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STABLE RANGE FOR TENSOR PRODUCTS OF EXTENSIONS

OF K BY C(X)

by Nister Vietor

INTRODUCTION

IR {41 G. Nagy studied the stable rank of thé»algebras

ig

are exact, while for odd n the stable rank is only determined

- of n-dimensional Toeplitz operators. For n even his resglts
up-to 1. In: this paper we obtain general results for the stable
rank of tensor products of'Brown—Dbuglas—Fillmore—extensions Egl
‘of K (the algebra of compact operators) by commutative Exenli=
gebras. Our results are sharp under some additional hypothesis'
which are fulfilled if the spectra- of the COmﬁutative C*-algebras
involved are manifoldsl In parficularvwe cbmplete Nagy's results
by obtaining the exact value of the stable rank of C(X)\@ﬁ?ﬁ

1o X s a compack manifold. We obtain also-some-estimates for
M.A. Rieffel's connected stable rank csr(a) and introduce an
apsolute connected stable rank, aqsr(A), which turns out - to be
quite useful and cshow that it eqﬁals the stable rank of

A0 @aT] e

The first section deals with preliminary material due to



‘M.A. Rieffel and G. Nagy. The second section contains some
general results concerning the stable rank, the connected
stable rank and the absolute .connected stable rank. In the
third section we generalize G.Nagy's estimates. The last section
contains some technical lemmas and the proof of the main
theorem.

T would like to express my gratitude to Professor Dan

Voiculescu for suggesting me this problem.

1

We begin by recalling some definitions and results from
(51 .

For a unital C*-algebra A and a natnral number n we con-
sider'Lgn(A), the set of n-~tuples of elements of A which gene—

rate A as a left ideal: the topological stable rank of A is’

the least integer n (if it does-not exist it will be taken by
definition to be o0 )} such that Lgﬁ(A) is dense in A, Accord-
ing to [6] this number coincides with the usual Bass stable
rank of A, denoted sr(A) which is the least integer nz1 such

that foxr any (a1,...,a ,a

- n+1)6ngn}1(A) there exists

b1,..,,bne-A such that.(a1+b1ah+14n..

such n exists we take sr(A) to be oo ). We denote by CL (n,A)

,ah+bnan+1)eLgn(A) (iFf 1o
the group of invertible elements of Mn(A) and by GLO(n[A) the
connected component of 1 in this group. We shall denote by
csr(A) the connected stable rank of A which is the least
integer n 2> 1 such that the action of GL°(m,A) by left multipli-
cation on Lgm(A) is transitive for any myn (if no such integer

exists we take csr(A)=o). According to corollary 8.5 of CS] ;

esr(h) is also the least integer n such that Lgm(A) is connec=



ted for any m2n. If A is not vpital we take sr(A) (csr{ldA)) to be
sr(X) (csr(d)) where A is the algebra obtained from A by
adjoining a unit.‘

We shall use the following results proved in [5], here J

is a twosided ideal in the C*-algebra AT

(1) sr(J) & sﬁ(A) (thm. 4.4)

.(1.2) sT (A/j) < su(n) (thm. 4.3)1 |

(4. 3) sr(A)< max"g st (3), sr(a/J), csr(a/d)d (thm. 4.11)
S R (thm. 6.4)

(1.4) sr(A ® K)=
: 2 A s )22

Let A=lim Aé be an inductive limit of G*-glgebras over
tel '
the directed set I, the following results are proved analo-

gously as theorem 5.1 of[:5] :

(15:5) sr(A)§ Tameint sr(Ac)
e el

(1.6) csr(A) £ 1im inf csr(Ac)
cel

The following results are simple consequences of defini-

tions (A, B are C*-algebras) .
Gl sr(A ©® B)=max %sr(A),‘sr(B)}»
(1.8) csr(A @ B)=max { csr(A), csr(B)}

Lemmé 2501 [4] reads °

(1.9) csr(A) & max %csr(J), csr(A/J)}



We shall use also the following consequence of a classi-
cal theorem in dimension theory (see [51 thm: 1.1 apd proposi-

tion 1.7)
(1.10) sr(c(X)){dim(x)/ﬂw

here X is a compact space.

It is a simple observation that x:(x1,...,xs)GLqS(A) G

1 1
onty if q7(x3xg)> 0 for any geé %1,...,5% and: any pure state CP

and only if there exists ¢ >0 such that‘x*k +..l+x;xS>€£ if gnd

of the C*-algebra A, this also shows that £ e C(X,A%) belongs to
Lgs(C(X,A)) ifand.only if £(x}e LgS(A) for any:point x in the
compact space X.

