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MATRIX OPERATORS AND BYPERINVARIANT SUBSPACES
by

F. RADULESCU and F.-H. VASILESCU
0. ABSTRACT

InsEhas papel we study the decomposability of some matrix
operators as well as other sp901a1 propextlea of theirs. These
matrix operators are derived from non-—-analytic functional Cdlculi‘
As by-products, we obtain statemenis conéerning the existence

of (non-trivial) hyperinvariant subspaces.

1. :INTRODUCTION

Let X be a complex Banach space and let F(X) be the aiéiﬂ
of all bounded linear operators acting on K. Eor each 8 & Z(X)
we denote by ¢’(S) its spectrum.

Let us fix an integer n > 1 and let us denote by x™ the Banach

; 2,0 : .
space X @...0 X(n times). Every operator T & Lx?) can be

°
.

represénted as a matrix (T.k)n - owhere T‘k (= éf(X) for eagh
% j’k—.’l J #
paif of indices ﬁ,k. We sha]l sthdy in the sequel a class of

0
oporators T & &£

(X 5 with ihe prupertv Lhat the operdtoz< Tjk
from the matrix representation of T mutually commutc. To. present
LhJs CldSo, we need somne preliminaries.

Let L) be a compact £opoloqical sSpace, set el 1 be Lhe
algebra of all comp}oxwvalued continuoﬁs functions: on LL and

Tet N ool ) be -a ( not nOCO)JerlY closed) subalgebra. e

recall that A is said to be notmal if for every open CoMeb



ctions f1"'“’fm
/‘\) =
fm(( .

RSN

QG'\"

in A guch th

positive fun

G } of [F there
and 8t e

supp (fp)cﬁ Gp(p=1,.
1.6 R lEhe

, 1)

at
£ -the

e

. [ ] 2
a1l e & in particular, positivity o
fynctions fi,.°a,fm sl i play 10 role in what follows) -

ok

EEE DEFINITIQN. Foxr an algebra Do Gl We shall consider

the following properties:
»
gebra;

(1) & Joe normw]'al
(iif for every pair £ hér A such that supp(h)62'{5&€§.§L:f(ad)#03
the funcﬁion o H»ll(a))/f(cd Yot extended wzth;zero outside the
s oy

Jo lanselens
s the inclusion

set supf) (h) «
) algebra gtructure which make

Eiidd) A has a Banac
(il_)'continuous.
Qinning of each section which of

paEC
ate at the be

We shall indic

otheses on the algebra

oing to be used.

5 are 9
k)] and (111).

these hyp
It is plain that c(LL) has the plopertnes (1),
osure of a ralatively compact open subset of I

el
functiOns

then the algebra et ) of 211 p-tame
whose partial de

A%k 0 isathe
4ifferentiable
in the interiox of LXx rivatives MP to order
ensions to ﬁ1~,falso has the propefties.(i)
‘ amples_'

e continuous axt
1ficant eXx

o hav
t,the most sign

=4 and (Heded)e These are; in fac

that we have in mind.
~bitrary commutatave unltal algébra,_we denote

If A .is an ar
elements

se: entrles are
a5 an p -rodule .

matrlces who

by M (A) the alqebfa e e
will sometjmes be 1eqa1ded

e algebra N (A)
£ ces a unlgal

of A- Th
“pEvery unital algebra mo:phl%m & b c,(X)'indu
~algebra mQrphism Cﬁ’n: M (A)~wwvgf(i g defined by the equalilty
¥ , where ol = ( ©O%. e e M (R).
ik 3 k=1 n

P - ! D ( oty ))
- JE gke]
. 9. DEFINITION. Let A & c(.6L) be an algebra with the
i e e ;-ﬁ
(i) and (i) from Definition 1 ahn operator AL t:éﬁ(k)
Stbssa unital algebra

')]fO‘)C]?'tiGS
I
S S N théLG exis
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morphism <P : A — Z(X) and an element T & Mn (A) such that

e CER S
: n

This . concept extends the concept of n-snectral onerator,
introduced “in [ 8] , which in turn extends that of n-normal
gperator [6] . when A is an admissible aldgebria, then Definition
1.2 also provides an extension of the concept of A-scalar operator
el

One-of the main purposes of this paper is to prove that every

(A,n)~scalar operator is. decomposable (details concerning:

. ‘decomposable operators can. be found in Lal or faaal s pe-a

matter of fact, we shall prove a stronger result., Specifically,

we shall show that if { Ul’ Uz} is an onen cover of G (), wkEhen

: there exists an operator R & ;f(Xn) such that RT=2TR,

6 (T 1R(Xn))C:Ea.and gl ! = R)(Xn))CZI% (where 1 is
the ideniity of‘Xn; we use the same notation for the identity of
Mn(A)). With the terminology of [7] i we therefore show that
every (A,n)-scalar operator is suner-decomposable (see-ThedremiLg)h
The decomposability of an  (A;n)=-scalatr operator T & ;f(xn)

can be used to derive the existence of a proper hyperinvariant

subspace (i.e. invariant under each operator commutina With:=T),

‘when o(T) ceontains at least two points. This explaine one of

the main results of [8 ] (which is also ‘extended by our Corollary
3.6}
+ By analyzipg the i specirum of an (A,n)-scalar operator T

