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(a) we are trying to prove that feedback is more natural than iteration;

Feedback theories (a calculus for isomorphism

classes of flowcharl schemes)

by Gh. Stefénescu
Qgﬁfglgﬁ A simple representétion of multi-entry multi-exit
»flowchart uchcﬁcs is given. This shows that tﬁe basic operations
on flowchart schemes are: separated sum, comﬁosition with
empty flowoharts;} and feedback. The main techkhical point is
giving a calculus for isomorphism classes of flowchart schemes.
This calculug is similar -to that of‘polynomials and may be
considered as & framework of our calculi for deterministic and

nondeterministic flowchart .schemes presented in {51.

‘Key words, feedback, semantics, flowchart schemes
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The reasons for the present note is twofolds:

(b) we give a calculus for isomorphism classes of flowchart cnomeo,

This

paper may be seen as a natural extension of Lhe last paper of

Blgot [4]. The characteristic feature of [4] is the attempt to

weaken the 'algebraic anor"‘ structure (in the sense of Lawvere),

widely used in semantics of flowchart e algorithms.

(a) The feedback is 'scalar' and all usual flowchart schemes

can be built up from atomic flowchart schemes and trivialienes

(vhich may be thought of as redirecting flow of control) by means of

sum,

composition and feedba

fr'\f
3
5
e
4]

is no longer true for scalar

iteration (cf. 24}, only flowcharts fulfiling 'for .every closed path



: -0

C ‘there is a vertex A of ¢ such that every begin path to a
vertex of. Cismeets VC‘ can be obtained).

(b) There is some interest in axiomaﬁiz&tion of isomorphisnm
classes of flowchart schemes‘g2; B 410 OQur calculus extend these;
its characterietic features are:

- the operations on flowcharts are defined by simple formulae
rather by sdme tverbal descriptions' as in E2,4}; -

- the .restriction to sum and composition of.our algebraic gstructure
is more general than 'a;gobraic theories' used in tZ,B] and essentially
corresﬁondslto flow theories in [4], but instead of surjective

" functions we need only bijective ones;

— our calculus work in a more general (and usful) case, e.8.

instead of trivial flowchart schemes we can use arhitrary known

flowchart algorithms in which a change of memory sbate can accompany

redirecting flow of control.

tiong, Bvery multi-entry mulbti-exit

ordered as it is shown in FIG. 2.1,
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This shows that the basic operations ca flowchart gchemes are:

deparated sum (or parallel composition) +, composition (or serial

composition) ¢ and feedback;@; these have the following intuitive

meaning:
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In the sequal 4 denotes k-times application of s oy PIG, 2400,

and kB =
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composition can be restricted to composition with 'empty. flowcharts,'
that is Tlowcharts schemes without internal vertices. Generally, we

define the composition by
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%, The categories Fn and Bi. The category Fn has the set

of natural numbers [N as its class of objects. The set of morphisms

of TFn with source 'n and target p is the set of all funetions

Bl Ll x €[n] we write xf for the value

e = ityeeesnd |
of: £ ‘sppided to ox and Yf g [vl=rfa] s a Tunsihan, ge wWille
fe g_:‘[nj-«¢=€q3 for the composite.

Given a pair of functions £, : lﬂ;;“m% Lpij, igj2] we define
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The class

)

of bijective functions in

Pn is closed under e and
contains the identities,

hence it gives a subcategory Bi of Fn.
Moreover, Bi is closed under +. We write

oo« 1

for the block
permutation functien

mepn 3 tm+nj«m¢ufn+m] given by
x(m<s>n) = 'if xz¢m] then n+x

else x-m' for x&[mn].

Given a bijective function £ : [n#1] = [p+1] we define the function
£4: [ny— {p] Dby ‘
St T

xf # p+1 then xf else (n+1)f'

4, Feedback theories. Our basic

algebraic

atructure is defined
as follows..

4,1 A biflew (T,+,6,4) -is an extension

9% (E}9+w°f?;lm,m%¢?n)
guch that:
(4.:1,1) (’_l_‘er_”{'

O) is a monoid;

(4.1.2) Block

k permutation axiom: for fiéé T(mi,ni), ie2]}
f.+f . )oln, %>n. ) = (o, 4 o )
{2050 (T,b,lm)‘ is a category, having the same

objects as Bi;

pevy

(4.1.4) Composition and sum are related Dby:

for fiG'T(mi,ni),
élé* T(ni’pi); i{{fZ}
(-":1{12)"(&)1}{%2) = (fibg'i) e (f2(’g?>;

ack is context

ext free:
(4.1.5.1) £ ¢ gtfo= (f4g)tY;



(4.1.5.2) for 1€ Tlmip, Weply 26 Diuntant)

