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O?LFAN“PQ IN NORMED ALMOST LINEAR SPACES
b ¥

G. GODINI
1. INTRODUCTION

The notion of normed alﬁost linear space (nals) is a

generalization of the notibn of normed lihear space., Such
a space satisfieslsome of the axioms of a Iinear space and the
norm satisfies all the axioms of a norm on a linear space, as
well as an additional one, which is useless in a normed linear
space. An example of a nals is the get X of all noneﬁpty,
bounded and convex subsets A of a (real) ﬁormed linear space
E for the addition 51+A2 z‘{ al+a2l; a, € Al, 2, eA2% s the
element zero of X the set %,OE ,’the multiplication by reals

= {X a ac_—’A% and the norm |jlAlll = sup, e Nal] » Begides
the axioms of an usual norm on a linear space, the above norm

TR satlbileg also the following > condition § if Al = —Al then

4.

HEANES WA+A W for each AeX.

The normed almost linear spaces were introduced in {:3]
as. a natural framework for the theory of best mjmultaneou“
approximation in normed linear spaces., In [ 3] and the sube-

equent papers [ } [6?} we have also boguq to develop a
theory for.the normed almost linear spaces similar with that

ne normed linear spaces. It turned out that some results

g8
g

of
from the latter theory were true in our more general framework.
Here we mention that we have introduced the "dual" of a nals X,

x

ted X" , (where the functionals are no. longer linear but

s Y

aeno

A

P

"almost linear®"), which is also a nals, and when X is g normed



(2

e Lot <
1inear space then X  is the usual dual space of % (56@‘{5]Jﬁ})3

in a nals X for each x € L thorﬁ exists € x* ,mfl = 1 guch
f£(x) xﬁlv% E6j ¥ though the result Whlch atates that
in & nofm@d linear space £, given o linear subspace M<K

¥ 2 e . o
and fe M Lhere,ex;sts o porm-preserving extension O L ie

not true if we replace nyinear" DY "aimost 1linear" (see examples

in ['4] )« the main ‘tool for the theory of wmormed almost linear

spaces was g:ven in (Y‘GJ Theorem 3.,2) where we proved that
any nals X can be “embed&ed" in a normediiinear gpace EX .
Though the embedding mapping 1is not one-to»oﬁe, it has enough
properties o permit us the use of normed linear spaces
techniques to prove certain.problems in a8 nalse |

The present paper 1is a conbinuation of the above cited
papers, providing results from the theory of boundéd linear
operators in normed linear spaces which can be formulatgd'and
proved in’nbrmed slmost linear. spaces.

When X and Y are two normed almost 1inear Spaces; the
definition of @& pounded linear opérator TeX Y may be given
as in the case when X and v are normed 1iﬁear spaces, vut the
set of all such operators may pe the only opel ator T = O.
Moreavers for .= R we do not obtain the dual space ¥, o
avoid these unpleasanf facts we Shall Work with bounded d&moqt
1}§§§£~33§£§§g§§~with respect to 2 convex cone G c Y (see Sec~
tion 4). The set of all cuch operators, genoted by 102, 06,0 1y
ia # %,OE when C # %ﬂ)% : x¥ = L(K;(R§R+)) and when X,Y are
normed linear spaces, i, kT, C)) je the set of all bounded
linear Qperators PeX 7o “hauwh L(x,(¥,C)) has soﬁe relevant
properties, it dig mot 2 nals for arbitrary iz ¥, For-oomuex

cones O having a certain property () in ¥ (see Section 215
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e
L(X¢(Y ¢)) is @ nalse. Though p;op@rty (P) of ¢ is not necessary
for 108, 4,80 50 be @ nals, it 18 in a ceriain pemnse the best
poasible (see Theorem 4.15)e
In order 1O prove the extensions of-Some results from

the theory of bounded linear operators in normed 1inear Spacesy

~ '/u ) /—"—‘\" _ = e T o
the main tool is given 155Tﬁe@fem‘506;'wmere we "embed"

r af

e 0 ¢)) in the upace of pounded linear operators g
%,s
T:Ewi% EY . Ae applic tions we prove the Banach~8%elnhauv

Theorem and the inverse mapping Theorem in our more general

framework (Section 6
2 PRFLIYINAPIFS

For an easy understandlnﬁ of this paper, in this gectien”
oo pecall definihlons ond results from [ 37 Fal,[6) which
ﬁill be used in.the next sectionse gome notations and genéral
agsumptions can be also found here. The main agsumpbion: is
that g;;wgggggw_ave over the roel flela . Let us denote.by
R, the set {her: A7 0} and by N the set ¢, e

An almost WTWDQ%‘FQQCG (als) is & set x together with
two mappings 's:Xan-mg§X and mRx X —>X 8 aatisfying (Ll) (18)
belovi. wWe denote s{x,y) by *+¥ (or xly)‘and mth ,x) by hex

Eor Ax). Let Xy¥,2 e ¥ and X,y-é R. (Iq Yy x+(y+2) = (%+7)+% 3

2} g4y=y+X 5 (L ) There exigts an elnm@nt 0eX such that
x+0=% for wﬂch xeX 3 (L4) ]ame : (L ) Qox=0 3 (L6) Mo (A%¢, =
i by g R IR (‘tr‘mx i (g) () e Jox = doxn e
for %v)bé H+ .

Ipn an als X the following two gets play an important rol¢

ORRERESS S ol
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v
V, z-{ x€ Xt x+(<lex) =0

Wy méTXﬁX;x:x;ﬂﬂxi(m§x+bdnx)§xéﬁig)

They are almost linear subspaces of X (i.e., closed under

addition and mul*ipWiéation bv DCdlars), and by (L Y- (LS)’
V, is a linear space.’ Pldlﬂly, an als ¥ is a llnear space
i X =V, iffW, = 0} 5
In an als X we shall always use the notation Mhex for
m( A o) e notation )\x'being used onl& in a linear space,

An als X satisfies the law of canceliation if the

relations x,y,z¢ X, x+y = x+z imply that Y = Z.

In what follows a cone in an als X is a set C < X such
that ka}:&c for eaéh x€ X and'},éfg_. The definition of a
ggggg&.set in an als X is similar with that in a linear space.
| A norm on the als X is a funétionai Mefll: X —R

satisfying (N )m(Nﬂ) below. Let x,ye X, weé W, and A el

X
(N)) mbzeyin € mxit+mym 5 (N,) Wxl = 0 iff x = 03
(,) i hexi = M mxm; (N,) Wxit & W xewill. By (N )=(w, )

it follows that [{ixIll.2 0, x€ X. A normed 2lmost linear space

(nals) is an als X together with Wi il (:X—>R satisfying
(Nl)w(N4)e Here we note that in g:33 ~[:51 we gave another

equivalent definition for the norm, the above one being

Y e
vused dn L6 T .

In'a nals X the following inequality holds :
£ MYzt = Wy il i £ W=ty il (x,ye X)

2.1, REMARK. ' Let X be a nals and Xe¥ &€ X. The function

Rl NY - le+,k@yﬁ§ is convex on LO0,°0) and (~00,01 .
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The next result is from ( [ 3] ).

Yiid

202, LEMMA. TLet X be a nals and x,y,ze X.

