INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

MATRIX OPERATORS AND HYPERINVARIANT SUBSPACES

by

F. RADULESCU and F.-H. VASILESCU

PREPRINT SERIES IN MATHEMATICS

No.14/1986

MATRIX OPERATORS AND HYPERINVARIANT SUBSPACES

by

F. RADULESCU*and F.-H. VASILESCU*

January 1986

*)
Department of Mathematics, National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

MATRIX OPERATORS AND HYPERINVARIANT SUBSPACES

by

F, RADULESCU and F.-H. VASILESCU

o. ABSTRACT

In this paper we study the decomposability of some matrix operators as well as other special properties of theirs. These matrix operators are derived from non-analytic functional calculi. As by-products, we obtain statements concerning the existence of (non-trivial) hyperinvariant subspaces.

1. INTRODUCTION

Let X be a complex Banach space and let $\mathscr{L}(X)$ be the algebr of all bounded linear operators acting on X. For each $S \subseteq \mathscr{L}(X)$ we denote by $\mathscr{C}(S)$ its spectrum.

Let us fix an integer $n \ge 1$ and let us denote by X^n the Banach space $X \oplus ... \oplus X$ (n times). Every operator $T \in \mathcal{L}(X^n)$ can be represented as a matrix $(T_{jk})^n$, where $T_{jk} \in \mathcal{L}(X)$ for each pair of indices j,k. We shall study in the sequel a class of operators $T \in \mathcal{L}(X^n)$ with the property that the operators T_{jk} from the matrix representation of T mutually commute. To present this class, we need some preliminaries.

Let Ω be a compact topological space, let $C(\Omega)$ be the algebra of all complex-valued continuous functions on Ω and let $A \subset C(\Omega)$ be a (not necessarily closed) subalgebra. We recall that A is said to be <u>normal</u> if for every open cover

 $\{G_1, \dots, G_m\}$ of Ω there are positive functions f_1, \dots, f_m in A such that supp $(f_p) \subset G_p(p=1,...,m)$ and $f_1(\omega)+...+f_m(\omega)=1$ for all $\omega \in \Omega$. In particular, $1 \in A$ (the positivity of the functions f_1, \dots, f_m will play no rôle in what follows).

- 1.1. DEFINITION. For an algebra $A\subset C(\Omega)$ we shall consider the following properties:
 - (i) A is a normal algebra;
- (ii) for every pair f,h \in A such that $supp(h) \subset \{\omega \in \Omega : f(\omega) \neq 0\}$ the function $\omega \to h(\omega)/f(\omega)$, extended with zero outside the set supp (h), is an element of A;
 - (iii) A has a Banach algebra structure which makes the inclusion $A \subset C(\Omega)$ continuous.

We shall indicate at the beginning of each section which of these hypotheses on the algebra A are going to be used.

It is plain that $C(\Omega)$ has the properties (i), (ii) and (iii). If Ω is the closure of a relatively compact open subset of \mathbb{R}^m , then the algebra $C^r(\Omega)$ of all r-times differentiable functions in the interior of Ω , whose partial derivatives up to order r have continuous extensions to Ω , also has the properties (i) (ii) and (iii). These are, in fact, the most significant examples that we have in mind.

If A is an arbitrary commutative unital algebra, we denote by $M_{n}(A)$ the algebra of n x n-matrices whose entries are elements of A. The algebra ${\rm M}_{\rm n}\left({\rm A}\right)$ will sometimes be regarded as an A-module . Every unital algebra morphism $\Phi:A o \mathscr{L}(x)$ induces a unital algebra morphism $\Phi_n: M_n(A) \longrightarrow \mathcal{L}(x^n)$, defined by the equality $\Phi_{n}(\propto) = (\Phi(\propto_{jk}))^{n}$, where $\alpha = (\propto_{jk})^{n} \in M_{n}(A)$.

1.2. DEFINITION. Let $\Lambda \subset C(\Omega)$ be an algebra with the properties (i) and (ii) from Definition 1.1. An operator $T \in \mathcal{L}(x^n)$ morphism $\Phi: A \longrightarrow \mathcal{L}(X)$ and an element $\tau \in M_n(A)$ such that $\tau = \Phi_n(\tau).$

This concept extends the concept of n-spectral operator, introduced in [8], which in turn extends that of n-normal operator [6]. When A is an admissible algebra, then Definition 1.2 also provides an extension of the concept of A-scalar operator [4], [11].

One of the main purposes of this paper is to prove that every (A,n)-scalar operator is decomposable (details concerning decomposable operators can be found in [4] or [11]). As a matter of fact, we shall prove a stronger result. Specifically, we shall show that if $\{U_1, U_2\}$ is an open cover of $\sigma(T)$, then there exists an operator $R \in \mathcal{L}(X^n)$ such that RT = TR, $\sigma(T \mid R(X^n)) \subset \overline{U}_1 \text{ and } \sigma(T \mid (1_n - R)(X^n)) \subset \overline{U}_2 \text{ (where } 1_n \text{ is the identity of } X^n; \text{ we use the same notation for the identity of } M_n(A)). With the terminology of [7], we therefore show that every <math>(A,n)$ -scalar operator is super-decomposable (see Theorem 3.8).

The decomposability of an (A,n)-scalar operator $T \in \mathcal{L}(X^n)$ can be used to derive the existence of a proper hyperinvariant subspace (i.e. invariant under each operator commuting with T), when $\sigma(T)$ contains at least two points. This explains one of the main results of $\begin{bmatrix} 8 \end{bmatrix}$ (which is also extended by our Corollary 3.6).

By analyzing the spectrum of an (A,n)-scalar operator T (Theorem 4.6), we shall obtain the existence of hyperinvariant subspaces of T, even if $\sigma(T)$ contains only one point, provided T is not a multiple of the identity, i.e. a complete extension of Theorem 5.3 from $\begin{bmatrix} 6 \end{bmatrix}$ (see Corollary 4.8).

In connection with this subject, we also refer to [5], [9] and [10]. Unlike in most of these works, we shall not use the concept of spectral measure (or related notions).

We can apply our methods to a large enough class of matrix

operators, including matrices of generalized scalar operators given by a spectral distribution [4].

2. A SPECTRAL CAPACITY

in 4 w

Let $A \subset C(\Omega)$ be a normal algebra. We also fix a unital algebra morphism $\Phi: A \twoheadrightarrow \mathcal{L}(X)$ and denote by Φ_n the corresponding morphism of $M_n(A)$ into $\mathcal{L}(X^n)$ induced by Φ .

