Y (x (v)) W 1(y)

veY. Combining with Lemma 2.1 this shows that every subset

Y(m,,...,m_}) is open in Y. Since Y is connected and it is a.

1 iz

disjoint union of guchvsubsets we infer that Y is egual to some
Y(mq,oa.,mrj, Therefore. ¥ 27 wu¥ fs-a fwfold covering spaée‘
Now, since ¥¥ = x it follows from [4%] that ¥ :Z2-——» X is a
covering space. This implieé r=K and we conclude that Y is an

isomorphism of covering spaces. Thus we may take Z=X and & =% .

REMARK 3.3. It is easily seen that every projection valued
k

continuous map p:X—wa(C } which %erifies (Zs)defines a
%’wcompaﬁible homomorphism: Under the ccnnéctedness'assumptions
of Proposition 3.2 it follows that W.~compatible homomorphisms
must be isometric.

We give below some criteria for the existence of Y ~compa=
tiblevhomomorphism. Suppose that the cover ¥ X =Y s regular.
11 G denote the group of the covering auto}ﬁorphisms o thig
means that G operates +fransitively on fibres %’"1(y) and we

cam recover Y from X and G as ¥/c. Of course | @Gl= Pvmq(yﬂ =k.

PROPOSITION 3.3. Suppose that G is commutative -and that

HZ(Y,Z) is torsion free. Then there exists a ¥ —-compatible

L

homomorphism Q>GHom(C(X), C(X%). @ My

: Py
Proof. First we prove that for every character (eG

N
(G=the Pontrjagin dual of G) there is a continuous function

E X =2 Ul1) such that

(2-9) fo(9(x)) =d(g) £ (x) xeX, geG .

r



- ’]7 25

k ”~
For aleG lebius denote by E(w) the complex line bundle

over-Y - obtained as
E () =Xx€/ (x,h) (g(x), w(g)\)

It follows from Theorem®2.6 Ch,IT in [1 1 that the C(Y)-module
of continuons linear_sections in Bld)-is isomorphic to the C(y)-
-module of continuous function f:X —» € which sétisfy (24). Our
almais ate Eindisuehss funétion which dées not wvanish. ‘This ig
equivalent to prove that the line bundle E (w) is trivial.

T Q}T,CQZ(QG it is not hard to check that
E(Q.H) ® & (c;gz):z E(m?@zz)

This isomorphism allows us to define -a morphism of groups

A

() Gow i c (E))e 1 (Y,2)

1

(Here ¢. (B) is the: first Chern elass of the line bundle E).

|
Since G is fimite and HZ(Y,Z)sis torsion free the above

morphism must be zero. This implies that E(w) is trivial.

Let ¢ HE«W-B(lZ(G)):z My be the rf%%t.vegmiar representa-,
tion (E8]). Using the f£irst step of the proof we shall define a
: 5 ;

continuous map u:X —=U(Ll"(G) )= U(k) such: that

Let . R.(g)- Ezca(g)p be the decomposition of ¢ a5

W w .
direct sum of characters. Here P is the projection on the
one dimensional spectral subspace corresponding to & . For

A : : : e
every weG we choose a continuous function fU):X-m¢U(1) which

satisfies (28) and we define

| )*wwﬁ 3
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It is easy to check that u verifies (34) .
: : ; { . : : :
Let us denote by {eng'gG Ioknesproiecticnsion the sub-
spaces }Eﬂcé spanned by the elements of the canonical basis
L9 g

{"ﬁg:g@G§ OF lZ(G)a Now we are able to define

G :cx) - cix/6) @ BI12(G)) & c(v) ® B by
(232) O (£) (¥(x)) =u(x) * (D F(g(x))e Julx)  xex, fec(x).
geG

The homomorphism ¢ is well defined since if e = (z) then

hiss) =z £0r sene he G and we have

g ;" g
=u(x)* 2 f(g(x))e )u(x)
g g

In the above computation we used (384 ) and Q(h)*eng(h)zeqh
) : ; : ]
REMARK 3.4. The conclusion of Proposition 2 8 remaine val i