If A is a C*-algebra and %,ye A° we shall denote by

Fayil=

R i = ] ok : g
~‘mgx hxg th for x—(x1,...,xs), y~(y1,...,ys).

1

In this section we prove some general results concerning
the stable rank and the connected stable rank for C*-algebras.
We also introducevthe notion of absolute connected stable rank

of A and prove: that it is egual to Sr(C(éﬁ,f}) ® A).

(2.1) LEMMA. Let J be a twosided ideal in the C*-algebra
A and W :A —» A/J the gudtient map, suppose that s 3% sr(A). Let

€ >0 and x=(x .,xs)esAS be such that 1T(x)?(ﬂ1x1),...,7r(xc))

100
éLgS(A/J), then there exists x‘&LgS(A) such. that lix!-x{l <&

and T (x!)= T (x). Moreover, if y=(y1,...,ys)e_As is such that

ﬁ1y1)nix1)+...+ﬁ%yn)ﬁixn)=1 then there exists y'eAS such that

e v - e : :
yix%+,..+ysxs~1 and W%yg) n%yg) for 1<gg<s.



PROOF. Denote also by T *“oe mép Mn(A)~%°Mﬁ(A/J). The set
V§={exp(ﬁ(a)rﬁ(x)§ Haﬂ<:g ’ aEMS(A)% is a neiqhboﬁrhood of
W(x) in I.gS(A/J')° Choose x"€& ﬂ71(V yﬁLgS(A) such that
e i £.5/2, Then'ﬁ(x")zexp(ﬂ%a)kﬁ%x)vfor a suitable a&MS(A)
with ;la({(g . Let x':exp(~a)x"eLgS(A) then ﬂx'«x&{g.ﬂx'—x”u +
+ “xﬁ;gﬂig[iexp(—a)f1n et o €/2 <(§;~1)(llx{{+ £/2) &8 /0 2 E
if § is small enough. :

Since ﬂ“(y121+,..+yéxs)=1 we geﬁuy1x1+...4ysxs=1—a w;th
ae .- Let guig be an approximate unit for I and y“,...,ygésAS
such that y"x‘+.,.+y;xé=1. Let yg=(1fuciy

1= q

& i) e 2 Ve Vo « i e ey 3 1
n(yg) ﬁ(yg) for 1$34<s andﬂy1x1+...kysxs 1.(1 uc)a. Choosing c¢ .big

enough we obtain- the desired conclusion.

+ucyg_for 1¢ggs then

e e 0 2 r=1_
Let B_=§{x=(x,,... X )ER Ix1+.,..{rxrs12)’8 =3B_
The last lemma yields (for J=C(Br) ®@ B and A=C(Br) @ B) the

following corollary

(2.2) COROLLARY. Let B be a C*=algebra, S;SI"(C(Br) ® B)

1

and feC(Br,BS) such that f(x)ELgS(B) for any xes.  then for

any -0 there exigts g@C(Br,LgS(B)) ;uch that flsr"1=qlsr_1

and .Hg»fﬂ<ﬁ€ 2

(2.3) DEEINTITION,. Let A be unital a C*-algebra, n21 an
integer, then we say that n ds in the.absdlute connected
etable range of ‘A il for any noneﬁpty connected open sét VqAn
 VALgn(A) is nonempty and connected. We shall denote by acsxr (A)
the least integer n such for any mzn m is in the absolute
connected stable range of A, if no such ihteger exists we let

©

acsSr(Ny=ioa. .,



(2.4) LEMMA. Let n be an integer, then n is in the
absolute connected stable range of the C*~alqebra A Af and.only

if nysr{C(I) ® A) and, consequently, agsr(A)=sr(C () & A).(I=ﬁﬂi§)

PROOF. A is a quotient of C(I) @ A and thus (1.2) shows

- that a=sr(C(I) ® A)zsr(A). Lét nza, VcAn be an open connected
nonempty set. We shall show thét VﬂLgn(A) ié connected and
conclude that n is in the absolute congectéd stable range of A.

Let xo,x &VﬂLgn(A), there exists a continuous function f: I -V

1
such that f(o)=xO ; f(1)=x1. Let £>0 be less than the distance
between the compact set f{tO,T}) and the closed set AN by
the lasL corollary there exists a continuous function g:I - >1Lgn(A)
such that g (o) =£f(0)=x o g(1)==£ 1)—x1 and {9~ f(} <¢ , then g
takes its values in %yid(y,f([O,f&))(E} C V.