(1) If x+y = x+z then W ym = Wz,

(ii): If waye Vy then x,ye Vy

Y

Let X,Y be two almost linear spaces. A mapping Ti:X=——3Y

 is called a linear operator if T(k19x1+ ﬂgoxz) = XloT(xl) +

+ XzaT(x2), X € X, )\ie Ry i2l,24

\

The main tool féf the theory of normed almost linear

spaces is the following theorem ( [ 6] , Theorem 2.2,

B s THEOREM. For any nals (X, -l ) there exist a

normed linear space (E., H'H_ ) and o mopping o XS5
5 A BJX 5 X A
with the following properties :

(1) The set X, = w.(X) is a convex cone of Ey such

that BEe = L,=% , and X, can be organized as an als where

the addition and the multiplication by non-negative reals are
the same as in EK o

(ii) -For each zeRE

x Wwe have ;

(2.2). i%zﬂEy = ipf {;ggxlug+£nx2§ﬁ :xl,x2é§, z:cdx(xl)aiéx(

and the als Xl together with this norm is a nals.

(11i1) The mapping ey from X onto the nals X, is a
$% 2
linear operator and ;imgv(x)iip = x|l for each xe X.
x\ ior each

X
‘

In the sequel we shall not use the subs ript X (resp. Ey
4T

Xzi}

)
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for B, and . (respetl-ﬁF ) when these will not lead %o

X
misunderstandings

g R

2s4. REMARK, We have w (W = W

2.5, REMARK. If & :X—>X

@Jm1:X1~m&?X is a linear operator,

B
X Xy -

and au(v =

X) sk

1 is one-=to-~one then

The prodf of the following lemma is contained in the

proof of (fel

Theorem 3.2,(iv), factl{I)).

2.6, LEMMA. Let (X, W W) be a nals and x,yeX such

that «w (x) = w (y). Then for each ¢ >0

0

such tha

!

IHX i+ 1y it < € and x+y, +u

£

theye exist xi,% ,ugé 4

= YR AU ¢

A consequence of Theorem 2.3 is the following result

P Corollary y e B

2.7. COROLLARY. For any nals (X, |

f(XgY)

‘ff'xgy) a)(X)mfu(y)ﬁ

is a semi-metric on X and we have:

(2.3) § (-lex,~ley) = p(x,y)

e l) the function

(X;:YéX)

(vaé X)

In a nals X the semi-metric p generates a topology
w

on X (which is not Hausdorff in general) and in the sequel any
1 v/

5

topological concept such as closenes

will be understood for this topology. Cle

S, completion,. continuity,

‘quv.f is g metric
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s :
on X iff e is one~to-one. hotlce that even when P is not
a metric on X we can use sequences instead of nets. Moreover

the fopology on the normed linear space (ny - Hl) generated

by ¢ 1is the same as the topology generated by the norm. .
ot ) .

2.8, REMARK., If A is a closed subset of the nals (X, M-#i)

then w(A) is & closed subset of the nals (X, 0).

We recall now the definition of the dual space ofim
nals X and some of its properties used in the next sections.

Let X be an als. A functional f:X—=1R is called an

almost linear functional if f is additive, positively homoge-

neous and f(w) % O for each weW Lok 2T S e o sl

X L
almost linear functionals on Xo Define the addition in Xﬁ
by (f1+fq)(x) ='fl(x)+f2(x), x € X and the multiplication by

»»#

reals ( hef)(x) = f( Aox), xeX. The element 0 X" 1is the

g}

. i
- . . . - 17 .
functional which is O at each xé¢ X. Then X~ is an als, When
i

X 48 5 nals, for f&iX# define W LIl = sup g!f(x)§; foﬁkélg .

=
#.
L

and let X¥ = § fex™: Ml < o0} . Then x* is a nals ( [3])

called the-

' Cs - e
space of the nals X. The dual space X is. # {0}

< 4 . : ~
if X # 10} since the corollary of Hahn-Bana ch Theorem extends

to a nals (see the intr ‘oduction and the reference cited there).

The qc?t corollary is an immediate consequence of the above
| R : e s :
menti LﬁiﬂOﬁult and ( 4] , Proposition 3.15). We give another

direct proof using only the extension of the corollary of

Hahn-Banach Theorem.

7
'y DAY T AT B i S e v L P < ‘if»« !
2% COROLRARY . JIf X d9- 3. nals VY then Wox £ 30 ¢

Sl i Ve b
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Proof. Let wel, , W will =1 and let fe X, MEfhl= 1 such
that flw) =4 will. Define for xe %, fl(x) = fx+(~lex))/2.

Then £ € Vlyx and £l = 1,
E £h

We conclude this section with some examples from f:Ej 9543

which will be used in the next sections.

2.10, EXAMPLE. Let X = § (%,#)eR%; p ¢R § . Define
the addition and the mulﬁipl;cation bj nonwnegative reals as
in R2 and define 710(04,@ ) = (= & ) o Y i The Qlement zero of
X is (0,0) ¢ R®, Then X is an als and we have V, = 5 (a(,O):mﬁlig
and W, = { (o, plrifoe R_js « Definefor (o, 6 ] €X, Il (0{. s B H=

= X@k'+ﬁ « The als X together with this norm is a nals.

2,11, EXAMPLE., Let X =R, . Define xiy = max §x,y§
and for A #£ 0, Ao x =x and Oex = O. The element CeX is OeR, .

Then X is an als such that WY = X. There exists no norm on X.

2,12, EXANPLE, TLet X = R, Define the addition and the
element 0 € X as in R and define Mex = 5%}x.,Then X is an als
such that WX = .Xe There.existe no norm on- X

If otherwise not stated, 1ls (nals) X will be

o)
b
@
o

. £
’ut[)nOL.)\ (_L "-{ ii O % @
3. CONES -WITH PROPERTY (P) IN A NORMED ALMOST LINEAR SPACE

Let (X, W-U{) be a2 nals and C a convex cone of X.



A

Wy

o

if the relations x,ye X, x+ye C and cé C imply that

S ¢ . : =%
o max %_ﬁ%x§ﬁpéhgfﬂﬁ§ £ max g Wx+ceBl, y+ecitl I

Note that if C',C are convex cones of X, C' < C and C
has property (P) in X then C' hasg also property (P) in X.
Clearly the cone C = W, has property (P)-in X. The next

result gives more information about the existence of cones

with property (P) in a nals X.

3¢2. PROPOSITION,  In anv nals X there existsoarmaximial

convex cone C # § 0% having property (P) in X and such

that W GG
2 8

Proof. Suppose WK # éjo §, As we observed above Wyﬁlms
SRS =
¥ . A = L% :
property (P) in X. Let JF be the set of all convex cones
C < X, having property (P) in X and such that Wy . Co It is
a partially ordered set, orderer by set-inclusion, and by

Zorn's Lemma the conclusion follows,

: 7 ! ; j :
Suppose wx e %_O_gs Then X is a normed linear space.
5 S i 3

04 de B -x K Y - b S [ ‘ T 2
Let x € X, N x il =1 and let C_ ~£}\ X, s AE 114_.?3 . Then

Co has property (P) in X. Indeed, let x,y € X such that X+y & CO

and let Cf%co o If z4y=0 then (3.1) is obvious, If x+y= AOXO,

>, > 0, suppose | yi

Yot %::A;/AO

£ (14 ) )ﬁixﬁiwééﬁyiﬁ £ (L+ 3 Yx+ Ayl =l x+clll , whence

B

2 M xWl. Let e=Mx,, M €R_ and

o

. We have Mzl = (1+) )Mixi =) mxin <

e

. :
(3.1) follows. As in the case W, # g(ﬁg (replacing W. by Co)g
1S A

-y

the assertion from the proposition follows by Zorn's Lemmsa.
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The next proposition yields a necessary condition for

a convex cone to have property (P) in X.