Since a matrix $\alpha = (\alpha_{jk})^n \in M_n(A)$ can be regarded as a function $\alpha : \Omega \to M_n$ (where $M_n = M_n(C) \subset M_n(A)$), the notation $\alpha : \omega = (\alpha_{jk}(\omega))^n = (\alpha \in \Omega)$ and supp (α) makes sense. Moreover, supp $(\alpha' : \alpha'') \subset \text{supp} (\alpha'')$ for each pair $\alpha' : \alpha'' \in M_n(A)$.

For every $f \in A$ we denote by $\delta(f) \in M_n(A)$ the matrix $\delta(f) = (\delta_{jk}f)^n \text{, where } \delta_{jk} \text{ is the Kronecker symbol. Notice that } \delta_{jk} \text{ is, in fact, a unital algebra morphism of } A \text{ into } M_n(A) \text{ and that } \delta(A) \text{ is in the center of } M_n(A).$

2.1. PROPOSITION. For every closed set $F \subset \Omega$ we define the space

(2.1) $X_{\Phi}^{n}(F) = \bigcap \left\{ \ker(\Phi_{n}(\infty)) : \operatorname{supp}(\infty) \cap F = \emptyset \right\}$ Then the assignment $F \to X_{\Phi}^{n}(F)$ is a spectral capacity [2], [11].

PROOF. We follow some lines from the proof of Theorem IV.7.3

in [11] (see also [1]).

It is plain that $X^n_{-\Phi}(F)$ is a closed linear subspace of X^n . The fact that $X^n_{-\Phi}(\emptyset) = \{0\}$, $X^n_{-\Phi}(\Omega) = X^n$ and that $X^n_{-\Phi}(F_1) \subset X^n_{-\Phi}(F_2)$ whenever $F_1 \subset F_2$ can be easily seen.

Let $\{G_1,\ldots,G_m\}$ be an open cover of Ω . Since A is normal, we can find functions f_1,\ldots,f_m in A such that $\sup_p (f_p) \subset G_p \ (p=1,\ldots,m) \text{ and } f_1^+\ldots+f_m = 1. \text{ Let } \alpha_p = \delta(f_p);$ therefore $\sup_p (\alpha_p) \subset G_p \ \text{and} \ \alpha_1^+\ldots+\alpha_m = 1_n.$ It is then clear that

$$x^n = \Phi_n(\infty_1) x^n + \dots + \Phi_n(\infty_m) x^n.$$

We have only to note that

$$\Phi_{n}(\infty_{p})x^{n}\subset x^{n}_{\Phi}(\operatorname{supp}(\infty_{p}))\subset x^{n}_{\Phi}(\overline{G}_{p})$$

for every p, and therefore

$$(2.2) \quad x^{n} = x^{n}_{\bigoplus}(\overline{G}_{1}) + \dots + x^{n}_{\bigoplus}(\overline{G}_{m}).$$

Now, let $\{{\bf F}_{\bf k}^{}\}_{{\bf k}}\in \Gamma$ be an arbitrary family of closed subsets of Ω . We shall prove that

$$(2.3) \quad X_{\Phi}^{n} \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \\ \\ \end{array} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \\ \\ \end{array} \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

Since the mapping $F \to X_{\bigoplus}^n(F)$ is increasing, it suffices to prove that the right hand side of (2.3) is contained in the left hand side. Let $x \in X_{\bigoplus}^n(F_{\chi'})$ for all $\gamma \in \Gamma$ and let $F_0 = \bigcap \{F_{\gamma'} : \gamma' \in \Gamma'\}$. Let also $\alpha' \in M_n(A)$ be such that supp $(\alpha') \cap F_0 = \emptyset$. Since supp (α') is compact, we can choose open sets $H_q = \Omega \setminus F_{\chi q}$ $(q = 1, \ldots, r)$ such that $\sup_{\alpha' \in A} (\alpha') \cap F_{\alpha'} \cap F_{\alpha'}$ in A such that $h_0 + h_1 + \ldots + h_r = 1$ and $\sup_{\alpha' \in A} (h_{\alpha'}) \cap F_{\alpha'} \cap F_{\alpha'}$ and $\sup_{\alpha' \in A} (h_{\alpha'}) \cap F_{\alpha'} \cap F_{\alpha'}$. Then

$$\Phi_n(\propto) = \Phi_n(\propto \beta_0) \times \Phi_n(\propto \beta_1) \times \dots + \Phi_n(\propto \beta_r) \times \dots$$

Since supp $(\propto) \cap \text{supp}(\nearrow_0) = \emptyset$ and supp $(\propto \nearrow_q) \cap F_{\not q} = \emptyset$ $(1 \leqslant q \leqslant r)$, we have $\Phi_n(\propto \nearrow_q) x=0$ for all $q=0,1,\ldots,r$.

Consequently Φ_n (\propto)x = 0, so that x is contained in the left hand side of (2.3). The proof of Proposition 2.1 is complete.

2.2. COROLLARY. Let $f \in A$ be such that supp $(f) \cap \text{supp } (f) = \emptyset$. Then $\Phi(f) = 0$.

PROOF. Consider first a closed subset $F \subset \Omega$ such that if $h \in A$ and supp $(h) \cap F = \emptyset$, then $\Phi(h) = 0$. In this case we must have $X_{\Phi}^{n}(F) = X^{n}$, by (2.1). Indeed, if $\alpha \in M_{n}(A)$ and supp $(\alpha) \cap F = \emptyset$, then $\Phi_{n}(\alpha) = 0$, i.e. $\ker \Phi_{n}(\alpha) = X^{n}$.

 $\ker \ \Phi_n(\ S\ (f)) \supset x^n \ (supp\ (\ \Phi\)) = \bigcap_{\gamma \in \Gamma} x^n \ (F_{\gamma}\) = x^n,$ by (2.3) and the first part of the proof. Consequently $\Phi(f) = 0$.

2.3. COROLLARY. For every closed $F \subset \Omega$ we have the equality $X^n_{\cite{1pt}}(F) = X^n_{\cite{1pt}}(F \cap \text{supp}(\cite{1pt}))$

PROOF. As we have noted in the proof of Corollary 2.2, $x_{\oplus}^{n}(\text{supp}(\ \diamondsuit)) = x^{n}$. Therefore

 $X^{n}_{\Phi}(F) = X^{n} \wedge X^{n}_{\Phi}(F) = X^{n}_{\Phi}(F \wedge \operatorname{supp}(\Phi)),$ by (2.3).