(Theorem 4.6 ), we shall obtain the existence of hymnerinvariant
r _ = e

subspaces of T, even if 6~(T) contains only one point, provided

“Mods not @ multiple of the identity, i.e. a complebe extéension

of Theorem:5.3 from EG] (see Corollary 4.8).
In connection with this subject, we also refer to [5] : [9]
and L10 ]. Unlike in most of these works, we shall not use the

copcept of spectral measure (or related notions).

5 We can apply our methods to a large enough class of matrix
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operators, including matrices of generalized scalar operators

given by a spectral distribution [4] =

2+ A-SPECTRAL CAPACILY

Let B C @05 ) be a normal algebrac e alsc iy a tnital

algebra morphism. <p : A —» 2

X) and denote by <p_ the
&) ) an enote by ‘qpn the

corresponding morphism of Mn(A) into Qﬁxn) induced by P.

a8

Since a matrix & =( jk)n GE:MH(A) can be regarded
: =
a8 a Function ol :_jl_—wwmn(where M = Mn(¢)CZ Mn(AD, the- notation
e n
o () = ocjk(cu e tw e 2 ) and supp (ed ) mekes
: j,k=1"

sense. Méreover, supp (et oL et e supp Ceet) L supp (el )
for eoch pair- ot ;U’ éEMn(A). }

For every f & A we denote by SKf)EE:Mn(Af the matrix

S'(f) e E;jkf)? » vilhiere gjk is £hé Kronecker symbol. Notice
that & Lesoin f;ét:i unital aléebra morphism of A into Mn(A)
and that §(n) is in the center of MH(A).

The set supp( %?) (1se. the suppcat of é& ) is-defined aé the
intersection of'all-closed sebs P (). such that é@(f) = 0
whenever supp (f) < L2\ F(feglA).‘The set'supp ( ﬁ@)n)~is
defined in a similar way° Tt is easil§ seecn that supp ( @;n)sﬁxp(ﬁi
(Note that supp ( < )='LJ{supp( O<jk>:l ke é:rx} for each -

ot = Oij)“ = A,

j, k=1 : : e N
2.3 PROPOSITION, For every closed set F.c (k. we define the

Sphace:.

e S v

@) = O (sl o)) sampplu) iR g}

Then the assignment F M>X2?(F) is a spectral cavacity F2l [11] ,,

PROOF. We follow some lines from the proof of Theorem IV.7.3

in [11] (see also Pl
It is plain that XQE(F) is a closed linear subspace of St

The fact that X (@) = {0} , Xl y =X and 4l
’ J :

n Feitaan), - ;
: o A : sHevers R ic T eR & Y eas: SE 3
X?%(ll)C“ XQP(FZ) whenever ll( Py can be(clqlly seen



e
e ‘{Gl,,..,Gm'% be an open -cover of Ll . Sinece A is

normal, we can find functions fl"""fm n A suchs that

supp (£ 0 Vlp=l, . mladEr,, o+ = 1, Tetk = )
supp(fp)C“ Lp (p=1Liy ... m)and £ b 1. Let oip g(fp),

therefore supp ( o e anet el e ] It‘is then clear
: s P P L m n

that

n (S n n
=2 e t.eot P O( G e
i 1n( 1)‘ X et C.Pn( X)X

We have only to note that

=, Beosson il
ﬁ%n( 0<p)X G X cqj:,(sgppg ocp))(; xc?(Gp)
for every p,.and therefore
D e i o I
eddsn e = X [Cold., °+X<®(Gm)'
Now, let {F? }3=€£ = be an arbitrary family of closed

subsets: of (). We shall prove that

Gl 4 = w0
' el e <
Since the mapping F‘#?Xzi(F) is incteasinq, it suffices to

prove that the right hand side of (2.3) is contained in the left

hand side. Let x & XZ@(F%, orersall 2‘e£,r1 and let
i = ‘( . . . - c; : : = 7 ~ i e
0 A L B b § & r1} . Let also o« & M (A) be such that
sﬁpp el )y Ay FO = (. Since Supp'((x ) is compact, we can choose

open sets Hq = J?_\\ F# (g =1,...,7) SUcH that
: : 9
supp (¢ )} B .. L . IE Hy

functions hO’hl"°"hr in-Asuch that hO + hl +...F hr =1

den hah cr 0 S L = S(h)&E M (n).
an 1pp ( q) 5 (q Jﬂq o n.