3¢3. PROPOSITION., 1If C is a convex cone having proper-—

rmcsons

ty (P) in the nals X then:

- (3.2) Mo £ Wegre, i (o 4s 2 C)

“

" Proof. Let ¢y 50, € C, We can suppose 0 # We, W & i el

Case 1. We, I < We,lll. Choose 0 < A < 1 such that
(1+A) Meyfit < f{f o Wi+ Since cy+c, &C, by property (R0
in X we have : ' -

11y 5 e [ 1 . i 33 % g

e it & max 3 Wl eqraecy, Ul ihes+pecy il §
By the choice of N we must have e 5i§lcl+}eczﬁ§,
and (3.2) follows now by Remark‘2.l.

Case 2, ﬂic2£ﬂ = HQQlHE, Let»o Z F;agl, Then ngfacgiﬂ <
< Bt cq Wl and by the above case we get H{CIH§:§litcl+ﬁaczgﬁ 5
Again by Remark 2.1 we obtain (3.2).

The necessary condition for property (P) given above is

not sufficient as the following example shows.

3.4 EXAMPLE. 'Let X be the nals described in Example 2,10,

: {J 3 : % Kl @ : w7 ’{ - - . oy
e C= 3 (ot Jp VEL x,p &R §. Then (3.2) is satisfied
{a B 2 ¥ . :
for c1900é¢3 but € bas not property (P) in %. Indeed, let
C o
0« ¢ <1/2 dnd let x=(-£,1), y=0=(8,0) e C. We have x+ye(,

Hiy b <l xiil- =3¢, Bl 24cill =1 and I yeelfl = 28 €1 258
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Let (Yy%%" ) be @ nals and (B, il )y 2 Xi and f be

given bY Theoren 2.3 and Corollary 2ele

3.5, LENA. Let & fi-il) be 2 mlg_;ratwﬁgmg the law

e RO

of ﬂsuC@WW“LiHG jﬁp let R U ¢ B convex ¢ cone having pr proper-

M o onTs

n—v‘wm’«ﬁma‘m TR0
°

Ty (p) in X &po such that W = Gy
_sucn Dol

53

i Oy w (C) is & convex cone having property (P) in &4+

oo

(ii) Ihe closure © of ¢ in X i8 & = convex €one having

Eggggrtv.(?) in X.

proof. (1).By the nlopertlc of e given 1n Theorem 23

s

Cq is @ Conyvex COne. b@t now %,v € Xq such that %+¥ = Clé‘cl

apl Let € &8y Let %,y &% c,yCq € ® such.that wilx) = %y
wly) =7 w (¢) = © end w (Cq Y 31 . Then w (x+y) = ul(cl)a
By Lemma »,.6 and since X satisflc@ the law of cancellations

for each ¢ » 0 there exist x, A ¢ X such that H\xﬁus+zﬁyﬁﬁié £

and X+y+¥, ¥ Cq+Eg o Hence, vusing the hypothosmw nw e Cy
A

we getb x+y+y§¢(wlmxg)aab, and by (2.1) and the property (P)

sl
s

of in X we obtain

rv." 749

max%ju SR LALL gﬁﬁyﬁiwiﬂxgﬁ\EQ maX5ﬂtX+$JH Ly (=Lex, ity =
: 55xmwcg}ux+yé+cﬁi,Hiy+(~laxé)+c%ﬁ§ £

PR e IIEAURE yaclil + Wx g

Letting ¢~ 0 we get (351); and the econclusion that Cl has
property (P) in %4 follows by the prepertieS'of 2o

(ii) Glearly C is & convex cone of XK. Let pow %,y &%

b’ e
X u

)—qw‘

at x+y €’ and let € eC, For € - (Q ‘there exisl

A Ay, Ehat ~r ) - ¢ \ . G a4 :
c‘,c“q;C guch that ~(h+y?c”) < & and y(c,c°)eﬁ g€ . Dinee



iy

i

235

ﬁ‘&ﬁ(x)+&s(y)maa(c”)§fﬁ £ by (2.2 eve exist X13y; € X

such that ﬁj(Y)ﬁﬁﬁ(ij€d(C") = G . )wcv(yl) and HEx4 Ll + 3 il < :

Then w (z+y+y. ) = mﬁ(x1+c”) and as in (i) abﬁVb.we find
¥ 0¥, € L with Nx, M +My W <€ & and such that X+y+yl+y£'m
= xl+c”+y

(., « Hence x+vaex [ +{=lex. J+(~lox e Je Usine L
2 £8 Agiyy +3) ( fxl)r( 1 ya) C. Using proper

(P) of C in X and (2:.1) we get:

max iﬂiXHfgﬂ}yHE% %2§:§max €ﬂ§x+yi+v i el 10y1)+(~]ax )m

(3.3) £ max i}i X+yq +y, +c il ,hly+(w1ax1)+(«1ox )+e Yy

b J

< max 5 X+ o0l y+e 'y ?z k7

Now nfx+c°uf«zux+ciﬁ =l (x)+w (e M-flw(x)rw ()l <
gl ewl(e!)mw( = P(e',c)< e ang similarly

§

HEY+e'll =l y+clit < € . By (3.3) we obtain ;

% Q
.:;
Lot

§

A}
5

I

AN

max { Bt 1 s max %»H{x+cnigiﬂy+ciﬁ %+3 e

Letting g —» 0 we obtain (3.1), i;ey, C has property (P) in X,

We have not an gxample to show that the assumption on ¥
to satisfy the law of cancellation is not superfluous in
the above lemma, . .

We conclude this section with the following remark.

3.6. REMARK. Let Cl<in be a convex cone having proper-~

ty (P) in %« Then w “L(g) = Seer, wls e::clf ig a convex

cone having property (P) in X.
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4. ALNMOST LINEAR DPEWATOiS !

Let X,Y be two almost linear spaces and C a convex
¢ x o

wr

Gone of ¥ .