Conversely, let n be in the absolute connected stable
range of A, it is then obwvious thét n?ér(A); Let ?€&C(I,Aé),
£ >0, choose m big enough such that ‘Cf(ti)“?(tz)\< 8{/3 for
any,t1,t2EI, \t1~t2\<;2ﬁn. Since nzsr(A) wé can choose yg&Lgn(A)
such that \‘ygwf(g/m)u< ¢ /3 for 0<g<m. By assumption each
of the sets Vq¥fy€5Lgn(A){ lly— ?(g/n@si €2/3 } is open ana
connected containing ya 1 and yg for 1<g<m thus we may find
J e C(I,Lg,(R)), q (g/m)= . and \P t)é;vj for té;L(j 1)/m, j/@]
then H{ )= )\l < \M}(t)—({; 5/m) il +\\c§> 3/m) =g ()l < ?e/3+&/3 £

proving that n2sr(C(I) @ A).

(2.5)'COROﬁLARY. 1° csr(A © K)s2 for A a C*-algebra and
K the algebra of compact operétors on a separable Hilbert space.
22 csr(C(X))Si}m+1)/2]+1 4f X is a compact space of

dimension m.



Let A, A1,.,.

fisms of unital C*-algebras, consider the following C*-subalgebra

’An be unital C*—algebras, Trg:Ag —% A mMOYr-—

2 =3 *"" 2 & q' Y 5 7 e = =5 ¢ ¢ o s e ¢ o
of the C*-algebra A1 B @ An B gx (x1, ‘ ,xn)c;A1 @ @& A

T, (%) =] 2(x2)=...=71n(x€n)% ind denote it by TTAAg (it is the
usual fiberproduct), denote M 2 by Al .
, e

(2.6) PROPOSITION. Suppose that s;sr(Ag) for 1<g<n and

“

o :
S A e ; -
S’SL(JD1TTg( g)) then s;sr(ﬂAAg)

PROOF. Denote TT%Aj by B. Let x=(x1,,..,xs)€BS, >0,
Xj:(xjﬁ"°.'xjﬂ)EA4 & . @ An,ngss)such that TT1(Xg4):"'

n
(X )=tg. Let t=(t1,...,ts)&(}?

S S ;
. =1 A Al o Tiet
5 am j_1ng( .g)),

t'eLg (A') such that | t'-tll<e , then there exists (x* -x_(l<e
S gk 9K
5 . ap t = [] iz s 1 = i :
such that @#XgK) tg and (X1k’f°"xskM:Lgs(Ak)' An obvious
application of lemma (2.1) shows that x‘=(x',...,xék§LgS(B)
iee d e R S B

e gn

(2.7) COROLLARY. Let J ., J A be closed two-sided

qres

ideals in the C*-algebra A, then sr(A/J)& max gsr(A/Jk)§ if
1€k<n

J=J1ﬂ g ) Jn'

PROOF. Using induction on n we may suppose that n=2.
LetTrj:A/Jjue A/(J1+J2)=B, then A/(JTF\JZ) is isémorphic with
TTBA/Jj

Let A and B be two unital Q*-algebras, %3,4M%End(A,é)
we say that 9 and\P are homotopic if there exists
AT —s End (A,B) such that m(0) =, (1)={ and the map

AlX:I~4 B qu(t):ﬁft,x) is continuoug for any x€EA. We say that



B homotopically dominates A if there exists‘cpéEnd(A,B),

}€End (B,A) such that Q)a? and id, are homotopic.

(2.8) LEMMA. Let A and B be unital C*-algebras such that

B homotopically dominates A, then ¢sr(A) s ¢sr(B).

PROOF. Let ¢ a@d J as above, x=(x1,,..xs)&Lgs(A), suppose
that s >csr(B), then X can ve joined to xp(?(x)) by an. arc in
LgS(A) and %J(X) can be joined by an arc in LgS(B) ok (10 ,.00500,
this shows that x can be joinde to (1,0,...,0i by lan. are- in

LgS(A) proving that szcsr(A) and hence that csr(A)<csr(B).

(2.9) COROLLARY. csr(C(By) @ B)=csr(A).

