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Introduction

This paper is motivated by our previous study of normal projective degene-
rations of rational and ruled surfaces [4].

The first section is a variation on & fundamental result of Zariski (see

[19]) concerning the finite generatedness of the graded k-algebra R(X,D) asso~
ciated to & smooth projective surface X together with.a divisor D such thaf the
Iiteka dimension K(X,D) is 2, and is greatly infuenced by Sakai's theory of nor-
mal varieties (see [ﬁz] and [131) as well as by [3].

In. section 2 we_relate the class of normal rational surfaces with at most
rational singularities and vanishing plurigenera (which naturally occur as de-
generations of rational surfaces) with the class of smooth open surfaces with
vanishing logarithmic plurig@nsra._

Throughout the paper we shall fix an algebraically closed field k of arbi-
tréry characteristic. Sometimes k wili be assumed to be the field © of complex
numbers. The terminology and notations (when not explain@d) are the standard

ones,

gl.ASome remarks on & result of Zariski

Let (X,D) be a pair consisting of & smooth projective surface over e
and D & divisor on X. Let us denote by K(X,D) the Iitaks dimension (or the

D-dimension) of X (see [?1), and by R(X,D) the graded k-algebra

< HO(K,QX(nD)). If we assume that K(X,D)>o (i.e. ]nDl # ¢ for some n>o),
nze : :
then by [19} there is & unique decomposition (the Zariski decomposition of D)

D =P+ N such that: P is a numerically effective le«divisor (ggfldivisor) (d.

@



a divisor with rational coefficients such that P,C2 o for every curve C on X),
N2 o, and if N % o then the intersection matrix of Supp(N) is negative definite
and P,C = o for every irreducible component C of Supp{N). The divisor P (resp. N)
will be referred to as the semi-positive (resp. negative) part of 1.

Recall the following fundamental result proved in [ﬂﬂ

Theorem A (Zariski}. i) 0t f{(K,D,\;i then R(X,D) is a finitely generated

k-akebra, v

B

ii) If K(X,D) = 2 then R(X,D) is a finitely generated k-algebra iff there

is a positive integer m such that mP is an integral d1v1 sor and the linear system

| mP| has no fixed components (or, bqu1leent1y, by another result of Z drlukllﬂﬂ

if there is a positive integer n such that nP is an integral divisor and the 1i-

near system |[nP| has no base points),

Inspired by the work of Sakai (especially EQJ and [73]) as well as vy [3], we
are going to make éome elementary remarks concerning part ii) of the above theo;
rem, trying to interpret it in terms of the concept ofvthe model of (X,D). Let
us first explain what the model of a pair (X,D) with K(X,D)'= 2 is (see [13]).

: : 2 :
First of all, K(X,D) = 2 iff P > o (this is an éasy consequence of Riemann-

Roch theorem, see e,g¢[75]), Let A4 be the sel  of all irreducible curves ¢ on X

such that P.C = o. Since P2>-o the Hodge index theorem implies that this set is
finite and the intersection matrix of A4 is negative definite, Thus one can apply
a well known criterion of cbntractibility dué to Grauert and Artin to deduce that
there is a unique birational morphism WiX——> Y, with Y a complete normal 2-di-
merisional algebraic space over k, such that u blows’dOWh fhe connected'components
of A to points and yields an isomorphism between X-A and Y-u(4). Set D' = u%(D).
Then D' is a Weil divisor on Y, and the-pair (Y,D') is by definition the model of
(D).

B“fore

e ating the first two results which show the use of thls concept, we
Mumf or

d%

efinition of the intersection number of two Weil lelcors on a complete

need
normal 2-dimensional algebraic -space Z (see [#], or also [13]). let f£:2'—> 7
be a resolution of the singularities of Z and D a @Q,u Weil divisor on 2, Let
El,cu,En be the irreducible components of all exceptional fibres of f. Then
Mumford defines firsf the inverse image f*(D) of 2 by fx(D) =) +;7

J=1 JJ
where D! is the strict transform of D by f, and the rational numbers a_ are uni-

.u.

quely determined by the following linear equations D', %ii)d E . PR e

= 1,...,n (recall that the intersection matrix llEi"ﬁ“ is negative deflnlte)e
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e

Note that in general £¥(D) is only a () -divisor even if D is integral, How-

ever, if D is an integral Cartier divisor then f (D) is also integral and coinci-
des with the usuval inverse image of D, Now, Mumford defines the intersection num-

bern D1°D“ of two GQQ -Weil divisors D1 and D_ by the formula
(o : e
s K f‘%
D,.D, £ (Dl). (‘Dg).