4.,1. DEFINITION, A mapping T:X~—» Y is called an

almost linear operator with respect to C if the following

three conditions hold:

(4.1 T(x +X2) T(X Yok T(xz) ' ' (xl,x2<&K)
(4.2) T(hex) = AoT(x) , ; e ®; )éﬂq})
(4.3) T(Wy) < C

We denote by £ (X,(Y,C)) the set of all T:X —>Y
satisfying (4.1)=(4.3). We organize &£(X,(Y,C)) as an als in
the following way ¢ for @l,TgﬁTd (X, (Y,C)) and \ &R we define

T 4T, % Fir, (l,c)) diXeT ¢ AT, (L.0)) by

(2 42,) (x) = By (x)+T,5(x) (xex)
( Xel)(x) = T(}\ox_) » (Fex) .,

The element 0¢ £ (¥%,(Y,C)) is the operator which is zero at

any x€X. It is straightforward to show that <£(X, (Y 20

4.2 REMARK, -~If C',0 dre corivex cones of ¥ such that
9

74

Tl e
Cr & € then (X, (Y,d)) 1is an-almost linear subepace of L(E, (1,0

©

<

SR e o G B S € TR
Let us also denote oy h,'\’xy f) the set (i‘;‘\l&y\&’wz"uj ;



i

i

and. by A(X,Y) thé set of all linear operators T:X —>Y. By
Remark 4.2, <€(X,Y) is an almost linear gﬁbﬂpace of Wg(X,(Y?C))
for every € < Y. It is easy to construct examples of

(X,(Y,C)) which are 16% linear operators (see Example 4.7
below). Clearly if Te¢ & (X,(Y,C)) then we have T¢ Aolt,
iff S = ~leT where S:X—3>Y is defined by S(x) = -le(T(x)),
x & X. Here we also rote that the inclusion A(X,Y)e .2 (X,(Y,0))
can fail, ut we always find cones C <« Y when it holds, as the

following remark shows.

4.3, REMARK. The set fM(X,Y) is an almost lineer

subspace of & (X,(Y “v))

4@41 r{}..llri.“kx?t:o V\"O }).Five : -

(4.4) A(x, Yy)hm-X‘i\f~( Y,C)) zﬂﬁy(XpY)
(4.5) N VgV,) @ & (T4, (Y,0))
(406) j&( {’VY} "“f‘i(\*’v?(vysc))

Formula (4.5) shows that Definition 4.1 generalizes the
notion of a linear operator between two linear spaces and
(4.6) shows that when X and Y are linear Spaéethhen the
cone C.iS.WUO“?’luOHﬁ ani Definition 4.1 is equivalent with
the definition of a linear operator T:!X ~>Y. Formula (4 '

shows that Befinition 4.1 WAﬁc‘"lizes the notion of an almost

sz “’(§ (')) h&VC‘ ’{];}(/\.g Jy”‘))

LA
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iff T(x) = T(~lex) for each xe X. Consequently if

T &€ ‘{’Y;e:?(}f;g(?ﬁ‘;c,‘)} jmen T(X) e ¢

4.6, REMARK, TIf T ¢ A(X,Y) then T(X) is =n almost
linear subspace of Y, If T€ (%, (1,0)) then B[%) s a
convex cone of Y which can be not an almost linear subspace

of Y e the following eYample shows.

Gela-BXiNETR, Let Y = % (ot P )E Re ﬁyéI{ f be thb
als described in Examﬁle 2,10 and let X be the almost 1inearv
subspace of Y defined by X x,{ (e¢, f )é‘Y s ﬁs>¥¢€i§ . We
have W x‘Wi = g'(O,;%) : ﬁ<58+§'; Lot De L (L (quvﬁ'be
defined by T((@{,{S)) = (a(yﬁf+@ )y (#,8 )€ X. Then
T(X)“m % (af,p )é‘Y Y i 20<} which is hot an zlmost lineer
subspace of Y since (-1,0) & T(X) and -le(-1,0) = (1,0)% LR
Glesviy 0 & ALK, 7). |

hen Y is a nals then we can improve some of the above

statements,

4.8. REMARK. When Y is a nals ¢ condition (4.2) in
Definition 4.1 can Be given only for e € \ % § The fact
that 4t ho for A is an immediate .consequence of (a1
'and Lemma 2.2 (i), This is no more true when Y is not a nals.

4,9, EXAMPLE. Let X‘x R+ be the als described in
Example 2.11. TLet ¥ = C = X and define T:X —>X by
P(x) = max % l,x% y Xx& X+ Then T satisfies (4.1),(4.3) and

(4.2) for A4 0 but T%éif(\g dgh)) since T(0) = EZ.
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4,10. REMARK. Let Y be a nals. We have

(4.8)  &(X,Y) = N(X,Vy)
9o 510, %é&ﬂxwmgcnggg DN (Vg V)

%

{401{)) fi“q‘(“f}:a?\jy> ":5:"'\«: Q(Y C))

The formulas (4.8)-(4.10) are not true when Y is not

a nals.

4.,11. EXANPLE. Let X be the linear space R and let
Y = R be the als degcrlbe@ in Exa mple 2.12. Since VY :-%o%
we have j%(xﬁvy) = jX(Vvva = § 0} . Define T:X—>Y by
T(x) = %. Then (4.8)-(4.10) do not hold for this T.

suppose now that X and Y are two normed almost linear.

.

spaces. For T e 2(X,(Y,0)) define

(4,11) firiil = sup { HET GO S il < 11‘

and let L(Aﬁk",c)) = { Té:a?(x,(y,c)) ¢l < CM>} =

is easy to show that I #l defined by (4.11) satiefies (Nl)&(NB)g

vhence L(X, (Y C)) 8. an-ala. It'is not always a nals for
arbitrary convex cones sl ( see Proposition 4.18 or the

example given in the proof of Theorem 4.15 below). Though we

shall avoid the word "norm" when (N does not hold, in the

4)~

sequel we shall always.consider the als L(X,(Y,C)) egquiped

with the . Il defined by (4.11).

4.12. REMARE, If C £ § {0} then L(x,(¥,0)) # fot.



g : ' : :
Kﬁdaody let c @Cf\,£(>§ and let fe X"\ S O . Define
T(x) = f(x)c, x€ X. Then T& & (X,(Y,C)) and WTH =N £l el <e
and N2l £ 0, i.e., Te L{X,(Y,0))N £0% . 1f C = § 07 then
L(%,(Y,C)) may be §z3§ (eeggs, when X = WX)Q We also note here
that if ¢ = $ 0% then L(X,(Y,0)) may be # % Q} (e.ge, when

X and Y are normed linear spaces).

4.13., REMARK. It is easy %to show that if Té& £ (X, (Y,0))
and T is continuous then Té L(X,(Y,C)). The converse will be

roved in Remark 5.5 in the next section.
P ,

We conclude this section with some necess sary and (or)
sufficient conditions on the convex cone C € Y in order that
L(X,(Y4C)) be a2 nals. As we observed above, if X is a linear

fa

space then the cone C €« Y is superfluous and up to the end

of this section we suppose X # V

X v

4,14, PROPOSITION. Let C be a convex cone of the nals

Y In order that 1(X,(Y,C)) be a nals it is nedescary that
# b3

the elementbs of € satisfy [(3:8)s I8 L = W, then this condition

is also sufficient.

Proof. Suppose L(XQ(Y;C)) a nals and suppose there are
CqsCoé C-sich that H%cl+c2§H}ﬁ ﬁ501Uie By.Coro}lary 2;9 there
exists £& Wox , WM = 1, Define T, (x) = f(x)e,, xeX, i=1,2
By Remark 4.5, TlﬁTgé' L(%,(Y,C)) and we have iHTlHi = ﬂ\olﬁﬂ,
H§Ti+T.ﬁ5 = H301+cgﬁi and go (N Y is not setisiied, contradict-
ing the hypothesis that L{(X,{(Y¥,C)) is a nals.

