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INTRODUCTION

The present work is concerned with‘th@ numerical analysis
ef unilateral contact problem knewn as Signorini problem with
fTJCuIOﬁ (see {4}, (5 ]}w

Results on the existence of the solutions of the. quasivea-
riational inequality involved by this problem have been obtained
for the first time by Duvaut (5] for a non-leocal friction law
where sufficient conditions for uniqueness have been also given
and by Necas, JarusSek and Haslinger (9] for a local friction law
in a particular cases

Regularity properties have. been given in [3].

Finite element analysis of the Signorini problem with fric-
tion have been studied in {7], (8] in the case of prescribed nor-
ﬁal forces on the contact boundary and in [1@] where an abstract
error egstimate is derived,

In this ,apar we use an algorithm of Bensoussan-Liong type.
for obtaining the numerical solution of the quasivariationai ine-
quality formulated in Section 1 and which describes the Signorini
problem, The c@nvergence of this nlgorlthz is proved in Section ¢
where we also derive an error estimate of the finite element
approximation with respect to mesh parameter he

An snalysis of numerical results is made in Section 3.

1. A ’quATI‘”AL FQ“RJLATILW OF SIGNORINI PBOBLMX

s

We shall consider the problem of finding the field of
in
displacements a llﬂ“ﬂfLy elastic body which is in unilateral con-
tact with a :r*i.gid‘ support following a non-local friction law

(see 151, [10]).
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In order ta give a varlatlonwi formilation of this problem,
bounded Lipschltﬁldm,
let {Y be the! ‘domain in Rpg p«w,5$ occupied by the body in the
‘initial unstressed state. Let us denate by [° the boundary of
Ll and let ngYiﬁ&g be open and disjoint parts of [ such that
[ f &)F’L; > and igww, Suppose that FEEC
Jl
Ve introduce th&afollﬁwing gspace:

{ %[Hi 1P; v=0 a.e. on ra]-' g vl

which is a Hilbert space with the scalar product of EHI(QJ}pg
We shall denota:b& nﬂf| its associated norm.

We shall use»th@ Tollowing notations for the normal and
tangential components of the displacements and of the stress

vector, respectively

un"“uini; u’ﬁ«“a* it 5 100 [ [

S e
S =G n.n. -~ n,
f 'Jn la’ T 3 n'i *

where n= ﬁm ) is the Outwar& normal unit vector on Y‘

If" we denote by K the following nozwmmpty closed convex

subset of V:
K :{XgV; &0 a.e. on T; }‘ : (1.2

then it is known (see [5], [10]) that a veriational formulation
prob]emg

of the Signorini’ with non=~lecal friction law is as follows:

find weX such that

a(E,EME)+i§E,X)mqu,g)zLCVng)y N veK (1}3)



where:

&(ggy)ﬁgt «(u)&i -(v)dx,

(1.4}
LR f
£ -
=) PR @l vglae, (1.5)
‘ﬂ; : G - .
sw= frymax + feyv0, el
e 0
A
I 1 v, Qv :
where &, (v}m 5(3%> T-3%-) is the strain tensorytslj(v) is the
. o -

tress tensor ralated,to %ij(q) by means of the generalized
Hooke*s laws

LJ(E) > aijkh&kh{Y?ﬁ ~in .,

fu eL(fb) is the coeffncwenh of friction such that n3» o a.e. on

VZ,QL is a linear and continuous mappmng‘from H 3/?(

f5) to
Lo

, Te[L°(@)) P is the body force and ie[L2(fi{]p is the
prescribed surface tractione.

We have used the summation conventione

Suppose that the elasticity coefficients of the bédy

s satisf symmetry conditiont
algkh satisfy the symmetry condition

2 & mr/\w‘, L3 d:,i_'«
Siakeh T Pyimh T fengg o

ik

and@ that a. Jk?eﬁ “(Q) wher (Q} ﬁenotes the once continuously

- @ifferentiable functions on LL .