Tt turns out that DleD? is a rational number which is independent of the re-

solution f, Finally, let F = ;Z; aiFi be a d;i~Weil divisor on a complete normal
Pl
- : J
for i # j. Let [F] denote the divisor [F] Sl [ai]F;, where if r is a real num-
: = i

2-dimensional algebraic space Z, where F. is irreducible and reduced and F # i
g i j.

ber; [r_ denotes the greatest integer < r, Then one def}n@s the associated sheaf
OZ(F) of the G;waeil divisor F by OZ(F) - OZ([F]), bieh i efles et
sheaf on Z. This definition allows one to define the graded k-algebra R(Z,F) of

the peir (Z,F) and the F-dimension of 2, K(Z,F), in the same way as at the begin-

ning. The one has the following result, essentially due to Sakai ([12] and [73]):

Proposition 1, i) Let (¥,D') be the model of the pair (X,D), with X 8 smooth

projective surface and D a Q@ ~divisor such that K(X,D) = 2. Then D' is numeri-

‘ : ¢ = : : :
ceilgsannle fije, D' o a0l DG >0 for every oupve O on ¥ and ymy= g

(the semi-positive part of D),

ii) u;((OX(nD)) -4 O'Y(xm') for every nZo, and in particular, R(X,D) ¥ R(Y,D').

iii) Conversely, let Y be a complete normal 2-dimensional algebraic space, D!
a numerically ample GQMEEil divisor on ¥, and uiX———s Y the minimal resolutio:

of Y.. Then for every () -divisor D of the form D = u*(ﬁ') + N, with N2 o and

Supp(N) contained in the exceptional fibres of u, one has [ClE, D) =2 and (X, 1)

/ .

is the model of (X,D).

: : ; : : K : : ; R
Proef, i) Since D! =‘u*(D) one has D = u (D') + N', where W' is a @ -divisor
whose support is contained in the exceptional set A of u, Let E ,...,E be all
: : : o)) 17 n
irreducible components of A, Since both P and Y are perpendicular on each ¥ , we
; i
get N.E, = N',B, for every i = 1,,..yn, and since the intersection matrix of A is
i i :

: T 3 2 Y 2 2
negative definite, it follows that N = N' and u (D') = B. Therefore D' =P >0
since K(X,D) = 2, On the other hand, if C'is an arbitrary irreducible curwve on Y
and ¢ is its strict transform by u, we have u (B1) = ¢+ N with Supp(N") < A

N : : S Mo P
Gl WNE i ol s Torceweryde l,.ciyn. Conscquently nb @t - (D)o (et
i i
= P.C + P.N" = P,C >0 because C is not a component of 4,

ii) Bverything follows from i) and from [13], especially theorem (6.2).
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iii) The proof is obvious because D .= u*(Df) + N is nothing but the Zariski

decomposition of D, Qo fie D

The next result interprets part ii) of theorem 4 in the setting of models.

Proposition 2, Let (X,D) be a pair consisting of a smooth projective surface

X and a (@ -divisor D such that K(X,D) = 2, Then R(X,D) is a finitely generated
1

k—-algebra iff D' is & G@i~0arﬁiey divisor on the mode Yo an) i it

o

here is & positive integer n such that nd' is an {integral) Cartier divisor., In
A o AS e

RES

particular, if R(X,D) is a finitely generated k-algebra then Y is a projective
surface.. .

“Proof, ‘If D' is a Cartier divisor for some n> 0. then by proposition 1, i
and Nakai-Moishezon criterion of ampleness (for the variant of Nakai-loishezon
criterion in the case of algebraic spaces over €, see [5]) wes infer that nDl ds
actually an ample Cartier divisor. In‘partidul&r, Y is'a projective surface, Using
[6], proposition (3.3) we get that R(Y,D') is a finitely generated k-algebra, and
by proposition 1, ii), R(X,D) (which is isomorphic to R(Y,D')) is also finitely
generated. Alternatively, i§ D were an integral divisor, the linear system (mnﬂﬂ
has no base points for some m S>o0, and therefore u*(mnD') = mnP (proposition 1)

