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QUADRATIC INTERSECTION FORM AND 2-VECTOR BUNDLES

ON NONALGEBRAIC SURFACES

>

Vasile BRINZANESCU and Paul FLONDOR

Intrqduction

Int thel fiEst section‘of this papef fhe aquadratic inter-
section form on nonalgebraic surfaces is conéidered. We show
Ehat the guadratic intersection form-on the Neron-Severi aroun
of a (smooth, compact, connected) complex surface with élqe—
braic dimension zero is negative definite, medulo torsion
\Wheorem i ). Then we give a deseription of &his form in the
case of alaebraic dimension one (Theorem 2).

In the second section some applications to the holomornhic

2-vector bundles on nonalgebraic surfaces are given.

1. The quadratic intersection form on the Neron-Severi

group of nonalaebraic surfaces

Let X be a smooth, compact, connected, complex surface

and let-
: ¥
Q= Zw(ﬂxw D —s 0

be the exact exponential sequence. This sequence gives rise to

the exponential cohomoloay seguence



il et o i -
—r 0 (X,Z) — Hl(X,€§)“Wﬂ Hl(x,@i)w,@ HZ(Xﬁzyma :
where Hl(X,@i)'g Pic X is the Picard groun of the surface X. We

denote:

>

PicOX ::Ker(Hl

Colg 1 (X, ) )

v

and we define the Neron-Severi qroup of the surface X by

NS (X) :=Im (1" (x,0%) —> H2 (X2)) .

We have NS(X) = Pic X/Pic X.

For nonalgebraic suffaces (a(X)=0 or 1) one knows that
the guadratic intersection form on.the Néroﬂ—Severi groupvis He=
gative semi~definite ([9]).hIn the case of alagebraic dimeﬁsion

zero we have the following result:

Theorem 1. Let X be a compiex»ggyface with a(X)=0. Then

the‘guadratic intersection form on the Nerpn~8everi qrouQ*NS(X)

is negative definite, modulo torsion.

Proof. Let X'e X be the bleowineg-up of X ot & point.

Then we have that

Pic X' = pic x @ Z{e},

w&@k@e2=—l and e.x=0 for all xePic X. It follows that

ke

NS (X')



‘and the sum is ortogomal, Therefore it 1s suffieient to prove
the statement in the case of a minimal model.
Let X be a minimal model., If the Kodaira dimension Kodi(X)=

=-eg we have b](X):l and  then, by the'Siqnature Theorem ( {2} 1V,

Aol
R
isinegative definite, Then, its resktriction tothe subgroup

NS(X)CJHZ(X,E) is negative definite modulo torsion.

Theorem 2.13) , 1t folleows that the intersectien: form on H (X)

If ‘the Kodairé dimension Kod (X)=0 then X is a K3-surface..
Or.a 2-torus. If-X is a K3-surface with a(X)=O,bthen it is well
known that the intersection form is nega£ive definite; see for
example [5}. The following short arqument &s from [3]. Let

LéPic X with cl(L) =0. By Riemann-Roch formula we get

Since h®(M)<€1 for all M&Pic X as a(X)=0, it follows h®(L)#0

and hO(L%)#O, hence LE&% and: e, (1) =0,

L
For the case of a 2-torus with a(X)=0 the detailed nroof
is given in 563, We shall present briefly the arcument, but
first let us remind some general facts about tori.
A complex 2-torus X is iéomérphic with @2/P, where (" is
a lattice of rank 4 in @2. One has a natural isomorphism
H2

O Alt%'(f‘ )
O f HZ(X,ZD with the space of alternating integer-valued 2-forms
on Fi Let

H(@Z;ﬁ) :{‘Hi B hermitian form on @ itk i H(FxP)QZZ% :
Since the imaginary part Im B of a hermitian foem H is an alters

nating 2-form which determines comnletely H, we mav consider



et

Hz(ﬁﬁﬁ). With this iden-—
tenes

s

as a subgroup of Alté(ﬁﬁﬁ)

H(€?, M)
tification one has by the theorem of Appell-Humbert

Mumford {lﬂ})

> 2
Modulo an analytic isomorphism of the Z-tewmus X, we can

take " be the lattice generated by the column vectors of the

matrix
10 P, + ip, + ir,

=
O 4, t ig,

The matrix P is called the period matrix. We have

B :