Suppose in addition that the bilinear end continuous form

R is V-elliptic i.e.. x>0 such that

a(X?v)gqnv\\a s \:? veVe (L7

Remark 1.l : Hote that if me a([‘) 0 then (1.7) holds by
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Kornfs inequality. In the case m@s(f%)ﬁO then (1,7) is satisfied
ify for example, KND mﬂ@ﬁ where D is the set of rigid displa-
cements (see e.g.[2]). -

In erder to justify the application of an algorithm of

-Bensoussan~Lions type to the quasivariational inequality (1.3)

we shall prove the following existence angd uniqueness theorem,

THEOREM 1.1: Let V,K,2,i,L be @efined by (1.1}, (1.2,
(1e4)~(1.6)s Then there exists fLI?Q such that for every s
WECE el 4 Vﬂ the inequality (1.3) has an unique solutione
e e . . \
Proof: It is easy to verify that if there exists a solution
u of (1.3} than.geK@ wheres

Ko={reVi alv,g)=re), Noe[8@1) P, £(p)= | £,¢,6x.
- . o e £

Also, let us observe that Gnﬁv}éﬂml/zifé};ﬂ veK  so that
we may take iﬁKﬂxK~w~*R@ : |

Let S be the function which associates to every weK , the

element SweK, such thate
a (Bw,v-Bul+j(w,v)~j(w,5w)>L(v-8w) ,N veK, (1.8)

Teking intoe acecount that for-yﬁKG given, the functional
i}ﬁs.)ﬂi~*fli8’i - ,. convex and lower semicontinuous on XK,
it folloﬁg that the variational inequality (1.8) has an uhiq&a
solution Swek, In addition BweK, so that the napping ngo;%PKG
is well~defined.

We remark that the set of fixed points of & coincides with

the set of solutions of the inequality (1.%).
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Therefore, the question of the exist

ence and uniqueness of so-
and uniqueness ®

lutions of (1.%) reduces to the existencevof fiXed peoints of S.
Now we show that for w sufficiently small, S is a contrac-
tion. Indeed, for fnﬁw?efk_arbitrarilyg from (1.8) we obtain:

,,,,,, (1.9}
It is clear that &

is a continuous operator from K
) RS e
5 /“(fé) from which we obtain that:

‘ J (M'L gvﬁx )'5’ J (u") yvl)""’J (ul ;Vl)"‘J (U-? 2

)| el | Bpup Ul e
ey

e«“ “1 =¥ \!ul,uzem \dgl’fYZQK” (1.10)

If we teake g & ?? then for every - W1th H}Ll

L“’(\ 3 SHus
we obtain from (1.9) and (1.10): e

I Swup-Swall¢ e ll wymwa | 5 N

A2 0
wit o =
el ()
‘ﬁ
vhere k= CL 7
&L .
Therefore, the mapping hag an unique fixed point hence
there i

xists an unique solution of (2.%). :

Formulation (1.3} is not suitable for approximation; the
reason for this is'that j 33 is defined on K, which is diffi-
cult to approximate. To aveid this, we proceed as follows,

We sha]L congider, for simplicity, the mapping Q. given
by

@4(?)(1{} »»(Z,w i ‘ﬁ zeH 1/2((1?) \\TX& Fn

where { +, o> denotes duality pairing on H 1/2(\ )zﬂi/g(ré)

Ayl=a(iz=yl ),N yeh with wed

(-8,3) (8¢R, & »0) such that
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w > 0 and

N |
S w dt = 1,
S

For every ve“ﬂ we shall consider w Q,D* (ﬂ)]p defined by

‘a

. el

wo="N where NelH L& ) P gueh that “f Ii}m’z BpBe ON ig where
Py L)

{:[(f’“{m]@ {_} */f £E }'}p is the trace operators

With the above I'J.O‘Lci’tl()uo we define the application

@: (B ) 2 £2() by

Q(g)‘(;}g}mu(v,w Nimf‘(w 5, V VeLH (ﬂ-)]p N x eré o

In the following we denoteﬁby u the solution (that ‘thar

exists and is unique) of (1.3). Usn,ng Greenfs formula, it re-

sults that:
8 (s (u))= Q@) on Ny

Tt is easy to show that the problem (1.3) is equivalent

with

a(g;yf‘g;}"fj(.p, v)-j(u, su)y L(t{ﬁu), X vek - (A0
where Jj :[Hg‘(ﬂ)] Py \:}Ifl&zla_}R is defined by
(1,32)