- is integral and has no base points. By theorem 4, R(X,D) is finitely genefated.
| Conversely, assume R(X,D) finitely generated; by theorem A4, the linear system
YmP[ has no base pointsAfor some m> o such that mP is integral, Let tf:X ——— P =
= Wé be the associated morphism such that ?*(qp(i)) Q“OX(mP).'Since P.E, =0 for
every i = 1,...,n (we are keeping the notations of the proof of proposition 1),

we infer that (f(E,) is a point for every i, and .by:the definition of Y, the mor-
. i

phism ? factors as X = i Paidf 3 m’Y*(Ow(i)), we have u®(L) &

= OX(mP), and hence by projection formula, L ¥ u*(ox(mP))o On the other hand, sinc

u* (mp') = mP, using theorem (6.2) of lﬁ%] we get u¥(OX(mP))’§’O (mD'), Thus L%

1
= OY(mD'), and since 1,.is invertible, mD' 'is a Cartier divisor. Q. B:D.

Remark. Proposition 2 i? inspired from EE], where' the particular case D = -K
and 'K_i(X) ‘= K(X,mKX);%éiith KX a canonical divisor of X) was treated. It was
also shown in [3] that the "anticanonical' model Y is always a projective surface
On the other hénd, there are examples of ruled non-rational surfaces X over ©
with Kfi(x) = 2 such el R~1(X) s R(X,~KK) is not finitely generated (see {{%])

Thus we see that in general Y projective does not imply R(X,D) finitely generated,

«

Keeping the notations and assumptions of proposition 41, the morphism usX ——>
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is nothing but a resolution of the singularities of Y, ILet i ¥ b e
minimal resolution of ¥ (in the sense that there are no exceptional curves of the
first kind in the exceptional fibres of u)., It is a general fact that u (uniquely
dominates uo, ive. there is a-unigue birationgl morphism wviX ~f--¢-Xo such that
uJJv = u, Since K(X,D) = 2, D may be assumed effeoti§e, and since the effective-
ness is preserved by direct images, D = v%(D) is also effective, Thus D_has a
Zariski decomposition (say) D, . P+ N, with P (resp, NO) the semi-positive
(resp. negative) part of DO. |

We claim that P = v*(P),.P = v*(?o) and - v*(N). fo prove this claim, we
may assume that v is the blowing down morphism of an exceptional curve of the
first kind E such that P.E = o (in Sakai's terminoloéy, such a curve is called
D-redundand, see BQJ for- the case D = wa). Indeed, . viis a.composition of a finik

(

number of such blowing downs, Set Pj = v*(P) and Nd = V%(N)..Since P is nef and
since this property is preserved by direct images, }?)1 is also nef, Since P.E = o

we get P = v*(Pi).‘Sinoe N is effective; N is also effective, let Ci be an ir-

L
reducible component of Ni and ¢ the strict transform of C1 by v. Then C is & com-
ponent of N and we have Py .Cy = V%(Pi)“v*(cﬁ) = P.(C + (C.E)E) = P.C = 0. Since

2 2 ‘ "

Pi =P >o apd 31°C = 0, by Hodge index theorem we infer that the intersection

matrix of Supp(Nl) is negative definite (unless Ny = o). Therefore D =2 + 1
is a Zariski decomposition of Do and the claim follows from the unigueness of
Zariski decdmposition»

The claim shows in particular that’k(XO,Do) = 2 and‘that (Y,D') is also the
model of (XO,DO). Now, from proposition 1 we deduce that P = W (') and P =
- ui(D'). Since N and N _ are effective we can apply theorem (6.2) of [#3] to deduc
that u¥(OX(nD)) Q/OY(nD') Q'uO£OXO(nDO)) for évery nyo. In particular, R(X,D) &
-4 R(XO,DO). These considerations prove the following result (essentially due to
Sakai, at least in case D = “KX’ although his proof works along different lines,

see [ 12]):

Proposition 3. Let (X,D) be as in proposition 1, i), Then there is & unique

birational morphism v:iX ——>X such that X is & smooth projective .surface with
o) T 0

no D -redundand exceptional curves of the first kind, R(X,D)-%/R(XO,DO) and the
=0 s il

pairs (X,D) and (Xo’Dé) (with D = v*(D)) have the same model,

When we are dealing with a problem involving the graded ring R(X,D) (e.g. the

finite generatédnsss of of R(X,D)), proposition 3 shows that there is no loss of
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generality in.assuming that X contains no D-redundand excaptlonal curves of the
first kind, For example, this reduction is essential in order to define the effec-
tive @E ~divisor A on X which carries a lot of infbrmation about the singulari=’
ties of the model (Y,D') of (X,D). Recall that A is by definition the unique
@Q~divisor on X satisfying the following two conditions:

a) Supp(A )< 4, where 4 is the exceptional set of u, and

SRR {X.E for every irreducible component E of A, with KX a canonical
divisor of X,