= _0 \\'supp(:0<5 > there are

Then
- < = C: s i > ik =) i 3 % 52 Y "
gpn(c/\)“ }?n( o /7’0) 3 "In(v <></51) Mhe st C:f'n( ocﬁr)x 4

Sifce supp-fed ) supp(Jﬂ;O) = @ and supp ( o4 jkcj)/ﬁ qu = 0

(L Loga 1) we-have Q?H(.(Xl/Bq'X:O for all g = 0.1, cii;X.
Consequently €Po (8¢ )x = 0, so that x ls contained in the

n

left hand side of (2.3). The proof of Proposition 2.1 is comlete-.
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9. 9. COROLLARY. Tet f& A be uch L]at cuno (£) N sunp é@

ST e P VT ey,

ey e

PROOF. Consider first a closed subgset F & ) duch +that 1f

h &€ A _and supp(h) NF=§, then b (h) = O In this case we must
have X . (Fl = Xn, by (2.1): Indeed, 4 f o = Mn(A) and
z ok s : . 3

: ES ;
supp [ 8¢ ) A F={, then C;%?n(oé) = 0 Ao ker @?n(<x s

Mowee Lot LB L o be the family of all closed

subsets of 2 sharing the proverty of F. Then
N { FX ope ok } = gupp ( éb) = Si§ce supp { e supp(@?):@ ;

it follows: that

Kew b SV X tsuph ()] = =
. . ' yepod A

by (2.3) and the first part of the proof. Consequently é@(f) = 0.

2:3. CORDLLARY. For evegy-closed “F — () we have the equality

X () = X5 (B A supp(p))

<O
=

PROOF. As we have noted in the,proofvof Corollery 2.2,

n o T e 11 mi s =
XéJoupp( ep ol X . Therefore

i)

K (B} = " A X% (F) = X (P N supp| $)),
By A2 o)

2.4. REMARK. We have not used So'far the fact that-the
functions of A are continuous. A - .

A supplementary condition on the alqebfa'A C;C(.CL) makes the
mappinﬁ @?n : Mn(A)~w%% ;f(xn)-injective on its supnort.

2.5 LEMMA. Assume that the d]d@b?d A al 0 has Lhc nronertv

iz AT RV

(34) f:qmrDef££}tigp Tl If é@ () =0 £03 some’ 0(6:.Mn(A);
£hen o (o) ).¥ 6 for every o) éismun)(éﬁ),

PROOF. Note Firvel thar if PE =0 torsoue E e B, then
flw ) =0 for every o e qupb( e )

Indeed, if h &A is such that supn (h)c G= {WGEJQ,«E(QJ) ¢‘O}‘
then'the extension hl ofathe functién w ww-h Y bélénds

to A and we have ﬂ?(h) = é@(hi) Jo'(g) =0. Therefore sumvkﬁ)m(kﬁf



)ﬁ
3 k=1

Ném,, 5 Cf)n( ot) = 0 and & = ( o 5k then

'4@( OCjk) = 0 for each pair (3.k). By the praviou$ remark, 1t
follow that ©o¢(< ).= 0 for all ©& & supp(<p ).

3. DECOMPOSABRILITY

In-this section A will be a subalgabra: of C(SL) wiéh'.
‘.th& properties (i) aﬁd (31) frem Defipnltion 1,00 1ctE P A —> ;fﬂﬂ»
be a Sl ed onital algebra morphism, _‘ :

We also fix an element ¥C = qjjk)éﬁ e;Mn(é). Let

. : : i k=1
e ?Pn( T ) & éf(xn), i,e. T is (A,n)=scalar. From the defining

velatien (2.1), it follows easily that T XZP(F)CI XE@(F) for all
closed subsets FC () .

3.1, LEMMA . For evaery closed FC () we have the inclusion

e | - '
s“(rl x%j(}:)) i .) o _C(a).))_
WeF

and the set from the right hand side is closed.

PROOF. We use the straightforward equality

& (T W= { e detiz 1 SrL et S He O

where "det" stands for determinant. It is also an elementary fact

the existence of a matrix zj(z)éz Mn(A) such that

(3.5) (é lﬁw RO, T?ﬁ(z) = Tjﬁ(z)(zlnw 7;):'.8 (det(zln" f?))

for esach z < (.
- Now, let z& ¢ be such that dat(zln - O (e )0 for all

W & F, We take a function h & A such that hzi in a neighbourhood

of F and

supp () © {we O ¢ seriam - T (o))t

©

" gince det{zl =~ T )& A and A has the property (id) from



-7

Definition 1.1, the function g(w ) = h { 93)(det(zln - T {w))
(equal to zero outside the set supp(h)) is an element of A, From

(3.1) we deduce that

bal s =om) gy Lol R lgw a0 P (5 M),

&n

$a

As we have supp(l-h) N F = @, it is clear that <E>n( S (h)) % B

: : Sy i
is the identity on Xé&(]) Th>r“forﬁ

: ' ' -1 ; = = ety > wl
P g G | = bl om ] X

o o(z | X3 (). , v

Finally, 1 £ det(21n~_13(cu ¥y £ .0 fer-all ¥ e K, then
there exis ts a2 neighbkourhood V of z such that 41 weEiV)"theﬂ
det(wl_ - T e )k torall e B .