JCE};,»‘:? ZSHQ(&)\ \y;é\ ds
o

Further on, instead of (1.%), we shall approximate the

p:c‘obl@'i (1%,

LEMMA TL 1: The mapping Jj: LH (Qﬂ Py )_HL(Q)] _» R defined
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L 3C3y 590043 Cagy vy b= (g s 97 )= (w0 ) 6 el el s i ?“ﬁ
_ | L)
L. e iy
\ %}19:‘:}2;3?‘133‘2»&'(1"{ (ﬂ}}p ¢ (1.2%)
with C_ a positive constant depending on 5"“?3 and w

(1.22) of J we have
‘ J(Q;@ §V? “33&;1;—;;»»;)“3 ({&ly‘lii)‘“s {U.Zi‘?'z) \ \

i

g 1Quay) “n(ua)\\V2¢MV14‘dn =Sfx(a(g1?gz,§§%\{ggtﬁgit\dggg
N 2

£ Clig) fug =aoli vy =v,| Sn W A6 Mull ow W ug=uoli v =y,
;L “Eﬁwlwg %lngr b RS Sl ﬁ%)ﬂlﬂg V=¥l 5
: 2

3 b ' : e ;
with C_=C . mes ( f}) max || w~{] and where Schwarz's inequality, the
j b o B '
=

centinuity of the bilinear form a and the trace theorem where

ueeds

Y

Let us dmnot@by the mapping S:K—»K which associates to

every weK the solution (unique) of the following problem:
a (Sw, v=Sw) J(V V)M(MSWDL(V-'SW) N e K.

We define the sequence: for uCﬁ K chosen arbitrarily we put

-1 . n sl : .
y;.:nf:Sun Y i.e, u® satisfies the inequality:

a(,t} V-, )+ (g,:n l,v} JCu ,umb L(vh«a ),\’1 vek . (1.44)

By similar arguments as in the proof of Theorem 4,1 and
usi ng Lemma 1,1 it re sulta that, for any J1,0 with “fﬂ ¢ }( -9(%
: , L (T

is a contraction. Therefore we obtain:

o

s o



Hgnmgﬂééknﬂgémgj\éCkn ' : (105

where C and k are positive constarts independent of n with

sl :
Coﬂﬁﬂﬁ%(§?>

= el e

. : (2.4

2. FINITE ELEMENT APPROXIMATION OF THE PROBLEN

‘We shall give a flnlte element approx1mation of the varia-
tiemal inequality (1.11). _

Following the standard procedure'in the finite element .
method we consider a family (Vh)h of f;nltﬂ dimensional sub-
spaces of V (see [l])

Let (Kh)h be a family of non-empty closed convex subsets

of Vh which approximate K in the sence that:

i) \/ V(,K gv, = I‘h uuch that vh-w--%v in-Y,

v"\!l-

e - mn_} 3 i
(ll)&ith’Kh with v Xiln‘V then v ¢ K.
Kow, we formulate the following discrete problem:

fin@}_A‘;h&“:-}(}T such that
' (2el)

a(u ’\h"uh)+J(Uh’Vh) J(uh,uh)$ L(vh u, \ivhé Ky
Applying similar arguments ds in ﬁl, it -results that
the mapping Sh:Khm% Kl which ass 0u1ates to every W & Kh tne

element ShHhG'Kh defined by:

8 (S Wy s ¥y =S¥ ) +3 (¥ ) =3 (S, ) 2 TCwy =8y ) 5N vy € Ky
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ig a contraction for SIY . with erugmgré}< 5&'*
, ; i (%

Therefore we have the following result.

« Then the problem

(2.1) has an unique solution.
Further on we assume that the condition of Theorem 2,1 holds
% : % i o k) + G k7
Let. { ?]h be an uniformly bounded sequence such that ﬁheﬁha
LJ4is i A

Prom Theorem 2,1 it follows that we may define the Sequences

2 G T P o
1y (P “.‘X’F? L
for .{-»j'.!.).\' fyy WE pu

e hgh %
hence, we have:
”le e El‘ H‘/ ph Hu-'%, ““"LIhH:{; G}Cn . - : (2»‘3’)

where C is & positive constant independent of h and n eand where

k=0 “ fﬂ ( f /é’\', @

We shall now establish the convergence of“{&h‘h to u without
an 3 epulari&y assumption on the solution u of the problem (Z.%).
S In order'tﬁ'obtain,this result we define an auxiliary se—.
quence of prob!@Ls for vy ck given such ﬁhat {gﬁ}h.ia unifarmly.
boun&&df we denhote bwathhg the solution, that there exists and