(2.10) PROPOSITION. csr(Mm(A))éﬁ}csr(A)—T)/n@+1 (here

%x% denotes the least integer greater than x and Mm n(A) denotes
{4

the set of matrices with entries in A with m lines and n rows,

M (A) is also denoted by M (R)a)
m,m m

4

PROOF. Let XEMm(A)S, we may view x as an element of
Mms,m(A)’ x=(aig) l¢i¢ms, 1<g<m, X@LgS(Mm(A)) means that the

equation (1) Z. Dby, aij=§kj has a solution. This shows that the
i=1

first row.is in Lng(A). vamszzcsr(A) there exists B1GGL°(ms,A)

such that

whgre X4 stands for ((Bx)12, (Bx)13,...,(BX)1m)



a straightforward computation shows that the first row in the

matrix X dsinslig (A). By induction we get that there exists

ms—1

BOCES (msiA) - suehs that

1 *
D]

B}(:: 0 1

0

Ois il

whenever mSvm+1;csr(A) and this matrix can be joined with the.

i g [ M,w(n)) :

-

matrix (&

i3 1¢icms, 1¢3&m
(2.11) COROLELARY:. Let A be an AF-C*-algebra and B a C*-al-
gebra, then sr{A & B)¢sr(B), csr(hA @ B)<csr(B). Equality holds

if A dis commutative.

PROOF. By theorem 6.1 of (5] we know that sr(Mm(A))=
=§(sr(A)—1)/m§+1$sr(A), the last proposition shows that
csr(Mm(A))icsr(A). Using (1.5), (1.6}, (1.7) and (1.8) we get

the desired inequalities. The rest is obvious.

(2.12) COROLLARY. Let A be a C*-algebra, then csr(A)=1

implies csr (A & K)=1.

el
In this section we obtain séme preliminary results using
mainly inequality (1.3).
Let us fix some notations to_be used from now on. We shall

denote by X(XO,..¢,Xn) a compact space of dimension



MG, e ) NEDE T :
F {7 n) 4 O X Xrl

Let A ’An be BDF-extensions of K by C(Xg), they satiss

1!900

fy an exact sequence:
(k) 0 K’M“)Aj‘-——vﬁ c(xj)w-aa 0

Let A=C(XO) ® A1 Rt E® An ’ Bj=C(XO) @(... & C(Xj) &

® Aj+1 (o An-’ for 04<jsn (thus B6=A, anC(X)), C1—
=C(XO) SR C(Xj"1) ® Aj+1 B0 e An ,othen from. (3 1)
we get the following exact seguence:

(3.2) 0 —> K ® Cj—1'”% Bjﬂ1w~a Bj-§ 0 1$j£§

Let us denote by cj=csr(Bj), sj=Qr(Bj), gcjcn, from

(1.3) -and (1.9) we get

G853 cj_1$max§cj, csr(K & Cj_1)gg maxicj, csr(Cj_1)%
&jssj_1gmaxlcj, Sj’ sr(K ® Cj—1)'
s -ain ® ¢ § ' S ; : < <
So we obtaln mO\1Tafnicn, csr (K & C]_1)g, §.&8,%

J
Y5 Clsre (e C._1)i, but Sn=\p/?}+1 ;

; Gl .
{ max 1Qn,ah,sr(K o] C._1 5

1oy J
cn§[3m+1)/21+1. If m=0 we can prove by induction on n (using
(330, (2.5 -andi(2.212)) that csz (K & Cj_1)=1, sr(K & Cj~1)=1

and thus SO=CO=1.(This also follows by a theorem of L.G. Brown

which implies that A is an AF-C*-algebra) .

(3:4) PROPOSITION. Let m#1 then



En/é}+1Ssr(A%£max%[m/2}+1, csr(C(X))%

csr{A)Scsr(C(X))

For m=1 SE(A),; csr(A)Q.i1,Zg g

PROOF. We have proved everything except csr(A)$csr(C(X))
but this follow from (3.3) by induction on n since Cj+1 has at

most n-1 extension terms in the tensor product,

.

(3.5) COROLLARY. [m/2]+1<sr(a)¢[(me1)/2]+1

(3.6) REMARK. This corollary is the analogue of theorem

6. of €41. Tt's: proof is inspired by that in [4].

To improve the last corollary we shall make from now on
the following assumptions: Xj is the inverse limit of mj—dimen—
sional finite CW-complexes, dim(Xj)zmj for 0<7j4n and

dim(X):dim(XO)+dim(X1)+...+dim(Xn)=m.