'Bl = Re B= =
G

and we can choose B such that B = det Bz}(h
2
Consider the complex vector space €~ as the real vector

space R with complex structure given by the matrix

and take on'R4 also the domplex structure given by the matrix

S =1
--B1B2 *B2~B1B2 Bl
= —-]_ -—l ‘
B hy

JB .
2



4
Let f:R}wm%@z be the map given by the matrix

Then FJo=JF énd since f(m4)=?” the ﬁap f extends to an analytic
isomorphism between the topological standard torus R4/Zﬁ, with
.the complex stfucture.given by‘thg matrix JB’ and the complex
torus X = @2/P.,

Now, the Appell-Humbert theorem can be reformulated and

we have
{ /Al A, A skew-svmmetric and
NSl A= eMy (@) | o
' AZ A3 . B A1B+A2B"B A2+A3=O

(see Selder [14])° The condition

£ £ & ' .
BAlB+A2B~BA2+A3-O.

express the fact thdt A is the imaginary part Im B ef a hevmis
titan  fierm H-on Cz. The matrix of the hermitian form in the
canonical basis of ¢? is the hermitian matrix

1

Boicasn aime s e i

s b 0

b

The alagebraic dimension of the torus X is given. by

a(X)=max£rank HAEH

] A nositive semi—definite&.

Every AENS(X) is the first Chern class of a line bundle



L&Pic X (A:cl(L))° If we identify thelgroup HZ(X,%) with
Alt%(ﬁ,%) then the cup-product on HZ(X,E) becomes the exterior
product of 2-forms (see Mumford [lﬂ Y. The intersection form

on the Neron-Severi group is civen by the formula

o i, (@) =« +a'd =Py -prE -0 -0’2,

and similarly for A’. For the quadratic intersection form we

get:
(1)2 = 2 wd-px-00).

We have the following basic result

2

e k= 2l det o 1

. -
By this formula we get that the quadratic intersection form on
the Neron-Severi group NS(X) is negative definite (for details
see [6]). As Kod(X)2l implies a(X)21 the proof is oven,

Iret now X be a cémplex surface with a(X)=1. One knows that
every surface of algebraic.dimension 1 is ensellintic fibratien
By an elliptid'fibration of a surface X one means a proper, con-

nected holomorphic map £ : X=%S, such that the general fibre is

a non-singular elliptic curve. Let C be a generl fibre of L.



One has cl(@&(c))2=c2=oﬁ For any M&pic X with cl(M)ZZO, the
Chern class cl(M) is ortogonal on NS (X))« for 1f cl(L),cl(M)#O
for some LEPic X, then

e B0 Diei ; e
(Lo M ) —~chl(L),cl(M) + cl(L)

c J

]

would be positive for .a suitable integer n, contradicting the

fact that X is nonalgebraic.

Theorem 2. Let X pélgmqgmplex gprfagg_with_a(x)zl. Then

we have an ortogonal sum NS (X) /Tors NS(X)EI @ N such that I is

an isotropic subgroup of rank <1 and the guadratic intersec-

tion form is negative definite on the second factor N. Moreover,

et bl(X) igﬂpd@ then 1. = O;

(s L % iszéhier then & isrdeng;ated bv a'rational mul=
tiple of & = cl(@ (C))i

S P T Y X

(4361 ié X hggwm;pimal mpdequwK3~surface erarzﬁtorus then

I i§ gegeraped by c=cl(52<(C))°
Proof. Denote by K the lattice NS (X) /Tors NS (X). Let

T=Rad K be the radical of K ahd léet K=I @ N be a. radiecal split-
ting (Qrtogonal sum) . If bl(X) 15 even.iﬁ follows, by the Signa-
ture Theorem, that the intersection form on Hé’l(x} is hon=de=
generate of type (l,hl’l—l). Clearly, %é’l(x) has the isotropie
index 1, i.e. the maximal isotropic subspace is one dihensional.
By the above disscution it follows that the isotropic subgroup I
has the rank €1 and that the intersection form is negative defi-
ite on the second Factor N. If b (X) is odd it follows, by the
Sigrniature Theorem; that the intersection form on Hl’l(x) 18s NONs

: R
l,l)'

degenerate of type (O Then, obviously, I=0 and the inter=



section form on NS(X) is negative definite,modulo torsion

(czcl(@-(c)) is a torsion element). These prove the first sta-

X
tement and also (i).