2.4. REMARK. We have not used so far the fact that the functions of A are continuous.

A supplementary condition on the algebra $A\subset C(\Omega)$ makes the mapping $\Phi_n: M_n(A) \longrightarrow \mathcal{L}(X^n)$ injective on its support.

2.5. LEMMA. Assume that the algebra A also has the property (ii) from Definition 1.1. If $\Phi_n(\propto) = 0$ for some $\propto \in M_n(A)$, then $\propto (\omega) = 0$ for every $\omega \in \mathrm{supp}(\Phi)$.

PROOF. Note first that if $\Phi(f) = 0$ for some $f \in A$, then $f(\omega) = 0$ for every $\omega \in \text{supp}(\Phi)$.

Indeed, if $h \in A$ is such that supp $(h) \subset G = \{\omega \in \Omega : f(\omega) \neq 0\}$ then the extension h_1 of the function $\omega \to h(\omega)/f(\omega)$ belongs to A and we have $\Phi(h) = \Phi(h_1) \Phi(f) = 0$. Therefore $\sup(\Phi) \cap G = \emptyset$.

Now, if $\Phi_n(\propto) = 0$ and $\alpha = (\infty)^n$ then $f(\alpha) = 0$ for each pair $f(\alpha)$. By the previous remark, it follow that $f(\alpha) = 0$ for all $f(\alpha) \in \text{supp}(\Phi)$.

3. DECOMPOSABILITY

In this section A will be a subalgabra of $C(\Omega)$ with the properties (i) and (ii) from Definition 1.1. Let $\Phi:A\to \mathcal{L}(X)$ be a fixed unital algebra morphism.

We also fix an element $\mathcal{T}=(\mathcal{T}_{jk})^n\in M_n(A)$. Let $\mathfrak{T}=\Phi_n(\mathcal{T})\in \mathcal{L}(x^n)$, i.e. T is (A,n)-scalar. From the defining relation (2.1), it follows easily that $\mathfrak{T}_{A}^n(F)\subset \mathfrak{T}_{A}^n(F)$ for all closed subsets $F\subset\Omega$.

3.1. LEMMA . For every closed $F \subset \Omega$ we have the inclusion $\sigma(T \mid X^n(F)) \subset \bigcup \sigma(T(\omega))$ $\omega \in F$

and the set from the right hand side is closed.

PROOF. We use the straightforward equality

$$\sigma(\mathcal{T}(\omega)) = \left\{ z \in \mathfrak{k} \colon \det(z \mid_{n} - \mathcal{T}(\omega)) = 0 \right\}, \omega \in \Omega,$$

where "det" stands for determinant. It is also an elementary fact the existence of a matrix $\mathcal{T}_{*}(z) \in M_{n}(A)$ such that

(3.1)
$$(z \cdot 1_n - \tau) \cdot \tau_{\frac{1}{2}}(z) = \tau_{\frac{1}{2}}(z)(z \cdot 1_n - \tau) = \delta \cdot (\det(z \cdot 1_n - \tau))$$
 for each $z \in \mathcal{C}$.

Now, let $z\in \mathbb{C}$ be such that $\det(zl_n-\tau(\omega))\neq 0$ for all $\omega\in F$. We take a function $h\in A$ such that h=1 in a neighbourhood of F and

$$\text{supp (h)} \subset \left\{ \omega \in \Omega : \det(\mathbf{z}\mathbf{I}_{\mathbf{n}} - \tau(\omega)) \neq 0 \right\}.$$

Since $\det(zl_n - \mathcal{T}) \subseteq A$ and A has the property (ii) from

Definition 1.1, the function $g(\omega) = h(\omega)(\det(zl_n - U(\omega))^{-1})$ (equal to zero outside the set supp(h)) is an element of A. From (3.1) we deduce that

$$(zl_n - T) \Phi_n(g \tau_*(z)) = \Phi_n(g \tau_*(z))(zl_n - T) = \Phi_n(\delta(h)).$$

As we have $supp(1-h) \cap F = \emptyset$, it is clear that $\Phi_n(S(h)) \mid x_{\Phi}^n(F)$ is the identity on $x_{\Phi}^n(F)$. Therefore

$$\Phi_{n}(g \tau_{*}(z)) \mid x_{\Phi}^{n}(F) = ((z1_{n}-T) \mid x_{\Phi}^{n}(F))^{-1},$$

i.e. z & o(T | X (F)).

Finally, if $\det(zl_n - T(\omega)) \neq 0$ for all $\omega \in F$, then there exists a neighbourhood V of z such that if $w \in V$, then $\det(wl_n - T(\omega) \neq 0 \text{ for all } \omega \in F.$

Consequently, the set $\bigcup \{ \sigma(\tau(\omega)) : \omega \in F \}$ is closed.

3.2. REMARK. The inclusion in the statement of Lemma 3.1 can be written as

 $\sigma(T \mid X^{n}(F)) \subset \bigcup \left\{ \sigma(\mathcal{T}(\omega)) \colon \omega \in F \cap \operatorname{supp}(\Phi) \right\}$ via Corollary 2.3.

3.3. LEMMA. Let LC¢ be a closed subset and let $\theta(L) = \left\{ \omega \in \Omega : \sigma(\tau(\omega)) \cap L \neq \emptyset \right\}.$

Then $\theta(L)$ is a compact subset of Ω with the property that $\sigma(T \mid x^n_{\Phi}(F)) \cap L = \emptyset \text{ whenever } \theta(L) \cap F = \emptyset, F \text{ closed in } \Omega.$ $PROOF. If \omega_0 \not\subset \theta(L), \text{ then } \sigma(T(\omega_0)) \cap L = \emptyset.$

Thus, by the upper semicontinuity of the spectrum, there exists a neighbourhood W_0 of ω_0 such that $\sigma(\tau(\omega)) \cap L = \emptyset$ for each $\omega \in W_0$. Hence $\Omega \setminus \theta(L)$ is open.

Now, let $F = \overline{F} \subset \Omega$ be such that $\theta(L) \cap F = \emptyset$. If z were a point of $\sigma(T \mid x^n(F)) \cap L$, then, by virtue of Lemma 3.1,

there would exists a point $\omega \in F$ such that $z \in \sigma(\tau(\omega))$. Therefore $\omega \in \theta(L) \cap F$, which contradicts the choice of F.