The other sﬂatemeﬁﬁ is obvious, since if X — WX then
for each Té€ L(K,(Y?C)) ve have (X} <0 and (N ) follows by (3.2)

e LAY ’



e

Now we show that property (P) of € in Y introduced in

%.J.

section 3 is a sufficient condition in order that B, 0
.be a nals. Though this condition is not alwayu necessary (see
example below), it is in a certain sense the best possible,

as one can see in the next result.

4.,15. THEOREM. Let C be a convex cone of the nals ey

-

L(X,(Y,C)) is a nals for each nals X i£f -C has sreperty (P) in ¥,

Proof. Suppose C has property (P) in Y. Let Te L(X,(Y,C)),

D€ =
’L(,\,( 1y

&
Tl(x} = (-1

and x€X, Iix Nt £ 1., By Remark 4.5 we have
C)) ¥
e A

) € C. Since T(x)+T{(=lex)€ C and by hypothesis

we get

mazif%T(X)H?}iﬁ@(wléxﬁﬁfgggm&%j%T(x)+Ti£ﬁ %J,!ET(mi@} l{“>

_whence (N4) follows, i8¢y ML A0.0)) 45 & ingls.
If C has not property (P) in Y, there exist YysVp & ¥y
L yo il £it1yqin and ceC such that y +y,eC and

¥

bt max:%auy1+caﬁgtmy2+cgni‘4igggdﬂn§¢ Let X be the almost linear

Lo

subspace of the als described in Example 2,10, defined by
: ; e 7 T

AXm{(oc,P)é‘;—R : B 2let)§ . Define H}(m’,@)mmﬁ for
(s )€X. Then (X, -1l ) is a nals. Let T¢L(X,(Y,C)) and
T. €& wL’X;(E,C)) be defined ﬁy
i, p3) = 208 é ((,p)ex

o0 =Tl g L i)
T (=,p)) = pe _ | ((t ypp ) &X)

o 1
B

£ -
S

<
o

dnce . A alel for (wf,ﬁ ) € X, we have :



m i g B o "6" % v o 4 f'« "
(e, @ ))?}5 <« "“"“““f_, {13! Y E + “‘L"“"‘:é“”““ it 37"2?555 -(g il ylgfg

§§§('}?~}~'§.‘l)( ))“ fif S (yl+c) & é»-%-ﬁ(—- (y2+c)15§ =<

2
< @ max% ﬁy1+¢ﬂi,%iy2+cﬂi%
whence I T+’."L‘1m £ max gm-yla-céi sl yote il ?3 < il y] = JI{ il
which shows that L(X,(Y,C)) is not a nals.

We give now the example nromi$ed before Theorem 4.15.

4.16. EXANMPLE. Let X be the nals described in Example 2,10

and let C = { (m’,ﬁ )@Ifaz Ky 3 € R § . in Example 3.4 we

B

showed that C has not property (P) in X. Let v=(1,0)e Ve >
V%

w=(0,1)¢ Wy o For (ot [ Yé X we hdve (o«g‘/; ) = <o v+ Beowis
L‘@J[; Tlé“ 1,'(}:5(};:?0)) €i;ﬁd Tzé’ E(;{y(\r G)) @ By (409) arld. }{@H‘Lfﬁf‘}‘: [}&5

4 m . o & iy Nl ¢ o 7 el )

we get Li((ﬁ(y? )) = m{efi\v + é@Ti(h), l(&)eavx ,‘1~1,L

and TQ(V) =0, LetﬂTl(v) = XO,O) and T, (W) = ¥ g ),
¥
T,((,4)) = (B¥L, P ) Let (o ,6 )€ X, H(et,p)ll < 1
(( g DU = & 1Y 4pd)

&,eRr, , i=1,2. Then T ((~,p)) = (w:g»; ..Fg%};,m §,) and

it ot }3’0 > 0 then T

_ = -k i o
< fts‘?(Tlé-Tz) ((e£, & DI £ 1l ‘E1+T2f§5 o T e KO < 0. then

\ee ¥+ PYIE =¥ + p¥, and by the above case we get

I 0 35
SEETl((ﬁ' » (3 < ﬂ.:.L_((»@,@{B NN £ Wngﬂh‘l‘zm, 1,e., we bhaye

By Proposition 4.14 and Theorem 4.15



we immedia

a convex

1tely obtain another proof for Proposition 3.3.

5. MAIN RESULT

X and Y be two normed almost linear spaces and C
:

cone of Y. Up to the end of this paper we shall use

the following notation .

perties

b
i

Fven

K o o - ' o
{a unigue) 7€ L(Xlg(ingl)) such that w = Tew

and

by

P

R
(i)
(1) =

1 '“aux(x)
agY(y)

]
!

Cy = 2 (C)

when L(X,(Y,C)) is not a nals, it has certain pro-

which we give below.

MMA. (i) TFor each TéL(X,(Y,C)) there exists

cmerma s

X

= %Ef“ga

The mapping I;L(Xﬁ(",C))«mﬁ?IAKig( 719Gy )) defined

lf‘! 2
e a1

| 96 1
b
5

near operator such that W§ I(T)H = Moy,

TE A L, ),

onto L(%, (Y,

(ii1)

(iv)

1f L(Aly(Y ¢, )) is a nals, then L(X,(Y,C)) is = nals.

il w is one-to—~ one then I is one-to-one and

S m s Sl Y0  nals 1fF L(Xl’(Yl’Cl))

() ¥e have I(L(X,(Y,0))N N(X,XN) & Blxy,(¥,,6)) N
f}’f\(Xl,Yl) and the equality sign holds if ¢ is one-to-one.
Pgéch(l) Let TfEL(L,k{,C)}@ Fox ﬁe:al led
?(Z> 5 “35(”/3355 Xé mfglif} To show that T 4s well defined,



let }riﬁngﬁy aguch that MJ‘Y 1) - @-@X(;:?) :::‘?Z and let ¢ >0,

By Lemma 2.6, there @xist Ko 9Xg Uy € X such that [if §¥“~ﬁ§X§ﬁ§££
and Kl- }Céf.,y-t{g e }:253’“& +“u 5 Hence m(X—. }—{vT(X“) %T(U ) 8 T(\XQ>‘%T(X£ )-}‘
)+em{(m(4u)) LUY(T(Xz))+zU‘(T(X£?)°

x,) 1 H =1 QJY(T(X;))mﬁu (n(xn))g

s 8 ) % t8mo el @ " -4
= déTHi(%i’éi +%ﬂxt§i)‘£ il £, whence since € >0 was

in

s : e o~
arbitrary, we obtain &GY(Tixl)) = é@.(T(Xz)), i.e., T is
well defined. Using the fact that (Jf) Wy 5 it is easy