Consequantiy, the sat U {G“k T ha)) 2 & & F} is closead,

3.2. REMARK, The inclusion in the statement of Lemma 2.l
can ke written as
n = : : - ‘
el ol X (B & {6"("(?_(60)): w & F /O osuppl<p ) .
op :

giatergllnry 2.3,

3,3. LEMMA. Let L ¢ be a closed subset and =t
gy = {we O o (T(ONNLES] .

Then f(L) is a compact subset of () with the property that

D

: .6"('1‘ ! Xndjj(F)) N L = ,@"wh never 6Ly NTF = Q),n > clos sed “}3: ,_Q~ <

PROOF.. If cf BiL), ehen ol E [ o0 I OL = 7,

Thus , by the upper semicontinulty of the spectrum, there exists

a naighbourhood‘wo of a)d such that ¢ ( T(w))NL-= /)
for each w & W,. Hence 0 N8 is open.

Now, let P = T () be such that gy eE = 9. IE 7

' : : - n
werda point of G(r_] e

(ij)) /YL, then, by vizEussof Lemma 3.1,



o B

there would exists a point o & T such that z & Lps R E N

Therefore @ e Oy T, which contradicts the cholce of F,

3.4. LEMMA, The operator T satisfies the condition /> of

o5

PROC Fe‘Wa,hava +o show that if U & ¢ is an llltf} open
r{‘ ot e = ey A n 5 £ i
. sat and 1 9 is a sequence of ¥ =-valued functions,
3 . . b
analytic in U , such that (Zln g T)qp(Z)w» 0 (p —»e2) uniformly
on the compact subsets of ©y , then it follows that gp(a)w% 0.
(p-w» oo) unﬁloymlv on LhO compact subse tssof 1.
Let {Tgp } ol e a sequence as akove and let A
be a fixed closed disc. Let us show that qp(z)w» 0 (p—> o0 )

uniformly on Al

We consider the set 6O( A )y« O (defined in Lemma 3.3)
and fix a point ‘a)o e o Ly Lk DOC:.BO € A ibe an open
disc containing A and leb VO < § an open set such that
D =il 0 1 J W, whieh is ob
DO el 0 = and G ( i O))Ci'. DO ke g¢ Which ? obvious Iy

‘possible. By the upper seamicontinuity of the spectrum, we infer

the existence of an open neighbourhood WO (o aJO in _51._such that

is W e Wy then one has s e G Dot VO. This
fo cedire can be applied to any point @ of Bt A by the
compactness of A dhenma3a0) e obtain ‘a finite open’
covvy_‘{‘fl,,,b,w } of B A 15 open discs: D 1 et Dm e

whosa:closures aye in U and open sets Vl,aon,v in  such that
3 5 A B AV =8 md o (7w )c b UV for ever ]
q L e (T () a5 -

e W (6= 1,00.,m)e Lot W O N B, e take the

ot 1

‘unctions el 3 A -such that ,.;+~ 4 =
functions hl' ’hm’ hm+1 from uch <§ h hm hm+l

1
and supp (hﬁ)<” w (c 1,...,m+1). Then consider the matrices
- & 3

ol o= Sﬁ(h Yo Nebe Ehat
q g9

=2 n :
P (ot Yg {2 & xolsupp { o V) a=ly.acilyntl,

n g : :t ' q

dme thatse ol (supp( oiq))iiﬁﬁa leq(q =4 oo oml, Sknce



'_ﬁq,ﬁ V- = .ff, we can take another open disc [t%?)Dq in U such that

I
Ryt 1 L . ~ e e -~y P SN -~ R w‘n
D(} ‘/\Vq = Al & gt m) . Note that the operator (z.ln T) ‘ A

(supp ( ¢ )}) is invertible for ze& D’ \D_ and that P ( oc¢ )
3 g g n
commutes with T. Therefore the sequence .ébﬂ(cxiq)gp(z)*% 4]
(p—» @ ) uniformly on the compact subsets of'Dg\\hﬁqu By the
. )y S = i ] <

T 7
maximum principle, we deduce that ?Pn( o< Vg (2) =0 (p —» @0

: TP
uniformly on‘DG, in-varticular on A p for . every g=l,..3Mm,

From Lemma 3.3 we obtain that

(T \ Xzﬁ(supp( o Vil =

1

Hence @F q)gp(i)ma 0 (p—> o) uniformly’'on A , and

m+ .