3.4. LEMMA. The operator T satisfies the condition so of Bishop [3].

PROOF. We have to show that if U \subset ¢ is an arbitrary open set and $\left\{g_p\right\}_{p=1}^\infty$ is a sequence of x^n -valued functions, analytic in U, such that $(zl_n-T)g_p(z)\to 0$ $(p\to\infty)$ uniformly on the compact subsets of U, then it follows that $g_p(z)\to 0$ $(p\to\infty)$ uniformly on the compact subsets of U.

Let $\{\,g_p\,\}_{p=1}^\infty$ be a sequence as above and let Δ be a fixed closed disc. Let us show that $g_p(z)\to 0$ $(p\to\infty$) uniformly on Δ .

We consider the set $\theta(\Delta) \subset \Omega$ (defined in Lemma 3.3) and fix a point $\omega_0 \in \theta(\Delta)$. Let $D_0 \subset \overline{D_0} \subset U$ be an open disc containing Δ and let $V_0 \subset \mathfrak{k}$ an open set such that $\overline{D_0} \cap \overline{V_0} = \emptyset$ and $\sigma(\tau(\omega_0)) \subset D_0 \cup V_0$, which is obviously possible. By the upper semicontinuity of the spectrum, we infer the existence of an open neighbourhood W_0 of ω_0 in Ω such that if $\omega \in W_0$, then one has $\sigma(\tau(\omega)) \subset D_0 \cup V_0$. This procedure can be applied to any point ω of $\theta(\Delta)$. By the compactness of $\theta(\Delta)$ (Lemma 3.3), we obtain a finite open cover $\{W_1,\ldots,W_m\}$ of $\theta(\Delta)$, open discs D_1,\ldots,D_m whose closures are in U and open sets V_1,\ldots,V_m in \mathfrak{k} such that $D_q \supset \Delta$, $\overline{D_q} \cap \overline{V_q} = \emptyset$ and $\sigma(\tau(\omega)) \subset D_q \cup V_q$ for every $\omega \subset W_q$ ($q=1,\ldots,m$). Let $W_{m+1} = \Omega \setminus \theta(L)$. We take the functions h_1,\ldots,h_m , h_{m+1} from A such that $h_1+\ldots+h_m+h_{m+1}=1$ and supp $(h_q) \subset W_q$ ($q=1,\ldots,m+1$). Then consider the matrices $\alpha_q = \delta(h_q)$. Note that

 $\Phi_n(\propto_q)^g p(z) \in x_{\Phi}^n(\operatorname{supp}(\propto_q)), \ q=1,\ldots,m,m+1,$ and that $\sigma(T \mid x_{\Phi}^n(\operatorname{supp}(\propto_q)) \subset \overline{D}_q \cup \overline{V}_q (q=1,\ldots,m). \ \text{Since}$

 $\overline{D}_q \cap \overline{V}_q = \emptyset$, we can take another open disc $\overline{D}_q' \supset \overline{D}_q$ in U such that $\overline{D}_q' \cap \overline{V}_q = \emptyset$ (1 $\leqslant q \leqslant m$). Note that the operator (zl_n-T) | X_{\overline{\Phi}}^n (supp (\bowtie_q)) is invertible for $z \in \overline{D}_q' \setminus \overline{D}_q$ and that $\overline{\Phi}_n (\bowtie_q)$ commutes with T. Therefore the sequence $\overline{\Phi}_n (\bowtie_q) g_p(z) \to 0$ (p $\to \infty$) uniformly on the compact subsets of $\overline{D}_q' \setminus \overline{D}_q$. By the maximum principle, we deduce that $\overline{\Phi}_n (\bowtie_q) g_p(z) \to 0$ (p $\to \infty$) uniformly on \overline{D}_q' in particular on Δ , for every q=1,...,m.

From Lemma 3.3 we obtain that

$$\sigma(T \mid x_{\Phi}^{n}(\text{supp}(\propto_{m+1})) \cap \Delta = \emptyset.$$

Hence $\Phi_n(\propto_{m+1})g_p(z) \to 0 \ (p\to\infty)$ uniformly on Δ , and therefore

$$g_p(z) = \Phi_n(\infty_1)g_p(z) + \ldots + \Phi_n(\infty_{m+1})g_p(z) \to 0 \ (p \to \infty)$$
 uniformly for $z \in \Delta$.

The general assertion now follows by convering an arbitrary compact subset $L \subset U$ with a finite number of closed discs and applying the previous argument to each of these discs.

$$(3.2) \quad X_T^n(L) = \left\{ \, x \in X^n \, : \, \gamma_T(x) \subset L \, \right\} \,,$$
 where $L \subset \mathcal{C}$ is an arbitrary closed set and $\gamma_T(x)$ is the local 3 spectrum of T at x (see [4] or [11] for details). In addition, the space $X_T^n(L)$ is closed (which is an easy consequence of the condition β), $X_T^n(L)$ is invariant under every operator that commutes with $T(i.e. \, X_T^n(L))$ is hyperinvariant) and $\sigma(T \mid X_T^n(L)) \subset L([4],[11])$.

3.5. LEMMA. The operator T is decomposable. PROOF. Let . $\{U_1, U_2\}$ be an open cover of ¢, and let

us fix a point $\omega_0 \in \Omega$. Then we can choose two open sets V_0^1 and V_0^2 in $\mathbb C$ such that $\sigma(\tau(\omega_0)) \subset V_0^1 \cup V_0^2$, $\overline{V_0^q} \subset U_q(q=1,2)$ and $\overline{V_0^1} \cap \overline{V_0^2} = \emptyset$. Let $W_0 \subset \Omega$ be an open set that $\omega \in \overline{W_0}$ implies $\sigma(\tau(\omega)) \subset V_0^1 \cup V_0^2$. Since Ω is compact, the previous remark shows that we can find an open cover $\{W_1, \dots, W_m\}$ of Ω and open sets $\{v_p^q: 1 \leq p \leq m, q=1, 2\}$ in $\mathbb C$ such that

(a)
$$\overline{V}_p^q \subset U_q$$
, $\overline{V}_p^1 \cap \overline{V}_p^2 = \emptyset$;

(b)
$$\omega \in \overline{\mathbb{V}}_{p} \Rightarrow \sigma(\tau(\omega)) \subset \overline{\mathbb{V}}_{p}^{1} \cup \overline{\mathbb{V}}_{p}^{2}$$

for all p = 1, ..., m and q = 1, 2. From Lemma 3.1 and the property (b) we deduce that

$$\sigma(\mathtt{T}\mid x_{\Phi}^{n}(\overline{\mathbb{W}}_{p}))\subset \underset{\omega\in\overline{\mathbb{W}}_{p}}{\underbrace{\hspace{1cm}}\sigma(\mathtt{T}(\omega))\subset\overline{\mathbb{V}}_{p}^{1}\cup\overline{\mathbb{V}}_{p}^{2}$$