T
i ﬁﬁ]j F Tl ""'l o
to show that T € £(X, ,(¥Y,,C)). Since for .xe ey (X) we
10 ity : }g

have HfE(ﬁ}ﬁ mf§MéY(T(x))ﬁ =M oG and nEH = Wxil, it

Fatd Y i %
follows that HTH = Ho< o=

(i1)° By (1) above we have H I(T)Il = M TH for each
TéL(X,(Y,C))s It is straightforward to show that I is a

linear Qp@fatore
iia 0 Te& ‘4"‘1‘}- - 2 13.‘.,’ Wy k 2mea” ];. -w” e £eT ﬁls},
(iia ) IF e L(x, (¥,0)) then by Remark 4.5 we get that
Now (N,). for Il LT, (Y, 0
I(T)é& L(Klg(tigC )) - Now (14) fow MWl son Wl (Y ,0) )

follows by (L4) for the norm of L(Kl’(yifcl>> weine (117,

D

(iv) Suppose &, one-to-one. Plainly, I is also

Q

one-to-one and to show that I is.onto u(‘,ly([lsg 3)), let
N - : 2
it é L ( '&'} $ ( l ) ) ® Define

(5e1) m( <) = 1( (o (x))), (xe X)

By Remark 2.5, T & £(%,(¥,C)) and since HiT(xng = m(éuv(m)ﬂ £
é7ﬁ%ﬂ§lﬁxi§ for each x & X, it follows ﬁiTﬁ?é’ﬂi§§

i.e., TEL(X,(Y,0)). By the definition of T we have that
Ty B G e T dar oiho L(Xl,(Yl,Cl)), For the last assertio&

in (iv), by (iii) above it remains to show that L(X. e F\N,))
p iy 1 it



L

for C = W, we have that I:ﬁxb(z¢¥;ww%»ﬁ‘b(xl,’

e

f)?
o i 2 o

is 2 nals if X, (¥,0)) 1s a nals. The proof s STmJ]M with
" -~ o~ 7 B T LY i Ry
the proof of (iii) , observing that if T & W 1) and

”T (f{-x 12 \Y

1 1’

Ba Tl 8, {%:0)) 1e suoh that I1(D) = 5 thn.ﬁzzv (X (v, L)‘”

(v) Let TeL(X,(¥,C)) A(X,Y) and let I(D) = T e

‘S ¥ s o ‘ 3 & KL G X z ¥ SH 4 : v P, ol L8 & ; ‘ == E%
€ 1 Jl,\ll Jei et X ¢X, and x € X such that X(x) X e

1 /
We have ?leﬁ%) m‘ﬁ(&ﬂX(«lwx)) = “JY(T(mléx)) = mlﬁU“Y(T(X))ﬁ'
Gl (-“%1-5 ' : :

L U T T, - P Teﬁﬁz(Kl,Yl}g If e, is one-to-one and

N : - > X

Tsiﬂijg(Yﬁ,Ci))fﬁ f&(xq,yl) then T defined by (5.1) belongs
(g p ULy pbg ¥ : :

to LIX,(Y,0)) ¢ A(X,Y)) and we have I(T) = T.

5.2, BEMARK, Liet NN (X,Y) = § Te A(X,7) & W< e ]

where T is given by (4.11). Using Remdrk 4.3 and the fact

.

thet LiX,. (1% )) is g nale (by Theorem 4.15 it follows that
b J : §

(J\':gY} = j&»\ \.g.r) ‘% .{J(/\‘g(Ly /ﬂr)) 1'7«' & nalﬁe B:‘f L@mma 5@:1 (*\I‘)

) is a linear

L1>
operator such that I T(T)l =il Tul, T€ Pkb(K,Y)i and when &

. . > A (%
is one-~to-cne, then I is one-to-one and onto 5\1( ng L%

i R . : N .
Let 4% be the convex cone of the livnear spa

CO
Q
o
TN
=
b
b
&)
A
s ¢
g

(6
fes}
H
i
)
ot
A

A

{‘ mg TR r o e 3 7
3 @.gﬁ.(uﬂ 1’”) - E(kl) < Yq, T(&Xl) < Gy 5

and let

= o
K = .ju"ztwv,*ry)

=32

S s
ey T IR A T M e
b e e .{J,EJJJ-'\L%L‘[‘L B O n&. & ¢

=
{0
o

= T]X,. Then Te ag(x:l?(a e



=

3 S oL ﬂ 2] e
Proof. Clearly T é (}1g(Yigﬁ )) and {ITH= TN .

Liet now z¢& Ev 1l 2l € 1. There exist Aiyy Xi such that

7 = ?QMZA and i F i +¥E:2ﬁ £ 1. We have R7{z)Hi ﬁ'ﬁT(§1)§+HT(§2ﬁ§a
- e e L e o~
= ﬁT{ﬁ}/w + i T(XH ) £ 2ﬂﬁ(%xlﬁ +}%K2ﬁ):§€§Tﬁ, whence N1l U 1l,

i '
a . x TR Y s S
5.4, LEMMA. (i) The cone ZX can be orpanized as an zls

<

where the additin and the multiplication by non-negative reals

are zs in A (B ,Ey).

(ii) K is an slmost linear subspace of H and the als K

5

together with the norm Wil of L(E,,E,) satisfy (Nl)«(N Y

(iii) The mapping JiK -2 L(X, ,(Y Cy )) defined by
&) "! l?

J(T) = TEX@ s T€K, is a linear operator such that HJI(P)i=1l il ,

Té X, and J is one~to-one and onto L(Kl,(Ylgcl)),

(Y (B W)y d% o nalevive L(Xl?(Yl’Cl)) is & nals,

9 R R
,TeX and AeR
t0 +

74 A 5 \ic e
?é i+ and }eﬁ?x:%ﬂﬂ@ﬁ,? it remains to define ~leT g J<,

Proof. (i) Observing thet if Ty

then T

4+

5

For z€By , 2 = %-%, , X € X, i=1,2, let (=1el)(z)

A
= T(ml@il)mf(wlaﬁ )& Ey o It is easy to show that ~l1eT is

M
well defined and that  =~leTeNS . Now a 1mp10 verifica thP

i)

shows that K is an als.

(34 ). ‘Tet Tek, 'Since (mleiﬁ)gﬁil = =10(T}X. ), by
Lemma 5.3 it follows that W —leTh = li(~1e)lx Il =i TIE I = Ti<e?,
The proof of the assertions in (ii) is now obvious.

(iii) By Lemma 5.3, for Te& K we have J(T)é%L(Kly(Ylycl))
and || () =Nell , It is straightforward to show that J is
a linear operator which is on@vﬁéwane. Let now %é?L(Xl,(YlyCi))

- ~ - . doias e » > . - o
BRE 0T e He oy wm = Xq=Xo 3 X5 € Xl o A=l 2 0 de e Tie) =

= &(ﬁl)mf(§?)&EEY « This mapping is well defined and Tédd (LW?“Y)



B

¥ N
Clearly Te - and TIX, = T. By'Lemma 5.3 we get HTHl =liTli< oo
isei, TEK and since J(T) = Tiit Ffollows thet d is onio
Using Remark 4.5 and the definition of ~Lel for
Te K it ie easy to show that Te Wy iff d(f)m W

B (Y ,C,))
The asgsertions of (iv) follow now immediately.

We can now prove the converse statement in Remark 4.13.