therefore

Yg (2)—> 0 (p —=0o0)

Sl e (™. : Z CT
g (z)= Cib ( c><l>gp(4)“““°+ s 5

unifcrmly for z.e T
The . general assertion now follows by convering an arbitrars
conpact snbget Lo -0 with a finite number of closed discs and

applying the previous argument to each of these discs.

ta

Since T satisfies the condition Jﬂ , then T has the
single valued extension property. Particularly, we can speak abtout

the spectral spaces

(e ) = {rexs ’y,ll(x)r }

where L. ¢ is an arbitrary closed set and . —yT(x) is the local

spectrunof T at X (see ba | oor [ll] for details). In addition,
N Ay *.3‘ ’n‘

th(a space :\T

condition Jﬁ ¥ %

(L) is closed (which is an easy consequence of the

(L) is invariant under every op rator that

commutes with T(i.e. kT(L)-ls hyperinvariant) and

T\x

i g Al [10 ] )y

©

3.5., LEMMA, The operator T 'is decomposable,.

P}OO PR {Ul’ U?}' be an open cover of ¢, and let
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1
us fix'a point a)()éi_j]~ . Then we can.choose two open sets V
2 - . 1 2
and VO in € such that @Gl o e O))CZ.VO x/ve, VOC,U (cr=1,2)
il et : ; e
and Vg N Vy = . Let WOCwmfld be an open set that W & WO
implies ol e Eeena g Vé W/ VOn Since L) is compact, the
previous remaxk ﬁhOWS that we can find.an open coyer {Wl'°ffkwmj'
of L) ang open sets { vg 1€ p< m, g=1,2 } in ¢ such that
6] e =2 :
(@l Vit AV =g
e e p 2
..... : : ,.?
(B) @ & W s cr('t:(w))cv Uy
P >'- p p-

for aklp = 1,0 and a.= 12

(b) we deduce that

.

mee (T A ._"A—

P

"Therefore

AL ms N =l =2
ké@(Y%Q 45 Xep (vp LJ\%J

From Lemma 3.1 .a

nd the property

(T (W)} T T
P P

by the fact that the space from the right hand side 1s spectral

magimal T4l L i1] . Let us

Hi =] =2 n
J = i
(3.2 XT(vp ot \p) . Xep

which. follows from (a), the de

respect to separate parts
‘Theorem IIT 3.11) and the
maximal.

According to (252)

ﬁrite that .
X = Yo oW = 2ot
Jlo e noo e

also note

composition of the space with
Faot that-all involVed spaces

and the

the decomposition

el -
() L xn iy

of the spectrum (see, for insLdnco, fll) ;

pectral

above conqid 2yations, we can

m- n. =2
xT(v ) + Lo XT(VD) o
pe=l :



S

-

which proves the decomposability of T, by virtue of Theorem IV,
¥ I Y )

b2t from- 1l

3.6 COROLLEARY. IFf oT) containg more than one point

2

5t _one proper hyperinvariant subspace.

/ or st

fact is well known In the theory of decomposable
operators and is based oh the existence of a compact subset

E. 0 (T} such that XT(L) is neither zero nor the whole space. As
we have already m@ntiémed; X (L) 18 a hyperinvériamt subspace

ef T o S : ; x

3,7. REMARK, If A = C(J?_§ and & is obtained via a
spectral‘ﬁeasure om0 oothen i dhe operator T is n-spectral [8] :
£ AG(T) conﬁains more than one point, then"T haé a proper
hyperinvariant subspace, as proved in [8] .. Consequently,

Corollary 3.6 provides an extension of this result,

3.8, THEOREM., Every (A,n)-scalar oberator is super-

decomposable,

PROOF. We use the notation &nd the considerations from
the proof of Lemma 3,5.

Let { fl,aﬁc,f C A be such that. f

ik vl and
m X

1 m

supp(fp)CZ Wp (PRl cvipile 2 Let - 8ls0 Qg be the spectral projection

o S R LN D e
of the space Ko (&D LJVh) onto X, (V%)_(qz,,?; el o ), which

is obtained from the decomposition (3.3), via the analytic
n
T

? o 5 . . : =i -2
functional calculus of the restriction of Totg X <\Z>kJV%) (see

[ Wl Theorem I1II,3.11). Since
n

b F ,h LS <SG e s o
2l (lp) S S e XCEJ (..,upp(ip)) > X (Hp) < }\T(VPUVQ) ’

we may define the operators

m : - :
R.o= 3 b e S o fp e sl ko



It 1s ‘straighforward that R + R, = 1 _..Moreover,

1 2 n
L g4 5 '
phe a1y ; LG 4 = =
IR, = T e G5 2 (£0))

i 3 %
= 3 O Tuatb ol 5 LE )y =,

since every operator commutes with its analytic functional calcul:

and S(fp) is in the center of M (B).