Therefore

$$x_{\Phi}^{n}(\overline{\mathbb{V}}_{p}) \subset x_{T}^{n}(\overline{\mathbb{V}}_{p}^{1} \cup \overline{\mathbb{V}_{p}^{2}})$$

by the fact that the space from the right hand side is spectral maximal [4], [11]. Let us also note the decomposition

$$(3.3) x_{\mathrm{T}}^{\mathrm{n}}(\overline{\mathbf{v}}_{\mathrm{p}}^{\mathrm{l}} \cup \overline{\mathbf{v}}_{\mathrm{p}}^{\mathrm{2}}) = x_{\mathrm{T}}^{\mathrm{n}}(\overline{\mathbf{v}}_{\mathrm{p}}^{\mathrm{l}}) + x_{\mathrm{T}}^{\mathrm{n}}(\overline{\mathbf{v}}_{\mathrm{p}}^{\mathrm{2}}),$$

which follows from (a), the decomposition of the space with respect to separate parts of the spectrum (see, for instance, [11], Theorem III 3.11) and the fact that all involved spaces are spectral maximal.

According to (2.2) and the above considerations, we can write that

$$\mathbf{x}^{\mathbf{n}} = \sum_{\mathbf{p}=1}^{m} \mathbf{x}^{\mathbf{n}}_{\mathbf{p}}(\overline{\mathbf{v}}_{\mathbf{p}}) = \sum_{\mathbf{p}=1}^{m} \mathbf{x}^{\mathbf{n}}_{\mathbf{T}}(\overline{\mathbf{v}}_{\mathbf{p}}^{1}) + \sum_{\mathbf{p}=1}^{m} \mathbf{x}^{\mathbf{n}}_{\mathbf{T}}(\overline{\mathbf{v}}_{\mathbf{p}}^{2}) =$$

$$= x_{\mathrm{T}}^{\mathrm{n}} (\overline{\mathrm{U}}_{1}) + x_{\mathrm{T}}^{\mathrm{n}} (\overline{\mathrm{U}}_{2}),$$

which proves the decomposability of T, by virtue of Theorem IV. 4.28 from [11] .

3.6. COROLLARY. If $\sigma(T)$ contains more than one point, then T has at least one proper hyperinvariant subspace.

This fact is well known in the theory of decomposable operators and is based on the existence of a compact subset $L \subset \mathcal{G}(T) \text{ such that } X^n_T(L) \text{ is neither zero nor the whole space. As we have already mentioned, } X^n_T(L) \text{ is a hyperinvariant subspace of } T. ``$

- 3.7. REMARK. If $A=C(\Omega)$ and Φ is obtained via a spectral measure on Ω , then the operator T is n-spectral [8]. If G(T) contains more than one point, then T has a proper hyperinvariant subspace, as proved in [8]. Consequently, Corollary 3.6 provides an extension of this result.
- 3.8. THEOREM. Every (A,n)-scalar operator is super- .. decomposable.

PROOF. We use the notation and the considerations from the proof of Lemma 3.5.

Let $\left\{f_1,\ldots,f_m\right\}\subset A$ be such that $f_1+\ldots+f_m=1$ and $\sup p(f_p)\subset W_p$ $(p=1,\ldots,m)$. Let also Q_p^q be the spectral projection of the space X_T^n $(\overline{V}_p^1\cup\overline{V}_p^2)$ onto X_T^n (\overline{V}_q^p) $(q=1,2;\ p=1,\ldots,m)$, which is obtained from the decomposition (3.3), via the analytic functional calculus of the restriction of T to X_T^n $(\overline{V}_p^1\cup\overline{V}_p^2)$ (see [11], Theorem III.3.11). Since

$$\Phi_n(\mathcal{S}(f_p))x^n\subset x^n_{\Phi}(\operatorname{supp}(f_p))\subset x^n_{\Phi}(\overline{\mathbb{W}}_p)\subset x^n_{T}(\overline{\mathbb{V}}_p^1\cup\overline{\mathbb{V}}_2^p),$$

we may define the operators

$$R_q = \sum_{p=1}^m \Omega_p^q \oplus_n (S(f_p)) \in \mathcal{L}(x^n), q=1,2.$$

It is straighforward that $R_1 + R_2 = 1_n$. Moreover,

$$TR_{q} = T\left(\sum_{p=1}^{m} Q_{p}^{q} \bigoplus_{n} \left(S\left(f_{p}\right)\right)\right) =$$

$$= \sum_{p=1}^{m} \left(T \mid x_{T}^{n} \left(\overline{v_{p}^{l}} \cup \overline{v_{p}^{2}}\right)\right) Q_{p}^{q} \bigoplus_{n} \left(S\left(f_{p}\right)\right) =$$

$$= \sum_{p=1}^{m} Q_{p}^{q} \left(T \mid x_{T}^{n} (\overline{v_{p}^{l}} \cup \overline{v_{p}^{2}})\right) \bigoplus_{n} \left(S\left(f_{p}\right)\right) =$$

$$= \sum_{p=1}^{m} Q_{p}^{q} T \bigoplus_{n} \left(S\left(f_{p}\right)\right) = R_{q}^{T}.$$

since every operator commutes with its analytic functional calcula and $\delta(f_p)$ is in the center of $M_n(A)$.

In particular, the space $R_q(X^n)$ is invariant under T.

To end the proof that T is super-decomposable, it remains to show that $\sigma(T \mid \overline{R_q(X^n)}) \subset \overline{U_q} \ (q=1,2).$

Let $z \not\in \overline{U}_q$. We choose two open sets U'_q and U''_q such that $U'_q \supset \overline{U}_q$, \overline{U}'_q , $\overline{U}''_q \cap \overline{U}_q = \emptyset$ and $U'_q \cup U''_q = \emptyset$. Then $X^n = X^n_T(\overline{U}'_q) + X^n_T(\overline{U}''_q)$, since T is decomposable (Lemma 3.5). If $x \in X^n$ is a fixed vector, then x = x' + x'', where $x' \in X^n_T(\overline{U}'_q)$ and $x'' \in X^n_T(U''_q)$. Note that $R_q x'' = 0$. Indeed, on one hand,

$$R_q(x^n) \subset \sum_{p=1}^m x_T^n(\overline{V}_p^q) \subset x_T^n(\overline{U}_q),$$

which shows that $\gamma_T(R_q x'') \subset \overline{U}_q$, by (3.2). On the other hand, since $x'' \in X_T^n(\overline{U}''_q)$, then $\gamma_T(R_q x'') \subset \gamma_T(x'') \subset \overline{U}'_q$ [4] Therefore $\gamma_T(R_q x'') = \emptyset$, so that $\gamma_T(R_q x'') = \emptyset$ because of the single valued extension property of T. This establishes the equality

$$(3,4) \quad R_{\mathbf{q}}(\mathbf{x}^{\mathbf{n}}) = R_{\mathbf{q}}(\mathbf{x}_{\mathbf{T}}^{\mathbf{n}} (\overline{\mathbf{U}}_{\mathbf{q}}^{\mathbf{r}})).$$