£ +g = ((I+n' < plelf + glell + pernt)) £
Gotisdy 1P e (el 1] AP
(4:1.5.4) foghl =((£T Jee s

(4.1.,6) Shifting block on feedback: for £ ¢ Mmp,n+q), & € T(a,p)

¢t 0(In-s-g))"§‘p = ((lrﬂ+gi'c k.

ereme ey
prEC A

4,2, Remark, (i) According 1o [4], this should be called a
(scalar) feedback flow theory ove? :g%a

()= The axioms are not independent. In fact, A% 05:2)
follows from (4.1.5.1) using (4.1.2), (4453 4 155240

(ii1) For f£& T(m,n), & & T™(n,p) we have

O

foost) few = U fo(n<»n)ts g =) ((f—%-g)f-(n\'——»p))'i“n-

4.3, BXAMPLES, Bi with the operations defined in 3 is a biflow.,

i apaens
Pty g e

A1l iteration theories ef.fuﬁljstrong iteration theories cf.[5] and
theories with iterate cf,&3}, naturally are biflows (as feedback we

))*, for f & T(m+p,n+p) ~~"f>is the right

i e e AR o i &
take: (|m+op)(1(1nzom41p

iteration).

4,4, In practice, it is usful to have a simpler characterization
of this algebraic structure. Such a gimplification can be obtained.

using only composition with morphisms in Bi and ¥ aking (4.2.1)

as a definition for general comp sition. More precisely, if T

endoved with sum, left and right composition with morphisms in Ll

and feedback, extends Bi and fulfils:



o (4'6161)’ (4’(\1@2), (4‘@1950");
=t e L) dEea bimodul over DBi, 1.€.

Pol =L of = 65 for & Tlm,n),  and

e
i

fé(g&;h} = {Feogieh, whén@ver two morphisms are in Bi;
LG D (4.1.%.4), (4.1.6) whenever the g$ morphisms
are in Bi
then T dis a biflow (compdsition being extenéed ﬁsing {hen 0 ),

4.5, The category g has ag objects biflows and as morphisus

=

functors which preserve morphisms in Bi, sum and feedback.

5, Abstraet theories of flowchart schemes. Such a theory is

given Dby:

i

double indexed set X of wariables for atomié,flowcbart~schemeg
(that is; every x &€ X has a number of éntries °x and a number of
Sl B G anbther'way to specify this is X e El i

- a'support theory' T consisting of a famiiy of sets Tlm,n), myne
(an element c & T(m,nj ig considered as é known computatiOﬂ Process

with m entries and n it ).

Note, The type of T corresponds to the type of flowchart

schemes we ‘consider, While in the case of deterministic flowcharts
the basic support theory is Pfn given by Pfn(m,n) = ‘the set

of all partidl functions from [m] to [n],' in the nondeterministiq
case this is Rel given by EEE(m,n) ~ 'the set of all relations
included in [mpx el Actually, Blgot & Shepherdson {43 use Sur,
the subtheory of all gurjective fuﬁction$ iR gﬁgf In this paper ve

use Bi. A}l these theories model only. redirecting flow of control,

o

llote that more complicated theories can also be used, €.8. anU
)
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given by r'ﬁ (m,n) = 'the set of all partial functions from Dx Tm}

to. Dz [nl' in which a change

ot memnory stater d € D may accompany

redirecting flow of control. I

2 Ao

A flowchart schemes is abstracted to an X-flownomial over T

defined as an expression

T w2z jvel T
(( m 1) )
where xié X, the sum is finite and c € T(m+'2"_ixi, n+ iz’xj); :
9
denote by Il lm,n) - their set,
=X,T
The interpretation of an X-flownomial over T in a structure Q
in which Im' sum, composition and feedback have sense, 1s gpecified
by a rank-preserving function Gy * Ty li 6 ({.(x)é& Gl %, %))
% }x ) X_ @
and a ‘morphism' C?T : T30 (i,6. it preserves Im and operations);
italg
4% 5T amE
7 & = L VR U s S P . ke
47 T )e = T +2W \Z,))je¥ (e
¢ (I +Tx)ec)? Jom (2w (x Ve (el .
T and X can naturally be embedded in 1¢ p  as follows:
2 > E b ]
: : 0 S to %
s ¢ = ((Im}ac)ﬁ‘ and X (LT, o x)e (*x &> x))P
:: - {the latter follows by (4.2.1)).
2 ' In the sequal we shall frequently write x, °x, X instead of

o o @~ E < oy v
;;xi, 2;Li,. §;hi, re QOCblVOlve

6. Operations on f]oxwﬁw¢ 1ls. Sum, composition and feedback in

T extend themselves to Kmxbovnom1 alover i



(1) for B b((Im+§)oc)T o 3 n and Blis ((_Im,+§')oc')’l‘ B3

m'—p n' we define F+F' : mvm'—> n+n' o as

| : S *x4 X!
T 5 1 | e > s ! =
= (I 2+ )o(Ierm g»,igl x')°(c+c Jo (I +"x<>n +I"x.'))¢ ;