0

is unique, of the problem:
S - n ; ' : ‘
& (s T 43 07w 3 0 5 L) N vy (2at]

where.q?”% K is defined by (1.14)
The relationship between {Wg}h anﬁfgn'is made clear by the

following result:
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PROPOSITION 2,1t The $eqaancﬁ-?ﬁ%jh.d@f1n@& by (2.4} approxi-
mates the solution u of (1.34) in the senge:

i

n !
W, —u  as h—s O,

Proof: We first show that tha mequenca'{v }h is uniformly
bounded in h. Fmr‘@hixy,mﬁing"ﬁha continuity of a,that nd}n is
hounded and the prauﬁrtv (i) of Kh?w& derive from (1.7) and (2.4):

3.

Aé (4;1; W La(f LW )4“3(131 1

n;

i s D 1 ve nsl
mlmx X%h)&a(ﬁthﬁ)+J(§§ gfh)”

V\v-i

(2.5)
XI(VV ""\5}1 0;11"% hi %*(323 \v VEE}"):Z $

Cﬁf Gz,baing‘ ?ulth% constents independent of n and h. Hence
Yk .

the sequence {wﬁ}h is uniformly bounded 1r h and, passing to a
sequence which we gtill denote by {Wﬁ}h ¢ 1t follows that

I n & £y 5 a0k : n
Wé‘”@ as h—» Q. By condition (ii) we also have weK o
Let.geK£ Teking in (2,5) ‘a sequence {gﬁﬁh with YHEKh suah
that v),— v (mhaﬂ@ existence is insured by condition (i)} we ob~
taing
n

& (‘:’ $ 1"{

-

y+j @t

g

JW ) £1im 1ﬂf[&(W}9W )?J(u ﬁw )l
Yo h-0 s

& a(w ,v)+g(wﬂ L @) LCVwm ")y \1&&K

Therefore, from the uniqueness of solution eof (1.14) we have

xle'*xgrl
e e
n N : : v
Let ug show that vhf_yuA in V. We observe that we have:

o a5 (@ Wi a (uBe® pullen™ 45 (00wl 2

(2.6}
& d(h h)%J(u Yh)mL(yhfw§)+a(gniQp)wgangggn},ngthh '
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Teking in (2.6) a-s%q&euc@ QV'W- converging etrongly te

&

- :
uf‘g whose existence is ins wr\d by wnd‘z.tlcm Q:a.} we obtain, pasg-

ging to the limit as h — 0O
op Bt T G e
Flam  ulelin inf Jla Ty W) &
s gk o l}ﬁ*O P I

S P b g g RIS
& T {w aua }J,\{.ﬁﬁ,“ ] "I:i’.,..u ;E o 3 (,i.}"_j ﬁ- i.u.,“: }]M <7 ( u }

®

from which we cone. lude

3o
3 .z. l"l'fﬁ_gu}

Yim Ant J(u

5‘9! }‘*j (U
h—0 oo 5

A n
llm L - = 0,
10 } %h ™ B “

We are now prepared to prove the main result of this: paper.

TI*O*TM.@mE Let u and uh‘b@ the solutlon of (1.3} and

(2.1}, respectively. Then
3 ¥

%

Proofs We observe that we haver
b5 ! e | ! - i i o
llagy-all g || + Hup=a™) + fu] o (2

Tn order to estimate the second term in the right-hand side

* (2.7) we Tirst deduce from the definitions of qg andgwﬁ that

n The 13 A o n
ﬁjyuh-wywﬂ)am(mh - Wy Wp o= W) g

T (et SRR ) S ERRERSIER, ¢ Dty
5:3(% sp)+J (uy lgv wg(u yn) Jiun -1 u )
£ ; f“i ¥ b E &
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from which, using femma 1.1, we obtain:

‘ (2.8}
By choeosing w, = Uy 5 WE shall prove by reccurence that:
¢ e dide .
o : 0 2
1 e wn i = -
iﬂ%h ulis s

(2.9)