If X is Kdhler (b, (X) even) it follows that c:cl(@%(C))#O
for C a general fibre of the elliptic fibration f 1 X==»3, Since
. is mot a torstenelement of NS (X), we have (ii).

As for (iii) wercan assume f relatively minimal {(the fi-
bres free of (-l)-curves). Since NS(X) has no torsion for K3=sur-—
faces and tori we have an ortogonal suﬁ NS (X)=I @B Nj we have to
prove that I.is generated by ¢ itself@ Let d#0 be an element of

2

I(d”=0). Assume that ¥ is K3-surface. Letel Pic X gsuch that

d:cl(L). By Riemann—-Roch formula we get

it followe that d - (or - =d) I8 effecﬁive, Assumne tha£ d=cl(@%(D)),
where D is an effective divisor. Since all curves on X‘are.Con~
tained in the fibres of f we.have D:Dl‘+"°+Dn with each Di an
effective divisor in a different fibre (=l e e Obviocusly
Di'Dj:0 for i#j;hence D2=Di+.“+Dr21=O° From Diéo (all &)y it fol=
lows that Dizo tall i) -hence we can suppgse_that Bods contained
in a fibre. By Zariski’s Lemma it follows that pD=gXg, with .
p,qéﬁ, p#0 and X_ a fibre Of.f (S&S). One knows that f has no
multiple fibres (see {21, p.195), hence §=l and D=gX_. Sihce
cl(dk(xé))=cl(0&(c))=c we get that c qene?ates the isotronic
subgroup T.

Let now X be‘a.thorusa One knows that £ has no sincular

fibres and that, in fact, topologically X is the product €X S,

By Kinneth formula we have



2

£ 2 (c,7)gH" (s,2)eH

2 (x,7) =H° (€, )& (H

(S, %),

where the subgroup HZ(C,%) is generated bv the Chern class
c=cl(ﬁ§(c)), It follows thatithe group HZ(X,&)/c&;has no torsion,;
hence the subgroup I/cZ has no torsion. Then oS generated bv

c, hence we have (iii).
>

sification [2}, VI), we do not know a precise descrintion of

the isotropic subgroup 1.

TR Filtrable 2~vector bundles on nonalgebraic surfaces

Let E be a holomorphic vector bundle of Fonk r on a comnlex
surface. The bundle E is called filtrable (cf: Elencwaig-Forster

[81) if there exists a filtration
=R C -P =
0 *oCFlC”°kar' B

with Fi coherent subsheaf of rank i, i=0,i,;.,,r. While'én alis
gebraic surface every holomorphic bundle islfiltrable, on nonai—
gebraic surfaces nonfiltrable bundles exist (see i>F, 81, flgl
(16]).

| As a first application of the previous results we shall

prove the lelowinq Faeks

Propogition 3. Let X be a 2-torus with algebraic dimens}oq

sere. & J-vecter bundle B oon X is induced by a renrggentation

(g ﬁﬂ (X) ~—>» GL (2-.€)



Lo

if and only i f c](E):O and c?(E):Oq

Proof. We follow {é} Proposition 4.7, where the case
NS (X)=0 is considered. A bundle induced by a répresentation of
ﬁ&(x) @ossesses an integrable connection, hence all its Chern
classes are Zzero (cf,;Atiyah [k,

Conversely suppose c; (E)=0 and ¢, (E)=0. Then by [8] corol-
lary 4.6, B is filtrable. We have two cages

) E is decomposable, it is a sum of two line bundles,
E=L @ M. But cl(;) £ o ) = o () &0 and ¢ (L).c, (M)=
:cz(E)=O. It follows that cl(L)2=0 hence, bv'Theorem 1 cl(L)zo
and cl(M)=0. Then E is a sum of two topologically trivial line
bundles, hence induced by a representation (Appell-Humbert) .

LIERS

ii) If E is indecomposable, we have an exact sequence
0~ L-—>»E— M@ I,—> 0,

where L, M are holomorphic line bundles and Y is a locally com-
plete intersection of codimension 2 in X or empty. We aet.

et o

1 l(M) = cl(E) = 0 and cl(L)ecl(M)'+.deq Y = CZ(E) = 0.

Tt follows: that —cl(L)Z + deg Y = 0, hence dess =0 (Nee )

=

and cl(L)2=O; again by Theorem 1 we have clkL)=O and ¢y (M)=0.