a3

(1i) for B = ((1m+§)cc)/T & he-sn. fellpm), and geT(n,q)

we define
Fog = ((I+x)ece(g+sI. N7 £ , and
feF = (I +x)e(£1 )oc)’f\ <

Sl for— P = ((Im+1+§)oc)'f‘ Tk mal n+1 we define Ffd: m —> n as
L © U 2 s ‘;-(-
FA = ((Im+§)o ((Im@__c:@j) c (In+1 > é)M” s

Suppose T is a biflow. From these basic operations we derive
the general feedback and composition, namely for F = ((Im+k+§)oc)1\ £ .

m+k > n+k the flownomial Fﬁkk : M—>1 is

apl (T +x)e ((I +.xe> k)ece(I +ke>"3)) AE) Z

LT |
-and for F = ((Im+>:t)ac)'i\ £ ; m —>n, E' = ((In+§=' Yec') 4 e

*the flownomial Foll : m > p is

Fo F! ((I +><+x ) e (c+I - ) ¢ (I o 1o g‘)'a(c"+l’ )c(l’ + x > x))’F o X 3

— —_—

Remark that all these formulae are rules of computation in a .
biflow, namely their instances obtained by repla01ng xs with
~ elements in T are 1dent1tles im Thls gives a half of the main

theorem, i.€.



e,

UNIQUE EXTHNSION LEMMA For every morphism ‘I(T ¢t T ~—> Q in

BFl and every rank-preserving function CFX X —3 Q +the extension

fhriand

’l‘ e Fl1_ < X c‘?# s Rk —3> Q preserves the operations.
=X,1 Son ,
"{’T :((9% Py . Moreover, this is the unique extension of
v S
S |
Q C Py ¢q) with respect to this property. (5

7. Isomorphic flownomials. Given (X1 s ,xk) g (X1' yerer Xy, )

a function y : [k]—>[k'] such that x, = x]!_y , ¥ ie (k] has a
unigue 'block extension' to entries 'y :[‘x1+...+°x}.{‘]—-}['x1‘+...+ x!
and 2 unique block extension to exits |y @ '['.x1+...+oxk] —

.} e b ] (see 4] for more detalls)

S

We say two flownomials F = ((Im+x1+;..+xk)ac)1\ Ay s
!
ande Blo= ((Im+x;+...+xl‘£)cc')’f‘ * :.m—>n are isomorphic if there

is 8 bijection y : [k} —+[k] such that

$ o) 2 v
(1) Xi“Xiy_’ v ie [x];

'(ii) C°(Inf'y) = (Im+_y5oc‘ !

The isomorphism relation & 1is a congruence relation, hence the

operatlon are well defined in the quotient structure //,v' 2 0n

E}x )

the other hand, two isomorphic flownomials have the same 1n’cerpretatlon

in a biflow, hence the interpretation g(w# : -~X 7 »—-é- Q induces one

N

({7 R E_}K T/"' —> Q on isomorphism classes of flownomials,

8, The algebraie structure of Flv [/~ . Suppose T g a biflow,

A simple computation shows that (11\, s Lo ) is a monoid,

w)-’
(F1

By LB Im) is a bimodul over % and (4.1.5.1) holds in Ee.le,T



10

The identities (4.1.4), (4.1.5.3), (4. 1.5.4), and (4.1 .60 held,
whenever the g8 morphisms are in 7, In addition, the two sides
in (4.1.2) give isomorphic flownomials. By 4.4 these give the

other half of the main result, i.e.

STRUGLURE PRESERVING LERMA. If T is a biflow, then Ely /%
et

is a biflow.

9,°The main result. This shows why we have asserted that this

calculus is similar to that of polynomials. It follows from the

above lemmas and the last gsentence in.l.

PHROREM, If T is a biflow, then E}X Tﬂm is the coproduct
=X, :

of T and the biflow freely generated by X 1in BR) . Bl

T e }E}X,Tﬁz'f-g X This means that Fly , 1is the biflow
g sl
- N
%% $?, freely generated by adding Meatho T,
Q

10. Extensions. The class of riflows T which extends

Ino-and. fulfids

omasema
m———

(10.1) Omf =f , for f£€ T(m,n)

.(10.2) tmym)ef = (£££) (nyfh),' for f.e T {m,n)

vhere Om is the unique function in ggko,m) and mynm
i the function in Fn(mim,m) given by x(msm) =

lif xe [m] then .x else x-m] for xe&{mtm]

equals the class of algelraic theories with iterate in [3].
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