Let us show that the space $R_q(x^n)$ is invariant under $((z \ 1_n-T) \ | \ x_T^n \ (\overline{U_q'}))^{-1}$. Indeed, the operator R_q commutes with

T and the space $\mathbf{X}_{\mathrm{T}}^{n}$ ($\overline{\mathbf{U}}_{\mathrm{q}}^{\prime}$) is invariant under R . Consequently

$$R_{q}((z \mid_{n} - T) \mid X_{T}^{n}(\overline{U}_{q}'))^{-1} x' =$$

$$= ((z l_n - T) | x_T^n (\overline{U}_q'))^{-1} R_q x'$$

for every $x' \in X_T^n(\overline{U_q'})$. This shows, in particular, that $R_q(X^n)$ is invariant under $((z \mid_n - T) \mid X_T^n(\overline{U_q'}))^{-1}$, via (3.4). In other words, $(z \mid_n - T) \mid R_q(X^n)$ is invertible, i.e. $\sigma(T \mid R_q(X^n)) \subset \overline{U_q}$. The proof of the theorem is complete.

3.9. REMARK. Let $\Omega_{\tau} = \tau (\Omega)$ and set

$$A_{\tau} = \{ f \in C(\Omega_{\tau}) : f \circ \tau \in A \}$$

which is a subalgebra of $C(\Omega_{\mathcal{T}})$. Then the map $\Phi_{\mathcal{T}}: A_{\mathcal{T}} \to \mathcal{L}(x)$ given by $\Phi_{\mathcal{T}}(f) = \Phi(f \circ \mathcal{T})$ is a unital algebra morphism. Suppose that $A_{\mathcal{T}}$ has the properties (i) and (ii) from Definition 1.1 (this happens, for instance, when $A = C(\Omega)$). Then the morphism $\Phi_{\mathcal{T}}$ can be used instead of Φ . In this case there is no loss of generality in assuming that Ω is a compact subset of \mathfrak{T}^m , where $m=n^2$, and that \mathcal{T} is the matrix of coordinate functions on \mathfrak{T}^m , restricted to Ω .

4. MORE ABOUT THE SPECTRUM

In this section we assume that $A\subset C(\Omega)$ has the properties (i), (ii) and (iii) from Definition 1.1. As in the previous section, we fix a unital algebra morphism $\Phi:A\longrightarrow \mathcal{L}(x)$, an element $T=(\mathcal{T}_{jk})_{j,k=1}^n\in M_n(A)$, and consider the (A,n)-scalar operator $T=\Phi_n(\mathcal{T})\in \mathcal{L}(x^n)$.

For every closed F $\subset \Omega$ we define the set

$$(4.1) \quad S_{\tau,F} = \bigcup_{\omega \in F} \sigma(\tau(\omega)) \subset \mathfrak{c}.$$

The set S $_{\tau,F}$ is closed (in fact compact), by Lemma 3.1. When $F = \text{supp } (\Phi)$, the set S $_{\tau,F}$ will be denoted simply by S $_{\tau}$.

4.1. LEMMA. For every $h \in A$ there exists an analytic function $\mathcal{C}_h: \mathcal{C} \setminus S_{\mathcal{T},F} \longrightarrow M_n(A)$ such that $(z \mid_{n} - \mathcal{T}) \cdot \mathcal{C}_h(z) = \mathcal{S}(h)$ for all $z \notin S_{\mathcal{T},F}$, where F = supp (h).

PROOF. Consider the Banach space $Y = A^n$ and the map $Y : A \rightarrow \mathcal{L}(Y)$ given by

$$\Upsilon(h)f_1 \oplus \dots \oplus f_n = hf_1 \oplus \dots \oplus hf_n, h, f, \dots, f_n \in A.$$

Plainly, Y is a unital algebra morphism. Let $Y_n: M_n(A) \to \mathcal{L}(Y^n)$ be the unital algebra morphism induced by Y. If we indentify Y^n with $M_n(A)$, then, with this identification, $Y_n(\propto)_{\mathcal{F}} = \propto_{\mathcal{F}}$ for all α , $\beta \in M_n(A)$. In particular, $Y_n(\mathcal{T})$ is the multiplication by the matrix \mathcal{T} , which will be also denoted by \mathcal{T} . The operator \mathcal{T} is (A,n)-scalar, and therefore it has the properties described in the previous section.

It is easily seen that $S(h) \subset Y^n_{\overline{Y}}$ (supp(h)) (which is defined by (2.1)). According to Lemma 3.1, $\sigma(\tau \mid Y^n_{\overline{\Psi}}(F))$ $\subset S_{\tau,F}$, where F = supp(h). Consequently, we may take

$$\varphi_{h}(z) = ((z \, 1_{n} - T) \mid Y_{\varphi}^{n}(F))^{-1} \, \delta(h), z \notin S_{\varphi}, F.$$

4.2. LEMMA. Assume that there exists a compact subset L \subset S \subset (T) such that S \subset L is also compact. Then L=0

PROOF. Let us assume that L $\neq \emptyset$. Let $V_1 \supset L$ and $V_2 \supset S_{\mathcal{T}} \setminus L$ be open sets such that $\overline{V_1} \cap \overline{V_2} = \emptyset$. Then there is an open neighbourhood W of supp (\bigoplus) such that $S_{\mathcal{T},\overline{W}} \subset V_1 \cup V_2$. We may also assume that $\Gamma = \partial V_1$ is a finite system of Jordan rectifiable curves, positively oriented.