Since X contains no D-redundand exceptional curves of the first kind, KXuE:}o,
and hence A .E<o for every component E of A, &s one can easily see, the support
of A is precisely the unién of the exceptional fibres of u over all singular
points of Y which are not rational double points., Alternatively, one could define

A as the unique @) -divisor on X such that ﬁ*(KY) + A, where KY is & ca—

X
e
nonical (Weil) divisor on Y.

- “. . . » N

Let r be the smalles positive integer such that N = r A ig an integral di-

visor. For example, Y is Gorenstein Lff either A = o (in which case Y has only

rational double points-as,singulariiies), or r = 1 and the dualizing sheaf
= 5 3 e
of A is isomorphic to O see [2] , theorem (4.2)). The following simple (but use-
. ful generaligation of this fact was roticed by Sakai in [13], theorem (4.2):

tier divisor iff u%(z) is integr:

is an integral Weil divisor on Y, then Z is & Car
and Oy(u*(Z))Q§ OZS‘E O~ . The proof of this generalization is practically the
N .

as in case 4 = KY; Now applying this fact to the divisor mD', and using pro-
positions 1 and 2 we get:

&1

UJ
@

Proposition 4. Let (X,D) be a pair as in proposition 1, i). Suppose that X

contains no Deredundand exceptional curves of the first kind (by proposition 3 we
L 3 8

-

= .
this), and let A be the Q@‘Alivisor‘d@finﬁd aboye, Then the

can always

following ents are equivalent:

a finitely zenerated k-algebra

& 0~ for some positive integer m such that mP is integra

RS:QJ( “FEmois 8 positive'lnt ger such that mP is integral, then mP.E = o
for every irreducible component E of [& sopelse (in Lipman's notations CSJ
Qn )6902: € Pic°(2§)a Thus, conition ii) of proposition 4 means that & certain
element of Pio“(?i) is a torsion. Since the latter condition is always fulfilled

if either Y has at most rational singularities, or if k is the algebraic closure

L
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g

of a finite field (see [ﬁl}_ﬁj}) e %et;

Gorollary, If Y has at most rational singularities, or if k is the algebraic

closure of & finite field, then R(X,D) is a finitely generated k-algebra,

~canonical ring E(Y) = R(Y;Ky) of ¥, Since u*(KY) =X &+ avplvin,

1) The anticanonical model of & surface. et X be a snooth projece

of enticanonical dimension K (X) =2, and (Y,D') thé anticanonical

model of X (i.e. the model of the pair“(X,me)); Then obviously D' = -K - and one
X 9

g
bas- two possibilities: either X ims a rational surface, or-X.is ruled non-ratio-
nal, The case where X is rational is studied in detail by Sakai inZ]QJ, where it
is prOVLd that Y is projective with &t most rational singularities (and hence the

4
anticanonical ring R (X) is flnltely generated), The second case is studied in

3

[3], where it is proved that Y is still projective, with precisely one non-ratio-

nal singularity, and such that R (X) is finitely generated iff Y is @zwaﬂrénstﬁii

o
i.e. there is & positive integer m such that mK _ is a Cartier divisor., Moreover,

e 3

leseription of the singularifties of ¥

(w5

guite precise

A

given, Part iii) of pro-
position 1 above applied to D = -K_ slightly improves the converse part of the
z FeS

main result of [3].

2) The canopnical rinz of & normal surface, Let Y be a complete normal 2-dimen

I

sional.-algebraic space and usX———>1 the minimal resolution of Y. Consider the

,,

of [13] we get that R(Y) Q'R(X,K(+£x}. We are interested in finding & characteriza-

tion of the fact that R(Y) is finitely generated, Since the only problem is when

K( ) K Yth/

nerally, Gore nstein) it is well known that R(Y) is finitely generated (Mumford,

»

= 2, we shall assune thic from now on, If Y is smooth (or more ge~

R

Appendix to fﬁﬂ, in the smooth case, and Sakai [?QL in the Gorenstein case)n e

shall need the following:

Lemma, In the above notations and assumptions, let (Y ,D!') be the model of
o

the pair (X, XK +A ), Then D' = K . '
=_— X =
O 5
Proof. This lemma follows from D3], where ¥ is called the canonical model
Semey o :

of Y (in féct the structure morphism X —————3>Y factors uniquely as
: o)

X ————>7Y

>Y , so Y dominates Y ),
0 o)
Newvertheless, we -shall give another proof of this lemma, lest K?+‘A = P + N be
- { : :

the Zariskil decompositionof D =K 4+ A ', Let V:X~*—“—"3"XA be the birational

«

morphism given by proposition 3, and put ZX ([&) We have Do = V*(KX) - va
o ; :

=l oA (whure X denotes KX ), IE D0 = PO b NO is the Zariski decomposition
A O 5



w5y

'K.
c

e

of D, we have seen in the proof of proposition 3 that NO = VX(N), Po = v&(?) and

0
W= (“ ). We note that if E is & component of A yowe have (PR = o, Indeed, by
S Qs

3 St g : : e / ; S
the definition of A s O i D = P SR G NG and PR ¥ 0, hen N.B< @ (recall

that P is nef), and hence E would be & component of N (s since N 20); & contradic~
tion with P.E % C.
Let E  be an arbitrary component of 2 seohemn sy (E ) + H, where B is the
¢ o)

strict transform of E by v (which is a component of A ) and - is @ Q}l«divisor
* ok ot
v (PO).\Y (EO) -

= P.(E+H) = P.E = o. Therefore by Hodge index theorem we get that the intersectior

"

on X whose components are all perpendicular on P, Then PO*E

matrix of Supp([&o) is negative definite
If Z is:a positive Q@ ~divisor such that [SO»Z and NO~Z are both effective,
then K +(gﬁomz) = PJ+(NOmZ) is the Zariski decompbsition of Kd+(lkom2}, and hence
0 ¢ .
R(X,D) ¥ R(X ,D ) TR(X ;K +A ) ®RX ,K +( A -2)). Therefore, by changing A
G50 g0 0 0% 0 0 o
a little bit (in such a way that R(X ,DO) remains unaffected), we may assume that

0
: N have no common components, Then we claim that N = o, i, e. X +4& = P
o o 0 o
is nef, Indeed, otherwise it would CXIQL an 1rr@du@1b1c curve: Cion & such that
o)
620 JCE= Py NOQC. As above, this immediately implies that C should be a com-
© o
: _ 2
ponent of N , and in particular, P .C = o and ¢ < o, Since ¢ is not a component *
o o]
of ZXO and ZXO is effective, [} +C>o0, and recalling that D Loy W Pet KO-C<50»

In other words, C is a D ~rcdundard exceptional curve of fhu Tirst klnd, contra—

‘dicting the definition of X o Thus K0+Aﬁo is nef,

Now we examine a little the irreducible curves ¢ on X such that P .C
o o

s v +A «C = o. Since X .C 20 we get that either /_\O.C<o (if K .C >o0), or tha
= Ab.C = 0, In the first case ¢ is a component of 'Ao’ while in the second,

#

Qe

is & non-singular rational curve such that ¢ = -2, and either C does not meet
Supp([& ), or ¢ is a component of A oo It follows that the model of the pair
(XO,DO) (which is the same with the modcl of  (X,D)) has finitely many singulax
points such that Supp([&o) is the union of the exceptional fibres of the morphisn
f ;X~;,,ﬁ~¢~Y over all singularities of YO which are not rational double points,

One albO has that f (K ) F T o Indeed, this amounts to showing that
o

(K +z& )‘C = o for every component ¢ of ZXO s and since X + A =P , these
o o o} o}

o5 ; ¥*
equalities were already checked before, Thus £~ (D ) = K_ 0.
: : o) o ¥ .
0
Combining the above lemma with proposition 2 we get:
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Proposition 5. Let ¥ be a complete normal 2-dimensional algebraic space gsuch

that K(Y) = 2, and w:X —Y the minimal resolution of ¥, Then R(Y) is a fini-
tely generated k-algebra iff the model of the pair (X,u*(KY)) is @@ -Gorenstein.