2

if we drop the'assumption on H”(Y,Z) but we suppose that X is a
commutative compact group and G is a finite subegreoup of “it which
acts on X by translations. In this case the line bundle E (w)

will be trivial since every character of G may be extended to

somescharacter of - F 11,

REMARK' 3.5. Assume the hypothesis of Proposition 3.3. The

detien of G on X dinduces an gction of 6 on ihe C*-algebra

1

C(X):g(F}(x):f(g“ (%)) . Therefore we can consider the crossed

product C(X)xG and we realize it as the following subalgebra
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@ @) gvB(l”(ﬁ)):C(X)mG:{FéC(Y) @ Bl (G)):Elglx)) =

Ly

(9)F(x) p(g)*, XEX, geG}.

The algebra C(X) can be canonicall? imbedded into C(X) »G
C@laf e dttleCag, J(f)iixr= 2 Llglxl)e . Let X —>U(1%(6))
e : :

be the wunitary comstructed in the proof '6f Proposition 3.3.
Identify C(Y,M,) with { FEC3, 2 ) +Plgie) J=E (), e, gec )

: 2o :
Then the isomorphism %~:C(X}xGa%rC(Y)(§}B(l (G}):ﬁC(Y,Mk)
Al

Y (B)=u?By i3 such that’?°j=¢3 where @: is the homomorphism. given

bye Propogition 3.3,

EXAMPLE 3.6. Let fn:sn/z?

,Z‘)=Z’2 PrOposition 3.3 doesn't apply,{fugz}

be the real n~dimensional projec-

Eive space, Since_H2(1?n

However the following statements are true:

2 .

~ @) Thesset of sall- uhital *—homomorphisms @-:C(S )~ C(P" ,M

o)
2

which are compatible with the canonical covering Sz~w el e g

bijection with the set of continuous functions P':SZ—MvS2 which

takes antipedal points.te antipodal points, i.e.

B pllxi=-p'ix)

b) if nz3 do not exist homomorphisms (&gHom(C{Sn), C(EH,MZ))

. ; : : n n
compatible with the canonical covering S — P

Proof. a) In-virtue of Propesitieon 3.2 it et cnough teo

consider continuous maps p:S2ww»P(€2)..for which p(x)+p(~x)=12°
But P(@z) is homeomorphic to 82 by.a homeomorphism thaﬁ sends
orthogonal projections to antipodal poins. Therefore every
p is given by some p' that satisfies (24).

b) By the Theorem of Borsuk.wﬁlam {12] does not

St . < 0 2 .
ex'rst continuous maps f:8 —» 5%, n@et such that el =w)i==f (x).

/A
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COROLLARY 3.7. Let n=2k+1. The homomorphisms CQ:C(S ,Mn)m%
e i - o . 5 2
(08 ’M?n) whieh are compatible with the Cover ing & ~-s P° are

classified modulo a inner equivalence by the set of continuous
£ (12 rﬂ(?‘ - g o < e (-‘2
mapsp:S =2 5 which verify pl-x)=-pix), %X£5°.

e : = 2. = ;
Proof. Since K2 (P 4:22 we may apply Theorem 1.3. Now the

agsertion follows from Example 3.6 (a).

We have to mention that it was proved in gl-that all the

homomorphisms %, Sercig 2 Mﬁ)ww C(U(T}z,Mnrh) which are compati-

S
: o - 2 = goms 2 ;
ble with the covering U(1) ;;(21,42)pm?(21,22)élj(1) are inner
equivalent. No general results there are known on the problem of

classifying ¥ -compatible homomorphisms.
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ADDED IN PROOF

After this work was complete, thanks to a preprint of
K. Thomsen, I learn aboutbthe following referénce
14. : K. GROVE and‘G.K. PEDERSEN, Diagonalizing Matrices
» over C(X), ﬁ, Funct.Analysis_59, 65-89 (1984).

The problem of diagonalizing normal elements or 3belian
*—subglgebras @F @) @)Mk is somewhat related to the study of
homoﬁorphisms C(X) —»C(Y) ®7Mk.
| In this context we may infér from the results of section
2 that the various bundles thét arised in (14] as obstruction to

diagonalization are in fact basic constituents of homomorphisms.