5.5 BEMARE, @ If Te LiX,{(Y,0)) then T f& vontinuous,

. s : : S e
Indeed, let Ty =4 “I{T)€ K, where I and J are given by

i

Lemmas 5.1 and 5.4, Then I(T) = J(Tl) = Tlin o Now let X, 90X &X-

&

such that lim Azox) = 0y MNebave wa(T(xn),T(x))

1 e Qﬂ"j P

adl e (“‘(*\c.ﬂ)) W (T =B I(T) (W (x ))-I(T) (o (x)) Ul =
ﬂT (CJW(X ) )t (wv (X)) fl~2>0, since T. € L(E.
0

H

s and o

5 L

Was X(Xn)‘“ ‘5&)1( ¥l = r V(X 9% ) 2 Oy

The main result of this p@par is the next theorem which
gives (E,N-1) and e from Theorem 2.3 for L{(X,(Y,C)) when it
ig & halS@'Unfortunatelj we are able to prove it under:thé 5
Qtro%we% assumption (in view of Lemma 5.1(1ii)) that L(Aﬂ,\Y 1;
ig & nais& Let I and J be given by Liemmas 5,1 #nd 5.4, and
denote by Kl the following subset OJ'L(Engy):

o
A5,

K = a8 nle (V. 0)))

5.6. THEOREM. If L(Xj,(YL,C )) is 2 nales then for

©

Lho _nals L(X,(Y,C)) the following . assertions are true ®

povepassiontont

(i) EL(X,(Y ¢)) is e linear subspace of L(EV,EY) and



e 5
e % = K., ~K. The norm br.F o ig
T LT0)) e o : = L ng)) —
for 7 by

ot
e
=
(L
o
2y
b )
a2
5
g
o
4
jdo

is taken over all T ﬁTP§~Kl guch that T = T}

@E&Ki)

a0
y,0)) = 37T and

mr—————rra

(ol
))(L(X,{Yﬁc))) K, is an almost linear subspace

3

s K such that {Klg i

1@ a nals
hoie, Jwﬁ 15 2 na-g

is one-to-one tq " the conclusiong of

il If

(i) ggﬁ,(ii) hold for Kl G K and‘the mapping buL(X (v,0))

is now one-to~one,

Proof. As we have mo%ed.abovef gince L(Kl,(Yl,Cl}) ig
nals, by Lemma 5.1(iii), L(X,(¥,C)) is also a nals. Using
Lemmas 5.1 and 5.4 together with the observ aulon that since
J”ll is a 1inlﬁr operator then Al is an almost linear uﬁ'yfc
of K, it is easy to show that the linear épace K1"K1 endowed
with the norm defined at (i) above, and the linear bperator
J”li “ﬂtlnfv all tLe reguirements of Theorem 2.3 for the nals

L(X,(¥,C0)), as well as (i)-{(iii) above.

Lven when ch. ie one-to-one, we have not the equality

gign in the anlumaon X-K QQL(EX,QV), as the following example



Ml of 1., and SO_QlOS@d in B, . We show now thzbf B

L

5.7. EXAMPLE., Let X be the nals described in Example 2,10,
Y = R° endowed with the Euclidean norm and C < ¥ be the convex

2 o : : e
"$E+§ « Bince C has propefﬁy (Pl an Y, by

(Y,C)) is a nals. We have X = gy ¥ = Y, = Ey

with the norm %i(wf?@s)ﬁ = letls |pf,

¢ L(E.,Ey) be defined by T((x ,p }) = et o@ 3,

i)
(€ ,6 )€ Ey - Suppose T = T,-T, , T,¢ X, i=1,2. Then for the

element (0,1)¢€ Wy » we must have Ti((O,l)) = (et
Hence T((0,1)) = (0,1) = 1, ((0,1))=T,((0,1)) = (=¢;~-«,,0),

which is not possible.
6. - APPLICATIONS

The aim of this se ouloL is to obtain certain classgical

theorems from the theory of ODGfdtO“F in normed linear spaces,

o

within the framework of normed almost linear spaces. For the

g

proofs we unw¢1 se Theorem 5.6, the corresponding theorem

known in normed linear gpaces, as well as the following result.

6.1. LENMMA. A nals (X, Hl-0il) is complete iff (E,,I#)

is 8 PBanach spice and X, 1s norm-closed 1n H, .,

Proof. Suppose X complete. Then X is:complete in the

st

A ./x. - 4{ 3 B

T3 4 ] it .S‘ 7m Gad TR R g Ty
Banach gpace. Let R IR < B, ‘be & Cauchy seguence. e can

suppose (D*%Slﬂp to a subsequence if necessary) that for
each n &N we have

TR s :
& for-eseha > 1

n "n+p t AT+ L
&



Y1 » %1991 € Xy . Bince Wz, -z 1l <1/2% | there

4

“ o e T s e o B 5 e ' - - b Nl 5
such that Zp=Zq = o=y, amdé%x2ﬁ+ﬂygﬁﬂ$1j2
M. e e N7l 13 e . o 2 : e
B & S 6 AT S G Thay )Yy Yy 0 B g o0 e Y Lo )
Then 3z, = +%p )= (yy+7,) vhere llx, il - 1/ y Lyl < 1/2
o : i = ¢ 3 Lot - 5 02 7
By induction on n we find two gequences @,wi}iwl . ijiwlgm Xj

t
ot P e i i n o 1
such that for each ne N we have z_ = (S8 X, )=(Z )

P - . . rn > . fl ~
and for n>» 2 we have E%xﬁg4£ 172 o 1y, 1 < 1/2" . PFor each

Gm Lol @ N ; e = N b =
nelN, let e xi& £, and s x‘ﬁ'im yi e Kl « Clearly,

: O 3 e
= (s 09 are Oaiioh ; s i Gt
é A‘% sl and e @xe}bw,o 1y sequences and since Kl is

complete, there exist X,7 ¢ XL.. such that lim’ XXl o=
AR S g b & 9:) é \.l . l'lm?wl! Arl X u Q
and 1im . # 7 ~yil = 0. Then for z = imﬁkéEX we have
Loy £ 4] s
1imr Eiurwz¥f: Ui dane, B, 18 a Banach space. The "if™"
o 4 L 4

3

b
art is obvious,

Simple examples show that the assumption e Il be s

X!
Banach space dgas not imply that Kl is norm-closed in EK .
We can now prove e.g., the extensions of Banachwstginhaug
Theorem and the inverse mapping theorem from the the@ry'of

normed linear spaces

6.2. THED? LE‘IE. Let X be a complete nals, Y a nals such

thnt Wy is one-to—~one and C < Y a clos sed convex cone such that

: oo =
L(Xg(Y,C)) 1o seoneta. dat Tn? -1 De a sequence in L(xg(f,u))

S

sueh thatb l‘imﬂ - m;\ B ('}}w(x) ;T(x)) = 0 for (335_}'_1_ X & X, .f.l.‘,.}lﬁ.@,

: = 7 e : 4 = =
the sequence «gsmr Wy .4 is bounded and Tgn(x,(y,c))g

Pro@ﬁe since w is one-to-one and C closed, it is

easy to show that Te L (X,(Y,C)). Now for each xeX, Mzl <1
we have W o(x)lll = HQQY(T(X))HsgffﬁUY(T(x))wﬁd (T‘(X))” 4