. s S BTSRRR . :
In particular, the space Rq(x ) is invariant under T

To end the proof-that T is super-decomposable, it remains

ey

to show that o (T Rq(x_“)) C.:'tT.q (q=1,2).

1

Let » ngU. We choose two openAsetsAU& and UL’ such

i ey TY RS B N et B o ¢ P i
that Uil » 7 & e, 0 U g and Ul U Ug ¢. Then

] : q
A= ol I T m.ot - i i o B e
X oomX A0 + X ATy gines 0 4e decomposable (Lemma 3.5). If
s @ G o RS . -
= 5

‘ . - , : R eas
K& N s oa fiwed vector, then x = x! & x'! whsve «' = h%(ué) and
s 3

it

= |
x'' < x,

P(U’é). Note that qu" 0. Indeed, on one hang,

Ry g n e e
R, Z::’ X B e Xp (U)o

which shows that 'XT(RQ x”)cj—ﬁq, by (3,2)a On the other hand,

‘c" ‘_1 e T T L s bh - AR 0P KT A ’

since x''& XT(; q)’ then %,T(Rqﬁ ).c ) T(%‘ 7 e U,q [q]

Therefore 3*1(R x'') = @, so that R %'’ = 0 because of the
Tog ; e

single valued extension property of T. This .establishes the
eguality

/4 2 \n 2l w1 17 ¢ .
(3:0)  H 00 = oGl @),

: ; : - : : -
Let.us show that the space Rq(x ) is invariant under
no = : :

T el ! X Ut

( (4‘ l n ] ‘ | % 1]1 ( (Y

k)

sdies i ;
)).”. Indeed, the operator Rq commutes with



o n e oy 5 (
T and the space X (Ué) 1s invariant under Rqe Consequently
T ) -
: . : gl
R ozl = m) 2 U e vl =
g Ite T q

= o T ‘ LT AR 1 w -7
iae o e 0T
for every x' & sz(ﬁé)” This shows, in particular, that Rq(x”)
is invariant under ((z L= 1) X (ﬁg))wl, via (3.4). In other’

e T it

! ‘Tr_" w5 Ly Sl . nvertihie { e 3 §:n W"'
words, (z in ) Rq(g Y is 1nvb_ti310¢ l.e. 200 (0 Rq(A ))CZ,?q“

The proof of the theorem is complete.
3.9, REMARK. Let »Q_HG =T (L)) andesct
B = {f@c(ﬂuﬁc,) :fv"c.éi 0

which is a subalgébra:of C(mfl'T:?;'Theﬂ the map @gt: A1;-% )
given by - é@t(f) = éﬁ(f o T ) ds 8 unltal algebra morphism.
Suppoée that A_v has the properties (i) éﬁd (11) from Definition
1;1 (this. happens, for instance, when A = C{L}}. Then +the
morphism é?_t can be used instead of @? o In khis case there

is no loss of generality in assuming that ) is a compéct

i 2 = : .
subset of {, where m = n i and that T 1s the matrix of

s ; e .
coordinate functions on ¢, restricted to (L .

4. MORE ABOUT THE SPECTRUM
- In this sccticn we assume that v C(JQ_) has the
properties (1), (ii) and (1ii) from Definition 1.l. As in the
previous section, we fix a uniﬁai algebra morphism & :A —» LX),

an element T =( T ,,),n _.€& M (A), and consider the (A,n)=-
jk’g,k=1 n
~gcalar Opefator T = é@x1(77) &= ;ﬁ(xn).

For every closed F <& (). we define the set

Sl o8 K el e
: ¢ W e '



The Sét'S,t w 1s closed (in fact compact), by Lemma 3.1. When
p L
F = supp (<), the set 8 . o willibe denoted simplyby 8,
s 3 h(_/ g}.‘ C
4,1, LEMMA. For every h-ﬁ.A there exists ah,analvtic
¢ : ¢ S e N ]3, such that -(z 1 - T )¢ sii=h
i 1 (A) such that -(z 1_ ) ., (2) =51
§Orw§i£ 7 QfS T F'- ynﬂfn E = supp-{h).
3 = 0
PROOF¥. Consider the Banach space Y = A" and the map
i iy given by
7 \ Bl W o 1 4 ~ T . &
I .f @oee“f =2 h-L "ims 9@11:[ 1’1 f o e ¢ f Aa
"?L()l @nA .IC) @ nt rne
(] ] . . : ¢ - < 2. w n
Plainly, ¥ is a unital algebra morphism. Let g?'n:Mn(A)"~§ L)

: ; J -
be the unital algebra morphism induced by o onias we indentify

v with M_(A), then, with this identification, fE}l(c% )/3 - c%/%.

for all o{;ufb (= 'Mn(A)o In pérﬁicular, “f‘n(’U ) is the

aultipld ication by the ﬁdtliK T p wWhieh will be alSo‘denoted by

U . The operator T is (A,n)-scalar, and therefore 1t has the

properties described in the previous section.