1f . ¥ M, then H°(X,L @ M¥)=p® (x,1.¥ @ M)=0 because X has no ai-
visors. By Riemann-Roch we get h¥(X,L ® Mx):O, contradiction

(E s indecomposable). It folleows that L'g M and we have an exaqt

sequence
0 = L =ws E=—p LB 0,

The extensions of L by L are classified by



G i

fas
!——J
>
us
o
=
B
=
i

w0~ 1 -
' H (X,J?X),

which has dimension two. The translations operate trivially on

il p . e : :
H (X,ﬁ&), which shows that E is homogeneous, hence induced by a

representation of %1, EIOE.

Remark. On an algebraic 2¥torus oda [13]1 has constructed
"an indecomposable 2-vector bundle E with cl(E)=O'and CZ{E)=O,
which is not induced by a representation of??l.

As for the case of a(X)=1 one also obtaines 2—vectbr bund-

les with trivial Chern classes not induced by a representation

of Wl'
Eor the case of decomposable 2ﬂveétor bundles take the
bundle Eztﬁ(éj &0 (=c). Then c kE):O and c. (E)=-c. ({ (C))2=O :
A .,X . < X . ® : l 2 = l VX : ®

Sipce cl(QQ(C))%O, d&(c> and_é%("c) are hpt induced by:a repre=
sentation of Wi(x); hence E is not induced by a representatipn
ofﬁfl(X) (C denotes a general fibre of the ellintic fibration

f : X-5).

For the case of indecomposable 2-vector bundles we follow
the idea of Oda [13}. Let E’ be an indecomposable 2-vector bundle
which is induced by a representation of‘Wl(X)u Then by.Matsushim
ma  [10} and Morimoto {lI} it follows that E’=Eo @ L, where L is
a line bundle from Pico(X) and EO is a,vedtor bundle obtained
from a unipotent indecomposable rep;esentation of ﬁl(x). By Mori-

1

meto [11], the bundle:E =R' @ .. is an extensioen of the follo-

wing form:

0

0 -, —>EL @ L =y &, —2 0,

hence the bundle E’ is an extension of the form



() . 0wy Lot B/omy L —20,

50

with LéPicOX (E'" is not simple because there are no simple vec-

tor bundles with ¢.=0, cézo on J=tori: see Bl

:L =

Take now the extensions

(5 0~ G (C) = B> & (-C) = 0.
By Riemann»Roch Theorem.we have hl(X,é&(ZC))=hO(X,¢§(2C))¢O and
we choose a bundle E which correspdnds to a non-zero element of
the group Hl(X,@%(2C5). Remark that HOm(@&(-C),f&(C))#O and
Hom(é&(C),@&(—C)):O. Then, by the Lemma of section 2. 20 13}, it
follows that End E =€ & Hom((&(«C),d&(Cj), andi in particuler E

is indecomposable (the first factor consists of the scalar mul=
tiplications, while the second factor consists of endomorphisms

X
é%(c))#o and Hom(L,L)#0 it follows that the extensions (&%), (&)

whose :square is zero). We have cl(E):O, CZ(E)=O, Since HON(@Z(”C)
are maximal "devissages" of the non-simnle, indecomposable 2~-pund
les E, respectively E’. By Elencwajg and Forster [8], Pronosition
1.11, these maximal devissages are unicuely determined, hence'the
bundle‘E-can not apmear in an extension of.the tyﬁe () T fol=
lows that E is not induced by a representation of %i(x).. . '
Let X be a nonalgebraic 2-torus and'lef G=NS (X) be the

Neron-Severi groﬁp of Xo If o e’ then_we.denote by Ga=a+2G, tﬁe
class of a module the subgroup 2G. Let @3 denotes the cuadratic

intersection form on G and let m be the integer

el max(‘?(x).
X&Ga

©

We have the followina result: an intedger N is the discriminant
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of a filtrable 2-vector bundle E with chE)=a iff it -satisfics

the conditions ﬂﬁéma, &xﬁma (mod 4);: see [6]. Bv using the Theorer
1 (the case of 2-tori) one can compute the bound m explicitely
(see [6]).

As another application of the Theorem 1 one can ébtain the
range of Chern classes (cl,c,) for simple filtrable 2uvec£or
bundles on nOhalQudelC surfaces without divisors (after L2}
one knows the range of Chern classes of holomorohlc filtrable
vector bundles on any nonalgebraic surface). One can show that
we obtain the same range.as for ageneral filtrable bundles, with

some precise exceptions; see L
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