(
I = g[(T () 0ty s Ty -/\FY (2, (x),T(x)) +




™
il

f :} KD
- ﬁETnEﬁ for each néN, and so if we show that 9 i {H\[ﬁml
18 bounded, then T e L(X,(Y,C)). Since QQY is oztwu9mono
by hypothesis and Lemma 5.1(iv), L(Xl,(Y. )) a nalsa
By Theorem 5.6, &JE{X?f“yﬁ)}(gn}é X, néN . Then
Y, (o (T =1 & L(Xy,(¥15Cy)) and e n =T o

-

n €N, Hence and by hypothesis we have for each x€ X that

0 = llhﬂﬁypﬁé ( _____ (w\ 2(x)) m'limnw%gﬂﬁ ea {m (& mawygs(x}gg o
> f\ ¥ L
= 1imnm¢€m i Tm(ﬂvy(v¥)~»“ (T(x))! and so for each ?é%Xl the
o £

G0y wa g}
seguence & T (x)1 % 2 ﬂve?qzs to an element o: Let
quence 5 n( )J e ge o = element of Y, . Le

z€ By o BERo%y , X €%, i=1,2, Then X (X, (¥ C))(Tﬁ)(z)
A g i -_. e ’ - ’
P et 2 = B2
= P {%X,)~T (%,) and so the seocusnce 3 ¢J z
.Ln\“l, L},"jﬂrﬁ}?/ and so the sequence L(.xy ))( n;\ J} { n=1

converges vo an element of E, . By Lemma 6.1, EX is a Banach
A 4

space, whence by Banach-Steinhaus Theorem'the sequence

( eo

- ¥ ‘ m Y4 f’f 1a unded (P 2 o §
{‘i%% LAl L(i’\rﬂ(\i‘§[§):’(“ﬂ,) g;wi n=1 15 ”IDO&AI’.J.LLL@ qu)llleb “ L( (Y’C))(~ri>§§
- ﬁanﬁE for each né€ N, the sequence éﬁ T4l j nuL is bounded.

=t MYT NI T W3 TR A e % o SR 3 el
6.3. THEOREM. Let X,Y be two complete normed almost

linear spaces such that both @w. and w. are one-to-one, If
7 i e "

Té?L(X,(Ygﬁy)) is one~to-one and onto Y azd W(W ) = Wy , then

: A MR .o ;

the tor sl e LYo oW

Proof. By Remark 2,4 we have He(Wy) = Wy ana
Ldlohec / A

£ o W ol = ) : = i
ST - My 4 By Theaven 4005, LU W00 L(le(Yl»WY1>),

L(YB(X,WX)) and L 1,(x1,ﬂ 1)) are normed almost linear

spaces., met-T<&L(X,(Y,WV)) be one-to-one and onto Y and

m
=5

o~~~

a7 b i ;
w‘\r) 2= ? ang 1{;"“{: T = &«.} 2 2 = 9:{1 é‘- { M. -
A ; 1 _EJ(VK,(Yy'iEJY>)( ) } el hen
o
13 i N me SOETE G R s 1 “ £ : .:f\/ 2 ] :
g M“'}":(‘g':."’fﬁ‘<»‘\"1’”7‘,f1}>~ and’ T &4 = . 1. We show that
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‘hypothesis there exists weW,

D G

the bounded 1tn?ﬂr operator: T

o 21 8

oy ey b e T oo o TH A
onGo EV o LET Z’;] 5 21? €k, such
i = - L

o

& i
o By =P

By  le ohe=to-ono and

thak

x. €%, 1 £1 2 4, such that 2z, =W (x ) =% (x. ) and
¥ s Sy, b
i S Lk Al G
b 5
Zom (X Je W (k) o Then Tolz ) = B(od (g sl (x.9) =
=, A ¥ 2 4 4 e i o A Z

{ e
‘T(z?)}mﬁwv(T(XA))P and s

whence zy = @UX(Kl)miﬁx(xg} =

1 ie one-to-one.

=

w = ®o(y)-wyly,) . Since

such that y, = T(xi}, el 0,
We nave Tl(z).ﬁfﬁ(i % { ml);m‘{
= @ (y)-W,(y,) =u, i.e., T

mapping theorem, there exists:

—
\‘

‘l\,)) = z for each z By

R r””l 5 :
(6.1) fl (fl} (::.Kl

(6 vl _ TZ i d’Y— ) (o 7‘«':3':7\,.

T % o i : s z k<) T 4 . ““'1 o
Faor the procf of (6.1}, lek yeY, and ze E, such that T (F)mi,

Let ye Y such that ¥ = Y‘&)
Then 7. (2) =F = e (T(x)) =
is one~to~omne, it fol
the proof of (602)g let $i§ Wy

By Remark 2.4, there exists Vi

4N

(e amr Favs
X) = wy = @ (T(w)) = D(Wy
' 1 X

Since e, and T are one~to-one, it F0110“ that x

Let now ue¢k

gimilarly, Tl(zg) =

o @JY(T(X1+X4)) = V(’l‘(f XJ>)“

4»'?" rol (6

»1..-lv.4— i 2+X3 9’

w.{;’ - Dz
X\X3> X\R4)

v and Y1195 €Y such that
is onto Y there exist X],A2€:X

Liet . &= (v )MCM ( ﬁ)é}l5 .

.ﬂ/{
o (x,))

5 s onto Ey « By the inverse

”i} "’1. Va

e o {mf¢

suel that

0

how now that the following.

o

and let x€ X sueh that T(x) = ¥.
‘L(w (%)) = 0, (o (x)) and
Towe that 2 = ﬂuv(x)é.X . For

'_'}’: &

« By (6.1) we get LS](W1>
3
5

i, pith W, = e (w, ).
& Llr with ‘vil Y( -1)

such that w, = T(w). Ve have
A

(w)} = Tl(ﬁdx(w)), and since



A

»

“ (w). Again by Remark 2.4, xe¢W

hypothesis that eV ia
¥

re exists T°& L(fﬁixﬁwvj) such
it remains to show that for

: e i : el :
each xé X we have T'(T(x)) = x, i.e., T' = 1T « Let us denote

SR g(,gaw;}“mwﬁb(fls\A s Wy ) +the mepping given by
: o
Lomma 5.1(1i1). Let x€X and y = T(x}. We have C”X(T“(T(x))

= &*y(f${y)) = (E‘(T“)}(“JY(Y)> = QVL(Y,(ijv))(TQ)(QJY(y)>

1

- (e, (7)) = M ((x))) = T F Wy ()))

“‘"" N \ 1] e -
= &1¢(T1(éwg(x)}) = ﬂUK(x), Since éwx is one-to-one, we

get T'(y) = x, which completes the proof.

As one cen see in the above Theorems 5. 2 and 5.3, the

formulations in our more general setting of some results

known in the theory of operators in normed linear spaces is

ks

oA

not difficult, The sbove method may be used to prove other
results. We can not prove or disprove in the framework of

normed almost linear spaces the clo Sed grnvn theorem and the

-t

Ao not Lrew Wbﬁ her & nals

oo

open mappil theoresw, Ve also
®

L(Xg(Y,C)) is complete if Y is complete. It is easy to show

3

.

)

th: /.. is a Banach space then x ig a Banach spgce.
that if XY is a Banach space then VL(&,(X,O)) is s Banac pace

&
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