(3.7) LEMMA. Suppose that mO>O, then sr(A)=[m/2}+1.

PROOF. Using (1.5) we may suppose that XO isear findte

CW-complex of dimension m6>0. Let XO=X50U1U.., uU. where Xé is

k

a CW complex of dimension less than My and Uj are disjoint open

set such that there exists functions <Pj:B ——p ﬁj such that

m
O

(Fj(aBmok:Xé and ?j}g is a homeomorfism of Emo'onto

Uy (1€igk) and X(‘)nU'j:¢. Then. s (C(XY) ® Ay ® ... @A) K
[m/21+1=$ by cozrollary (3.5).- liet feC(XO,(A1 & A2
£>0, There exists g&C(Xé,(A (S &>An)s), g(x) &

1
1
o

(S s C&An)‘s)/

Lg (A, ® -0 ® Ay lg-£/x | <&/%. Bxtend g to X  such that



- 12 -

the last inequality be fulfilied. Using the functions ¢ : we

pul lbaeks g to a funetion gﬁzqoﬁﬁjGTC(Bm"(Aﬁ D e O An)S), But
= :

csr(C(Bm ) @A ® ... @)An)z csr(A1<$ =Gl An) byitcorol lary

o ;
(2.9), Ehus csr(C(Bmo) & Z-\.1 B An)g [m/%]+1=s by cerollary

(2.5). Byscorellany (2.2) ithere exicts thEC(Bm ,LgS(A1 ololE

m. =1 m. =1 @

5% - 2 /0 . O = ’ 2 © C = ;
Lo AL iihj' gjﬂ«ie/é r hyls a,] ¢ - Then the
function h:Xo~~% LgS(A1 il D An) qiven by hix)=glx) for

& I G -_1-. 2 - 4 o f 4 T e ‘r
x eX? and h(x)=h, (@ (x)), xeUy satisfies |n-£] <€ and hjx

hocpj are continuous, this shows that h is continuous.
i 5

Iv

This section contains some results concerning the irre-
ducible repreeentations of A and the proof:of the main theorenm.

We know that there exists a enique class of irreducible
representations of K and hence a unique class of irreducible
representations of Aj not vanishing on K (see [1]), denote bv
?j an.element of this class. Let ‘ﬁj:A. —iy C(Xj) the quotient

J
map and .Gﬁ=1Tj @ 1 here. | stands for the identity mav on

Qi A

A1®...C{§:A.1®Aj+1 .

j e
(4. 1) LEMMA. Let W be an irredueible representation .of
TN e o) An , then one of the following statements is true:
° g . . . . N > :
1 T dis unitarily eguivalent to 51 (s p il ®.P - £
2° W factors through < (i.ee hhepe exicte 5680, oupnl

and T such that‘T':TTO ° G"j).



PROOF. Let J'j=ker 6"]. , there are exactly two pos ssibilities

(see [1':{) w8 '?T,{ P PO is irreducible, and hence unitarily
& Sone & URE e i s =2 s
equivalent to 51 ® ® S n/J,I J, since I, J &K, this
shows (Eﬂl) that T and 33 are unitarily equivalent; 22 there

exists 5,12 18n, such that TE‘E'Jj:O but this means that factors

through G’j.

Let us observe that S)(J)=K (T= J]J2 J o
The following lemma shows why the case.m=1 is an exceptio-
Hal one;, . let 33 = 331 ® ... ® O H=H (see [1] for notation).

(4.2) LEMMA. Let €>0, x,y€A=A, & ... ® A, then there

: 1
exists y1 'Y € A-such that \\x—x”{ & B, '“y—-yqu <¢ and

ker §> (x,) N ker §>(x2)=§0%.

PROOF. We shall denote by [dv(] the ortogonal projection
onto the closed subspace M of a Hilbert space g

Suppose first that at least one of the operatoxrs g) ()
and 3) (y) , say jcs (x) , has the property that dim H/j>(x)H=0':) S
Then  there: exists a compact operator T, | T b€ 872, such
that dim }I/(Wﬁ=<¥0, (see [3}) there exists also a compact
operator T, . I T”} < & /2 with right support r(T1)=ker(§’:(x)+T)
N kex o (y) and left support 2(T,) § 1~[Ran(§:(x,}-%—']?)] 2 Ef we let
y,=y and 21 such that [\x1~$ |l<¢ and 5D(x1—-x)=’]_‘+'r1 we obtain
the desired conclusion.