Let $h \in A$ be such that h = 1 in a neighbourhood of

supp (\bigoplus) and supp (h) \subset W. Let also \mathcal{L}_h be the analytic function given by Lemma 4.1, which is defined outside the set $S \subset W$. Then we may consider the element

$$e = \frac{1}{2\pi I} \int_{\Gamma} \varphi_h(z) dz \in M_n(A).$$

Set $F_1 = \{\omega \in \Omega : h(\omega) = 1\}$. Since $\delta(h)(\omega) = 1_n$ for $\omega \in F_1$, then $f_1(z)(\omega) = (z \cdot 1_n - \tau(\omega))^{-1}$. It follows from our assumption on the algebra A (Definition 1.1(iii)) that the point evaluations are continuous. Hence

$$e(\omega) = \frac{1}{2\pi 1} \int_{\Gamma} (z \, 1_n - \tau (\omega))^{-1} dz, \quad \omega \in F_1,$$

which shows that $e(\omega)^2 = e(\omega)$ ($e(\omega)$) is, in fact, a spectral projection of $\mathcal{T}(\omega)$). Since F_1 is a neighbourhood of $\mathrm{supp}(\Phi)$, it follows that $\Phi_n(e)$ is an idempotent. In addition, $\Phi_n(e)$ commutes with T because of the equality $\mathcal{T}(\omega)e(\omega)=e(\omega)\mathcal{T}(\omega)$ ($\omega \in F_1$).

Consider now the integral

$$e_{w} = \frac{1}{2\pi i} \int_{\Gamma} (w-z)^{-1} \varphi_{h}(z)dz, \quad w \notin \overline{V}_{1}.$$

It is clear that

$$(4.2) \quad (\text{w l}_{\text{n}} - \text{T}(\omega)) e_{\text{w}}(\omega) = e_{\text{w}}(\omega) (\text{w l}_{\text{n}} - \text{T}(\omega)) = e(\omega)$$

for all $\omega \in F$, and $w \notin \overline{V}$,.

Since $\Phi_n(e)$ is idempotent , then $Z=\Phi_n(e)(x^n)$ is a closed subspace of x^n , invariant under T and under $\Phi_n(e_w)$ as well. Moreover, from (4.2) we deduce that

$$((w \ 1_n - T) \ | z) (\Phi_n(e_w) \ | z) = (\Phi_n(e_w) \ | z) ((w \ 1_n - T) \ | z) = 1_z$$

where 1_Z is the identity of Z. This shows that $\sigma(T \mid Z) \subset \overline{V}_1$. On the other hand, $\sigma(T) \subset \overline{V}_2$, by Remark 3.2 and the property of L.

Therefore $\sigma(T) \wedge \sigma(T \mid Z) = \emptyset$, which is not possible unless $Z = \left\{0\right\}$. This shows that $\Phi_n(e) = 0$, so that $e(\omega) = 0$ for each $\omega \in \text{supp}(\Phi)$, in virtue of Lemma 2.5, which contradicts our assumption. Indeed, if $z_0 \in L$, then there exists $\omega_0 \in \text{supp}(\Phi)$ such that $z_0 \in \sigma(T(\omega_0))$. Then V_1 contains at least one point from the spectrum of the matrix $T(\omega_0)$, whence $e(\omega_0) \neq 0$.

Consequently we must have $L = \emptyset$.

4.3. LEMMA. Let $F \subset \Omega$ be closed and let

$$X \oplus (F) = \bigcap \{ \ker(\Phi(f)) : \operatorname{supp}(f) \cap F = \emptyset \}$$
.

Then the space $X \rightarrow (F)^n$ is invariant under T and the restriction $T \mid X \rightarrow (F)^n$ is (A,n)-scalar.

PROOF. It is easily seen that $X \oplus (F)^n = X_{\widehat{\Phi}}(F) \oplus \ldots \oplus X_{\widehat{\Phi}}(F)$ (n times) is invariant under T.

Since $X_{\bigoplus}(F)$ is invariant under $\bigoplus(f)$ for every $f\in A$, we may define the map

$$(4.3) \quad A \ni f \to \Phi_F(f) = \Phi(f) \mid X_{\Phi}(F) \in \mathcal{L}(X_{\Phi}(F)),$$

which is a unital algebra morphism. If $\Phi_{F,n}$ is the unital algebra morphism from $M_n(A)$ into $\mathcal{L}(X_{\widehat{\Phi}}(F)^n)$ induced by $\Phi_{F,n}$ then $T \mid X_{\widehat{\Phi}}(F)^n = \Phi_{F,n}(T)$, which is precisley our assertion.

4.4. REMARK. With the notation of Lemma 4.3, we have the inclusion $\sigma(T \mid X \to (F)^n) \subset \sigma(T)$.

Indeed, if $z \not \in G(T)$, then the space $X \not \oplus (F)^n$ is invariant under $(z \mid_{n} T)^{-1}$ since

$$\Phi_{n}(\mathcal{S}(f)) (z 1_{n} - T)^{-1}x = (z 1_{n} - T)^{-1}\Phi_{n}(\mathcal{S}(f))x = 0$$
for every $f \in A$ with supp $(f) \cap F = \emptyset$ and each $x \in X \oplus (F)^{n}$.

4.5. LEMMA. The morphism Φ_F from (4.3) has the following

property:

 $\inf(F) \wedge \operatorname{supp}(\tilde{\Phi}) \subset \operatorname{supp}(\tilde{\Phi}_F) \subset F \wedge \operatorname{supp}(\tilde{\Phi}).$ for each closed F

PROOF. Let X_F be the space $X_{\cite{\Phi}}(F)$, defined in the preceding lemma. Let also $f \in A$ be such that $\mathrm{supp}(f) \land F \land \mathrm{supp}(\cite{\Phi}) = \emptyset$. By using the normality of the algebra A, we can write $f = f_1 + f_2$, where f_1 , $f_2 \in A$, $\mathrm{supp}(f_1) \land F = \emptyset$ and $\mathrm{supp}(f_2)$ $\land \mathrm{supp}(\cite{\Phi}) = \emptyset$. Then $\cite{\Phi}_F(f) = \cite{\Phi}(f_1) \mid X_F + \cite{\Phi}(f_2) \mid X_F = 0$, which shows that $\mathrm{supp}(\cite{\Phi}_F) \subset F \land \mathrm{supp}(\cite{\Phi})$.