It is easily seen that 5 (h) = ng.(supp(h)) (which is

efined by (2.1)). According to Lemma 3.1, & {ax ‘ v AR

CE

o S”C' P where F = supp(h). Conseqguently, we may take
i :
& 4 Sl ok
f{z) = ulh ,YY'N) Qm),zﬁgb e

4.2. LEMMA. BAssume that there ewists a compact subset

c '01; \\ 6“(TX such that Sq:\\\ L ds ales cqmnacto Then.LzG

PROOF, Let us assume that L # §. Let V. > L and

1

VZiD 87; \\\_ B pe Qpenlsets such that Vl/’\‘V2 = f}, Then there

is an open neichbourhood W of supp (‘i?) such that

S,C i C:V o) V We may also assume that [' = 2 Vl s a finite
13

system of Jordan rectifiable curves, positively oriented.

Let-h € B be such that h = 1 in a nelghbourheed of



- 16 =
supp (<P ) and supp (h) < W. Let also }Fh be the analytic

i

function given by Lemma 4.1, which is defined outside the set

S .. == Then we may consider the element
[; l:‘«'\’ ¥
Gz em;.,,,k,,\,%lym ki & 4/ loa)des &M A,
Sl e ' : o

e

Set Foo= {a)ez,fl_: h(cw ) = 13’ i Sined - Fth)fa | = 1, for

1 >
w &  F,, then 4€h{z)(@d b Elnd e e b ))mle It follows

from our assumption on the algebra A (Definition .1.1(iii)) that the

point evaluations are continuous. Hence

e( ) = wf?%“ff Sfﬂ {z 1n o ) ))"ldz, &=

which shows that e( w )2 = el Yolelbed ). ds, dn Faet, & spectral

li

projection ef L. Y)Y, Sinece F, is a neighbourhood of supp(i§>)e

it follows that @?n(e) is an idempotent. In addition, @?n(e)
commutes with T because of the equality T(W Je( w I=e(w) T (w )

(w < F,).

Consider now the integral

Lo g 'I S\ 5 "‘1 ; P 1 o ,ZM
cw = ! e ) (\’)7 7] .th(é)dd‘, W /(L v:l”

It 4is clear that

(4.2) (w1, = TL e (e Jmo (@ )l 1 = T(@W)) = e(ew)

"“c' w“‘““c’l"—‘o
for all S! 1 anc \I§é,V1

: : . 4 : . M
Since <P (e) is idempotent , then 2 = ‘%?n(e)(x ) is

o]

n

n : y .
.closed subspace of X, invariant under T and under %%n(ew) as

well. Moreover, from (4.2) we deduce that

((w 1n - )

4

WP e |2 = (3 o (w1 -] 2=,

where 1. 18 the Identityv .of 7. This shows: that W(T! eV On

y
the other hand, 6(T) T V,,

l&

by Remark 3.2 and the property of L.



i o g
Therefore o6(T) N o (T'| 2) = g, which is not possible unless
“ .r . .
z = {0} , This shows that < _(e) = 0, so that glw ) =0 fer
el r

each o & suppl{ <), in virtue of Lemma 2.5, which contradicts

our assumption. Indeed, if z.€ L, then there exists w .esuppl(d> )
It 0 0 PP\ &
such that %y E= gt o &)0))° Then Vl contains at least one point

from the spectrum of the matrix T ( w D)p whence é(<1)O) % 0

b

Consequently we must have L = §.

4,3, LEMMA. Let F < () be closed and let

<ff>(r = {Lew g’F:J CE)) eisnpplf) iy B ﬁ} .

: n : i) ] 2L
Then the space X ij(F) is 1nvar1ant under T and €the restriction

| x

S R
(£)" is (A,n)-gcalar,

PROOF. It is easily seen that X = T (F)®. . .OX -_(F)
2 P
(n times)is invariant undexr T.
Since X £ (P) is invariant under & (f) for every f & A, we

may define the mah

(4 .:3) A=t > b

- Ix + () c::g(w a P,

i3 (3 3 . 4 52 3
.Which is a unital algebra morphism. If QPf‘n is the unital
§

. algebra momnnial from M (A) into &f(x<P (F)™) induced by.@?F,

then T X é% ;{I‘ e whi¢h is precisley our assert;oni
4.4. REMARK. With the notation of Lemma 4.3, we have the
inclusion o (T l X %%(F)n) e {T).
Indeed, if z & 6 (T), then the space q>(r n is invariant