P

Remark, Another proof of proposition 5 was given recently by Sakai in [%ﬂ,
Using proposition 5, one can easily construct.an example of a normal projec-

tive surface Y whose canonical ring R(Y) is mot finitely generated, Let B be &

o

‘amooth projective curve of genus g2 2 1 a line bundle on B of degree e such thai
g 2y &

g

0{e<2g-2, and Y the projective cone over the polarized curve (B,L)., Then the

minimal resolution u:X >Y of Y is the geometrically ruled surface X

=1 =
= P(OBééL A suzh that B = u (y)red ‘ v
K sk——>B (B = -e). 4 simple calculation shows that A = (2g-2+e)/e.B, and

is a section of the canonical projection

¥xj

is a fibre of M, KX+ZX - (2g-2-e)/e.B + (2g-2-e)F (up to numerical equi-

valence)., In particular, KX+[& is nef, (Kx+[&) > 0, and hence 'K(Y) = K(X,K{+13);
; 3 s £ 4

= 2. In the notations of the proof of ithe lemma above we have Y = Y because the

: o)

base nmumber of Y is one, By proposition 5, R(Y) is flnnuely generated iff Y is

@Qgcorenstein. On the other hand, it is well known (and easy to see) that Y is

™ s ;i . 17 : r 2~28 . :

@i«Gorensteln iff the line bundle (of degree'o) M=20 (eK )QQL is a torsion

in Pico(B). If k «C , one can obviously choose L such that M is not a torsion,

and therefore for such a cone ¥, R(Y) is not finitely generated,

§2. Venishing plurigenera ‘and loga r1thn1o plurigenera

* pirst of all recall that if ¥ is a normé 1 proj@ctiVé éurface one can define
the n-genus pn(Y)'of Y by pn(Y),: hO(Y,O (nK )) for every nzl (see [4] ). Recall
also that if 72 is a smooth (not necessarily oompLGte) surface one can define the
logarithmic n-genus 5n(z) of 7 in the following way: choose & smooth "compactifi-
cation" Teb 7 (i.e. a smooth projective surface 7 containing 2 as a Zariski oper

(reduxecb
subset and such that D = 7-% is ardivisor with normal CTOSblnFu) and. put“ﬁn(Z) =
= h (Z,O (n(n +D)) for every n»l. This definition is due to Titaka and turns out
to be indepenﬁent of the compactification of Z. The‘case we shall be interested
in here ie the one when Z is the smooth locus YO of a normal projective surface °

such that ‘& compactification 7 will be just the minimal resolution us X——>1
(more precisely, Z = X and 7 = Y is embedded in X a&s an open subset via u 1
)

In connection with the problem of classifying all normal projective degenera.

P T B G e e N e s o oy S L R g D
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mal surfaces W1th vanishing plurigenera, The result is the following (ses [4]}:

Pheorem B ([4]). Let ¥ be a normal projective surface over @€ such that

e

6. () = o for gvexry nzl, and u:X — > Y the minimal resolution of .Y, Then ¥
1 ~ - - > ;
belongs to one of the following cl es of surfaces:

(ﬁ) The normal projective surfaces ¥ such that X is & rational surface and Y

has at most rational singularities.

(B) The normal projective surfaces Y with the following properties: X is a

4

ruled surface of irregulerity 9> O, Y has precisely one-non-rational singularity

: =
y, the geometric genus of (Y,y) is q, the irreducible components of - u (y) are:

a section of the canonical ruled fibration Mk —> B (with B a smooth projec-—

tive curve of genus g) plus (possibly) some components of the degenerated fibres

(ot . - . - . i . . . ~
of L, while the exceptional fibre of u over any rational singularity of Y is con-

tained in & degenerated fibre of TU.

(c) The normal projective surfaces Y with X a ruled surface of irregularity

q>o0 such that Y has at most rational singularit1€s, and the exceptional fibre of

w over any Singularity of ¥ is contained in a degenerated fibre of the canonical

“}'B.

ruled fibration T0:X

Remarks, 1) If Y is a normal pr0360t1v0 surface such that Dn(Y) o for every
>4, then q(Y)> o iff Y belongs to class (C), and conversely, every surfacéVfrcm
class (C has P ) = o for every nzl and. a(Yy)> o (5@6 [47). Here q(Y) h (Y0
2) Not all surfaces from class (&) or class (B) have p (Y) = o for every nzl
Examples of such surfaces from class (B) were already given i L4]. At the end of
the section we shall give examples of surfaces Y from class (4) with pn(Y) £ o
for some nzl. .