Conversely, let $\omega_0 \in \operatorname{int}(F) \cap \operatorname{supp}(\Phi)$, let W_0 be an open neighbourhood of ω_0 such that $\overline{W}_0 \subset \operatorname{int}(F)$, let $W_1 = \operatorname{int}(F)$ and let $W_2 \subset \Omega$ be open such that $\overline{W}_2 \cap \overline{W}_0 = \emptyset$ and $W_1 \cup W_2 = \Omega$. Then, by Proposition 2.1 (with n=1), $X = X_{\overline{W}_1} + X_{\overline{W}_2} = X_F + X_{\overline{W}_2}$. If $f \in A$ and $\operatorname{supp}(f) \subset W_0$, then $\Phi(f) \mid X_{\overline{W}_2} = 0$. Since $\omega_0 \in \operatorname{supp}(\Phi)$, this shows that $\omega_0 \in \operatorname{supp}(\Phi_F)$.

4.6. THEOREM. Let $T\in\mathcal{L}(x^n)$ be a (A,n)-scalar operator such that $T=\Phi_n(\mathcal{T})$. Then one has the equality

$$\sigma(T) = \bigcup \{ \sigma(T(\omega)) : \omega \in \text{supp}(\Phi) \}$$

PROOF. The inclusion $G(T) \subset S_{\overline{C}}$ has been already noticed (see Remark 3.2).

Conversely, assume that there exists a point $z_0 \in S_{\mathcal{T}} \setminus \sigma(\mathtt{T}). \text{ Let } \omega_0 \in \Omega \text{ be such that } z_0 \in \sigma(\tau(\omega_0))$ Let V_1 , V_2 be open sets in φ such that $V_1 \supseteq z_0$, $V_2 \supseteq \sigma(\mathtt{T})$, $\overline{V_1 \cap V_2} = \emptyset \text{ and } \sigma(\tau(\omega_0) \subset V_1 \cup V_2. \text{ Then there exists an open set } W_0 \supseteq \omega_0 \text{ in } \Omega \text{ such that } \sigma(\tau(\omega)) \subset V_1 \cup V_2 \text{ for every } \omega \in \mathtt{F} = \overline{W_0}. \text{ According to Remark 4.4, we have the inclusion } \sigma(\mathtt{T}_F) \subset \sigma(\mathtt{T}) \subset V_2, \text{ where } \mathtt{T}_F = \mathtt{T} \mid \mathtt{X} \bigoplus (\mathtt{F})^n. \text{ On the other hand,}$

$$\cup \{\sigma(\tau(\omega)) : \omega \in \text{supp}(\Phi_F) \subset S_{\tau,F} \subset V_1 \cup V_2,$$

by virtue of Lemma 4.5. From the same lemma it also follows that $\omega_0 \in \mathrm{supp}(\, \Phi_F).$ This shows that the set

$$L = \bigcup \left\{ \sigma(\tau(\omega) : \omega \in \text{supp}(\Phi_F) \right\} \cap \overline{V}_1$$

is nonempty, which contradicts Lemma 4.2, applied to T_F . Therefore $S_T \setminus \overline{\sigma}(T) = \emptyset$.

4.7. DEFINITION. The map $\Phi_n: M_n(A) \longrightarrow \mathcal{L}(x^n)$ is said to be of <u>finite algebraic order</u> if there exists an integer $m \ge 1$ such that from the fact that $\alpha(\omega) = 0$ for all $\omega \in \text{supp}(\Phi_n)$ and a certain $\alpha \in M_n(A)$, it follows that $\Phi_n(\alpha^m) = 0$.

If $A=C^\Gamma$ (Ω) and $\Phi_n: M_n(A) \to \mathcal{L}(x^n)$ is continuous, then for every $\beta \in M_n(A)$ which is null on $\mathrm{supp}(\Phi_n)$ together with its partial derivatives up to order r, we have $\Phi_n(\beta)=0$. This fact is well-known for scalar distributions and can be extended to vector distributions as well; an outline of proof can be found in [11], Lemma IV.8.8.

We can complete now Corollary 3.6 with the following statement.

4.8. COROLLARY. If $\sigma(T) = \{z_0\}$ and the morphism $\Phi_n: M_n(A) \longrightarrow \mathcal{L}(X^n)$ is of finite algebraic order, then $z_0 l_n - T$ is nilpotent.

In particular, if T is not a multiple of the identity, then T has a proper hyperinvariant subspace.

PROOF. If follows from Theorem 4.6 that $\sigma(\tau(\omega)) = \{z_0\}$ for every $\omega \in \operatorname{supp}(\Phi)$. In other words, the matrix $z_0 l_n - \tau(\omega)$ is nilpotent for each $\omega \in \operatorname{supp}(\Phi)$, i.e. $(z_0 l_n - \tau(\omega))^n = 0$

 $(\omega \in \text{supp}(\mathring{\Phi})).$

Since the map Φ_n has finite algebraic order, then $\Phi_n((z_0l_n-\mathcal{T})^{mn})=0 \text{ for some integer } m\geqslant 1, \text{ i.e. } z_0l_n-\mathcal{T}$ is nilpotent.

If T is not a multiple of the identity, then $\ker(z_0^{-1}_n-T)$ is a proper hyperinvariant subspace of T.

REFERENCES

- 1. Albrecht, E. and Frunză, S.: Non-analytic functional calculi in several variables, Manuscripta Math, 32(1980), 263 294.
- 2. Apostol, C.: Spectral decompositions and functional calculus Rev.Roum.Math.Pures Appl., 13 (1968), 1481 1528.
- 3. Bishop, E.: A duality theorem for an arbitrary operator, Pacific J.Math., 9(1959), 379-394.
- 4. Colojoară, I. and Foiaș, C.: Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- 5. Douglas, R.G. and Pearcy, C.: Hyperinvariant subspaces and transitive algebras, Michigan Math.J., 19(1972), 1-12.
- 6. Hoover, T.B.: Hyperinvariant subspaces for n-normal operators:
 Acta Sci.Math. (Szeged), 32 (1971), 109-119.
- 7. Laursen, K.B. and Neumann, M.M.: Decomposable operators and automatic continuity, J.Operator Theory, 15(1986), 33 51.
 - 8. Omladič, M.: On N-spectral operators, Communication presente at the 10th Operator Theory Conference, Bucharest, 1985.
 - 9. Orhon, M.: Algebras of operators containing a Boolean algebra of projections of finite multiplicity,

 Proceedings of the 10th Operator Theory Conference,
 Bucharest, 1985.
 - 10. Radjavi, H. and Rosenthal, P.: Hyperinvariant subspaces for spectral and n-normal operators, Acta.Sci.Math. (Szeged) 32 (1971), 121-126.
 - 11. Vasilescu, F.-H.: Analytic functional calculus and spectral decompositions, Editura Academiei and D.Reidel Publishing Company, Bucharest and Dordrecht, 1982.