: S | ;
vhder (z ln" oy since

B e i e e & 5 ex s

n n - n
; o 5 n
for ever fe& A with supp (£) N F- = § and each x é:>\<P (F)
Aol @?F from (4.3} has tho following




supp ( fl“; ?“) ey supp!( Ci:) -

s

P}’i"‘f\w Let ¥. bBe the space X g (F); defined in the
e

preceding lemma. Let also f & A be such that supplf) A\ F/\Supp(ﬁ?j)x

'

= 0§, By using the normality of the algebra A, we can write

= fl - )‘:'25, where fl-’ f2€f:€ A, supp(fl)f‘;? = § and supp (fz')

f‘\gupp (‘cii::'z) = g;‘,:g Then Cj’?}i"‘(f) B .j.?(f 3y }:,F it C»P (fz XF =2 0; which

: : ot o %2
shows that supp ( <p I’*‘) CF M supp(<P s A
Conversely, let w4 & int(F) N supplcp), let W, be
an open neighbourhocod of Wy s such that XZ,) . intiniot Wj«w (F)

and let W, " (). be open such that W, A WO = ¢ and Bt W0 =L =

Then, by Prc:pofsi’cion 5 1 eieh o n=l); X s Kl o= 4+ ¥ . If
7 V;'} : W? B Wi

f & A and supp(f) & UO, then "z () 'X'i:f = o Since
5
w & supp( < ), this shows fhat W E supp ( <> ‘-,) . ;

4.6, THEOREM. Let T & C,\,(" ) be a (A,n)-scalar operator

74

such that T = “‘%f”n\ T ). Then one has' the equality

s g Lismiw iy o e supp( )} .

PROOF. The inc lu‘%l()li G(T) & S has been already
noi,:kc:(,d (sece Remark '3$2)¢

Conversely, assume that there exists a point

=0
Yy be open sets in § such that V, 3 zZg, v 5T},

wi“. s w.; - (/J ar ] (‘ o’ ,mvv‘ % [Rgh? o 3’ _3 c a
Vl,f\. \2 fiand S50 C { mo) ; \lu V,;, Then there exlists an

open set W, Sew) o dn Losuchethat O ot bad Ve W & V? Eox

enEry,. elics T rccording to Remark 4.4, we have the inclusion

29 & S \ s(Ty., Let woe:-;zw()w be such tl‘lafn: S SlaedE

Let V

G (.Tﬂ) G {T) SN where TF = 0 \ b S (}“)_ng On the other

A
hand,



o { ool Beed G i 0 TR T Gf‘supp(ﬂi*F) e S"G c:V}kJVZ,

Lemma 4.5. From the same lemwa it also follows that

W o € supp( <P ). This shows that the set
e e \‘."-r“.( Sl e ) & san )-( ﬁP ) 1 a N
As A e o ,.7,7)’ F\ J { l

is nonempty, which COztr,ﬁicts lemma 4.2, applied to T Therefore

Bt
3 @__a (T} — Qe | 7 : i
ToE e A .

4.7. DEF IVTT [OM. The map ‘ﬁ?n - Mﬁ(A)_w&-éf(Xn) is said

to be of finite alacbraic order 1f there exists an int eger m > 1

such -that from the fact that o {w) = 0 fer all cd'éz'supp(ébn)

and a certain Ol e Mm(A), it fol lowe that ‘@?'( &im) = 0,

P
1.

TEn =6 L)Y and %?n.é (A) — (%) is continu 0US
then for every Jﬁ»ﬁé Mn(A) which is‘null on supp(C%?n) together with
its partial derivatives up toiardef I, we have éﬁ‘n{/% Y = 0. This
fact is‘wellwknown for Scalaf distributions aﬁd can be extended to
vector distributions as well; an outline of proof can'be found :i,n~

Cais ] pemma Tv. 808,

This fact shews, in particular; that ‘%? 1s.0f finite

n
algebraic order L
We can complete now. Corollary 3.6 with the following . €

statemaent.

4,8, COROLLARY. 1f (B = ‘{z } and the morphism

= ? e o ; : 2
4?11 A Mn(A) e ;ﬁ(x Jadasof finite slaBbyaie erdey e n zolﬂmT

is nilpotent.

in partieular, J&8-9 1 not a multiple of the i ldentivy,

then T has a proper hyperinvariant subspace.

PROOF, If follews from Theorem 4.6 that ST (w ))= {/
for every @ &. supp( ). In other words, the matrix 201n~'”5-(0)
4 s X 3 5 i . 4 9 D 1o
isgilpotent fior each . @ & suppl<d ), 1.@.(201n = Llcw J) = 0



(

20 ~

w & supplep ).
. Y { s : 2 = (]

vince the map Cﬁéq has finite algebraic order, then

4 i

iy Saee TS 107 S v SR AT S

ow ((ZOJ' = ) <) = 0 for scme integcr m- 2

1f T is not & multiple Of the ldentity, then ker(zglﬂ =

is a propéer hyperinvariant subspace of T.
%
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