3) Let Y be a surface belonging to Clabd (B), . the smooth locus of Y, and

Eo’Ei’°°°’En the components of all the exceptional flbres of u, with E the sec-

tion of T and Ei""’En contained in the fibres of 7C., Then mo,...,Dn'are all

smooth and D = EO+E1+..._+En is a divisor with normal crossings. Let bﬁ,.,.,bméiB

be points such that Ei"“"En are contained in the union of the fibres Fj =
(bj) ij aid eyl 0nd set Bl.= Bagbi,..,,bm}. Then Yo D D-Raln 4Fi+°"

..+Fm) = A B, or else, using the terminology of Miyanishi, YO contains & cylis

derlike open subset (see [1@]). Since h = ~2EO 4+ D', with D! a divisor whose su

‘><,

port is contained in the fibres of 7(, then X +D »E +D", with D" a divisor

i e e e e e e R e e e s e s T ey ln et D), = ¢ for every



-

n»l, or else, ”ﬁp(‘f'@) - o for every nyl.

5

4) Similerly, if Y is a surface belonglng to class (C) then Y contains a Za-

A
riski open subset isomorphic to ¥ X B! (B‘Q.B) and pn(yo) =0 for every n 271,

-«

Proposition 6. Let ¥ be a surface belonging to c¢lass (é) and Y the smooth

locus of Y. Then p.(Y).m o for every nzl implies that p (Y ) = 0O tor eveny nzl,

If Y has at most quotient sipsularities the converse is also true,

Proof, Since the singularities of Y are all rational, there is a positive in-

teger a such that aKY is a Cartier divisor (see [9]). Then
(1) u%(aKY) = aKy +al , with A the divisor introduced in §1.

gince aKY is Cartier, Da = a/\ is an integral divisor. The hypothesis that

p (Y) = o for every ny4 translates into:
n

(2) }n(aK L) )] - o for every nzl.
nta 72:1,()

Lot Z72.0-he san arbltrary p051t1v§Yd1V1oor on X with support contained in the

exceptional fibres of u, and consider the following exact sequence

0 — OX(naKX+nDa) e Oj&(naKX"'nDéﬁ'Z) > [, ———3 Oy

with L = Oz(naKY+an+Z). mraking into account of (1) and the fact that aKY is a
Fint g ; : : 0 G
cartier divisor, we infer that L = OZ(Z). Thus we have H (Z,L) ¥ H (Z’Oy(z) =
4

1 4 ,
= Hi(z,wjzc@om(-—z)) = Hv(z,oz(x.v))g where w’? = OZ(Z+KX) and the middle isomor-
&L A

&

phism comes from duality on the curve Z. Since usX- > Y is the minimal resolu-
tion of Y, we have deg, (O (K )/E) = Ky ,Lgyo for every component of Z. From pro-
‘position (11.1) of [9] we infer that H 0% 0, (K )) = o &nd hence HO(Z,L) e
Recalling the above exact sequence we infer that for every Z 0 with support in
the exceptional fibres of u one has H (K Oy (n@K +0D_ +é)) 1, O, (naK +nD ) =

flor GVLrg n//i In particular, for every Z'\*o with support contalncd in the excep-

tional fibres of u, we have

(3) lna(KX+Z')) = for every nzZi.

Indeed, for.every'nt;i‘it is sufficient to take Z77 pef'e.cin particular, (3)
D : o ' : :
holds for the reduced curvéyélth support the union of all exceptional fibres of u.
Since Y has only rational singularities, the curve D has normal crossings, and

therefore we-get'@n(Yo) =osfor every .

conversely, if Y has only quotient singularities, by a result of Watanabe [18}
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- the coefficients of A are all <1, and in particular, D 2 A. Thus, our hypo-

it

thesis 1n(Kﬁ+D)\ g for every nzl implies !n(KX+ZQ){a @, or else, pn(y) S e

for every nyi. AR

Proposition 7.. Let Y.be a surface over (C belonging to class (A) such that

( Y) = o for every n>» 1, &nd ycY an arbitrary singularity of Y, Then therve
st

o
ex

s a normal projective surface Y', with only ome singular point y'€Y', and

& resolution v:X'——> Y' (not necessarily the minimal one) such that:

i) The local rings O and O , | &re isomorphic,
ii) There is a surjective morphism 47 ¢ X'———[P whose general fibre is
P, and

iii) Either v (y') is contained in a degencrated -fibre of 9., or the ir.