Suppose nox& that H/f)(g)H and H/f(y)H are finite dimensional
then there exists an g>0 such that (O,S)/\ C‘”(S’)(X)SD(X)*)‘-;¢, let
£(o)=1 and £(t)=0 for t»§ , then £(p(x)p( )#)=1-] ¢ (x ()H| and

i (f(x) *g:,(x) ) :Eger i) (x)} . By assumption there exists aeJ such



that ?(a)=§ (B )y singe A/(J1+ el +J ) is commutative we

get that f(xx )wf(x*x)&:J1+. +J thus obtalnlnq that there

exists b&J1+@,.+Jn such that N?( *rher‘?(xil We want to show

that Ran~F(y)fker‘?(x)zRan‘?(yb}vhas infinite codimension Lo

conclude the proof as above. Suppose the contrary then the same

will-be true for'any T close enough to g)(xb) and we may f£ind
n -y -

such a T of the £o]lOW1ng particular type: T= ZA(:L,A {@3Fﬁ{é§BﬂQ
=1

o

with Fi a finite ‘rank operator-on H and A. and B. bounded
Jk i fj I oy

£¢ 1¢k4m. 2 »ZZ_: PR [
operators. Let ng,Ran Fix (1€3sn, ¥sk mj) then & ;@ Q -

iscktcgunal to Ran T and these vectors span an infinite dimen-

sional vector space, this is a contradiction.

(4.3) OBSERVATION. Suppose that mn:dim (Xn)=1 then
kr(An)€j1,2% py proposition (3.4). Let xeA , €20, there exists
X, € B such that [[}:1-x(!< ¢</2 .and "n* (%, )cLa (C(Xn)):GL(T,C(Xn))

: P ‘

this shows that ?%(xi) is a Fredholm operator which will be
left-invertible if and only if ker fﬁ(x1)30. 1f ind%ﬁ$x1))=
=dim ké} (@ (x,))-dim ker (@(x })*)£0 we can find a finite rank

Jm 1 Yh 1 )
operator F such that HF\?Q ¢ /2 and ker (ﬁ$x1)+F)#Ogthus finding
x2=x1fa9§$a)=F) such thatﬁ%}x2) is left 1nv¢rt1ble‘ Lemma (4.1)
shows that xzéLg1(A%. wWe obtained that sr(An)=1 i sandoonly if

any Fredholm operator ifi X has index 0 if @nd only iEkhe
n }

composed map H1(Xn)-§ K, (C(X,)) = K (B =1 is trivial (see [71 ).

Suppose that X,XO,..;,Xn satisfy the assumptions preceding

Jeamma (37 A=C(XO) ® A, BB mj=dim(Xj), 0<jg<n



(4.4) THEOREM. Let m#1 then sr(A)=[m/21 +1. If m=1 let
mqé..aémn , then sr(A)ssr(An).

PROOF. Let 3=[m/2]+1, For m=0 the theorem has already
been proved. For m=1 there are two possibilitiess 1° dim(XO):1,
dim(XT)ﬂ...:dim(Xn)=Oﬁ then sr(A)=1=sr(An) by-lemma (3.7);

2 d}m (Xo):“°f:dlm (kn”T)=0, dlm(Xn):T, then C(XO).@ A1 Doen Q}Ahwi
is an AF-C*-algebra (see [21) and thus, by corollary (2.11)
sr(A)ésr(An), the reverse inequality follows from the fact that

A, is a'quotient of A.

Suppose now that m22. We shall use induction on n, for
n=0 there is nothing to prove. Let xx(xw,...,xs)@AS, x5 1t
mé}O the theorem follows from lemma (3.7), if mo=0 C(XO) is an
AF-C*~-algebra and thus sr(A):sr(A1 Qe i An) by . coreollary
(2.11), we may suppose then that A=A1 Qo @)An. By the induc-
tion hypothesis there exists x‘=(x{,.,.,ﬁé)&As such that

S B - iy : :
fx-x'{{<¢& /2 and ﬁj(x )eLgS(A & Aj~1 v C(Xj) @;..,Qéﬁh)

1

we-may also find x" such that the last condition be fulfilled,

(Ix"mx'H<(& /2 and ker ?(xq)ﬂker'g(xg)ﬁoithén by lemma (4.1)
X &LgS(A).

(4.5) REMARK. It is obvious +hat if A and B are C*-alge-
bras as in the theorem (4.4) then sr(A & B) & sr(A) +sx (B)

(this answers a question from [51 in. a particularcase).
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