Indeed, for n=0 the result is evident. If we suppose that
(2.9) holds for n-1 then we have:

S NG SR PR e E L
L ayma sy = w1+ [l = 2l <
n-1 N1 e mip =
£l » a7 i dadleg . e Li?bhm%l - u~|
i f f 3 o

where we have used (2.8). It follows that (2.9) holds for every
n, n3>0« '

By (2.9

and (i,iﬁkg'far &> 0 given, there exists >0
such that: '
op = apll* e - ala 3, now

(2,10}

' Choosing n=N; in (2.,7) we have by using 2.9} and (2,10):

He :
Bk e Ml S
I uy = wjjst/2 + izzgliygh - ut |

£
T ¥

(2 @ i §~}

But from Proposition 2,1 it results that, for every i, there
existS’H§> 0 such thate

| wh - g

ey & &
ik Teh hézyﬁgjﬁﬁ°g N hely

-f2.12)
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gy, from (2,11} and (2.12), for ey 0 given, there

i=0,1,0404,0;] such that:

(g
e
Pt
it
i
=
i
St
ot
(..4\’—
>
Rt
Fedl ’m.
w

N l’ks}{ag

a8 h— Qu
imate for the finite

emains to derive an error estima

It now x
element approximation (2.T).

Let us be gin by ma“*ng additi onal assumptions sbout |\

& E i & %

. Vy, end Ky. Assume that [, ¢ 9
there exists an operat&vﬁih:V—th sueh thats

X

Suppose that

9 FEEEN .
R Y :
r=0,1,

IR pyv-wlipe en™ iy

u fﬂ,h-VW'Ef ﬂ : ‘:L/’}gr‘ £ Ch™ \\\' \\‘\-'m ¢

- ) .~~»
far . every Vbtﬁ ﬁﬁ}}pf\v‘wh@r@ \‘035”2/23?2. and || \| o denote

7 = : i =
on \H mtsf 2(?‘ ;3| P and Le? @) P, respectively,

th@ normog onn

We also suppose that

T ueky,

where u is the solution of (1.%).

Remark 2.%: It is %nown that if V5 is defined by:

pe[Pr) P X 2Ty, '
hat I ~k“)(w P
e Jh

¥y, ={vevalc®@)? ;
igs & regular triangulation eof 0 such that -

. where gh
space of all polynomials of degree< k in the

and 2 Py ié‘the :
variables AyyenesXy, With kyl, then (2.1%), (2.14) are satisfied
if T ,v denotes, as uaﬁalg the Vy - interpolant of the function
& asidin (8] .(2.35) holde,

veV (see Lfﬂ) s Next, defining N



THEOREM 2.3: Suppaese that the condition (2,43%)-(2.15) hold

§ i l e
and that K;=K, If u%\H (Q}}? K thenr

S
&)
St

i bk

Wy, = ulisChiull, ; : (21
re C Is a positive constant independent of h,

Proof: Taking v=uy in (1.11) end vh*ﬁiu in (2.1) we obtain:

o

Oiﬂgﬁfmﬁiga(gwgh @»u,) a (-1, T u- u‘b“(ugthjmuwaﬁﬁzu~q§+

. (2.1
+J (u, Lq)wdfﬁfg L?)mg(whguhQ J(&‘ﬂku}+35u;ﬁh$}“J(& u}s

s r.2 : |
Taeking into account that.qﬁtﬁ”ﬁlf]? it follows that:

a(u V)NL(V):q§ﬁ1~(u)1~v ds é:C*HuV v N eV (2.28)
e e O sl ”Mwi/zgﬁa o
a ;

where we have used Green's i’ormulus and that:

Jlasmpun)-glu,u)e Sr¢{@(u2%ﬁhaw®%és 2
B b A
R : (2.19)

Substitution ef (2,18}, (2.19) and (1.13) into (2.17}

yields:
iy 1% C iyl 7T g |+ ol e || ST 1t

by" the continuity of al.,e)e

Using Young's inequality:

. 2
abged/2 + b/2¢ Nevo , M abeR
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for €=%C', we obtain from (2,20)

Ly SR & (g1 ) f W VT
pne Vi, + (| wlatamaden ) Mty ] T‘ o .
Eii“m 2l 2 It prui” o+ C ﬁ ‘\ ‘T‘?A i/?;rﬁ
Therefeore, C? 13) and (2.14), the estimate (2.16) fol-