) 2=
reducible components of v (y') are: a section of 7T plus (possibly) some com-—

ponents,of the degenerated fibres of T

>Y the minimal resolution of all singularities

ggoofv Mirst take ugle{1

o abutiiy, and denote by Ji = u; (y). Clearly we héve OY - >§’OY > If thexe
: L2 :

is an exceptional curve E of the first kind of Y

4
~Y, of E to a point and set y, = f(y&),

not passing through yq, take

the blowing down morphism f:Yi

N

Then Y is smooth outside y_ and O =0 x> 0 « If Y has an exceptio=
2 2 YZ’yZ Yi’yi Y,y 2 .

nal curve of the first kind not passing through y2, repeat the procedure, After
a finite number of such steps one obtains a pair (' y' ), with Y' & norsal pro-

Vi d

jective surface, smuoth outside the sing gularity y', and such that Oy, 7 = OY,y°
It is a general fact that p (Y>> e (Y ) for every nz 1 Thus, our hypobhe
inplies that pn(Ii) =g or every'rL31. We claim that pn(Y ) = o for every n3zd,
-To sée this it is suffiqient to check that pn(YZ) =0 fpr every n771, and this

is a consequence of K - = f¥(K e
1y T

Thus we méy aSSuﬁe that Y is smooth outside y and there ére no exceptional
curves of the first kind not pasainé through y. From our hypothesis and propo-
sition 6 we get ﬁn(Yoj = 0 fo; every nz1. 4 smooth compactification of Xo is
the minimal resolution wX—— —>Y of (¥,¥y). The curve D = e (y)red is connec-
ted (with normal crossi ngs) and 1 =~ %-D does not contain any exceptional curve
of the first kind. Therefore we are in positfon to apply theorem I 3.13 of ﬂio]
to deduce that Y contains a cylinderlike open subset o= &?)( (with CcP )

; . i e ; : ;
In particular, we get & birational map ¢ : [P NP s L S nd e e 8 (bire-



¢ )

e

: 5 , - ,
: 1. :
gular) isomorphism between /A xC and <f0@ %X C)., Bliminating the indeterminacie:

.

of (f we get & commutative dla oTan

gy

#

1 .
P X P~ X

-4
1 z
withdﬂ? a minimal composition of blowing points (outside,?7(45 o C)) such that
ﬂ+/is a morphism., Put v = ue’y and 9 = péjp , Where pg is the second projec—
tion of [P X [P . Then the resolution veX' o Y satisfies the requirements

of the proposition. Q.E.D.

Remark, By the work‘of Kumar and Murthy [8] the structure of surfaces Y be-
londing to class (&) and such that pn(Y) = 0 for evcry n»1 is well understood

if Y has only one singular point y such that D u (v) - is a rational smooth
rec

-

2
curve (with self-intersection D = —m,m> 2). Actually, & very fine ana lysis of

<&

these surfaces according to the logarithmic Kodaira dimension is carried out in

i

8] In particular, it is proved that p \Y) o for every nzl <;_ﬁ§7~pn(Yo)

: o ; : I e B 0 m-l m

for every n};i = OY i is isomorphic to K{? g 50! ]( e
? : 0

Let us consider the following example taken from [8], Let Pﬁg.,e,Pio be ten

5

. 0 . « . '\—\é I3 . L)
points in general position in ¥ and C a sextic curve passing doubly through
cach P. (& simple counting constants shows that such & sextic exists, and more-
i

over, C is a.rational curve having ten ordinary double points at EigbaegP; )
; a ;
Consider the surface X ohbtained by blowing up P -at’ ﬁ""’Pi and denote by
- 2 .
D the strict transform of C in X, Then D = P and D = =4, so that there is a

g

birational morphism w:X ——> 7Y such that u(D) is a normal point y (hence of
the above type) and v is an isomorphism between X-D and YO = Yw{y}. Iﬁ parti-
cuiar, Y beJong to class (4). However, it is proved in [8] that'ﬁn(Yo) are not
all zero (in fact, D (Yo) may be o or 4, and there are integers n o such that .
pn(YO) = 1, i.e. the logarithmic Kodaira dimension of ¥ is zero). On the other
hand, since (Y,y) is @ quotient singularity, by proposition 6, not all pﬂ(Y).are

ZEI0, Therefore there “gre ourfdc s belonging to class (m) with very blmoiu ra-

tional singularities such that not all plurigenera vanish,
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