5. NUMERICAL EXAMPLES

Let us consider a plsne linear elastic body which in the
initisl unstressed state oceupies +he domain £ =(0,16)x(0,8}. For
comparison purpose we have considered problems for the same
with different values of tractions and coeff icients of friection,

The dfCOADO;LthH of the bounds ary | into Poﬁvl and Pg isg

given by

G - '
r < {:{1%};‘2)&_}{.“ 1 Q'ﬁ}{z( &‘jg KI::'Q} 5
Ly =f5 LY where:
S
5 zk’}? ‘{? Cnii ¢ {}4;‘21( }. 3 }».,2"‘" e

. -{M WQ)C R

J
i

We suppose th 1t the body is hsmogameous igatrdpic and is
Qharactquzeﬂ by a Young's modulus of E= 106 and a Ewl)&cn 8 ratic
of ¥=0,%.. We have considered plane stress problems.

Let 55})hkm-ra@u1ar’family of triangulatione of {1 such

that L=l ) o1

4 k.-Jh

Let gh’ﬁh be the finite-element appreximations ef the

space V and of the cenvex set X, r@@p@cnively, defined Bby:



g e

Tl !f" g ! 7-2 S B ~2q s i ; -
vy = iyh~\yhg}«)6;ta (ﬂ.)\ vh(%i)woﬁ\}gie,Poﬂggh,

h\T "\"{ \J 0 ey, ﬁ

Sl g T
}\. e \L,\fl :“(V 9\. )t» V}1’ V}’l{\g},n}-)‘?- (.)g\: f‘—%ié:" \ ﬁ)zl’ 3

In order to solve the discre te problom (2.1) which
approximates the given problem ($a3) it suffices, as we have
(4

. seen in 382, to solve the following sequence of discrete

variational inequalities:

o e

a(%h’Ythh}+3{un -1 vh) d(un l,u > L(v h) \}vhe ﬂh (3:1)

Eor ulé K, given.

7t b

We remark that (3.1) is a Signorini problem with "given
friction" which is equivalent with an optimisation problem
for a non-differentiable functionsl. For this reason it is

advantageous to use the following saddle point formulation

(see e,gn[éj):

s (u®,p™) e Kx N\
rn, n LB ‘ " o
&yw,q)igm,p) w(&p),wxehﬂqeh (3.2)

- where

inf ,Q) .t(,f, a(}r’}{) L(V)%‘g :*’tds. s
; "‘\ '

2
g'= p| W ¢ il
0
g8 z-{qQ:Lz(ré); lgl< 1l a.e. on supp éﬁ g=0 on Pz supp g?}.

For simplicity we have omitted the subs deripth;



We have applied Uzawa's algorithm to solve the problem

(362)9

Three numerical examples have been solved by the finite

o

element approximation discussed in above,.assuming the absence

of body forces i.e, f=0. In the first example we take the

i

traction t defined by %=(0,0) on Pi and ﬁf(SO0,0) on !. In
' - ' -
the second example we comnsider £=(0,-300) on Pl and t=(500,0)
: i

on '] and in the last example t=(500,-300) on '} and %=(0,0)
L'r‘”e: V
on Iy :

We decomposed €1 in 64 triangular finite elements as is

shown in figure 1.

fig.l. The finite element mesh

In all these examples wé€ are particularly interested in
showing the, influence of the friction's.coefficient on the
tangential displacements on Yé as ig illustrated in figures

2""% e

Fig.2. The tangential displacements in example 1.

]
Pig.3. The tangential displacements in example 2

Fig.4. The tangential displacements in example 3
For this purpose the coefficientS'of'friction were
taken equal to 0.2, 0.4 and 0.6 réspectively.
"To initialize the process defined by (3;1) we have
take'ug as béing the unique golution of the classical
Signorini problem:

& (s ¥y > Llipmy) oY e Ky



i
=
&

which ‘corregsponds to thk case F_sos
According to expectation, the tangential displacements
obtained in example 2 are smaller than those obtained in

example l. Also, in figure 4 one can see the influence of

m! :

combined tractions on !, on the tangentiel displacements on Pza

ey
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