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INDUCTIVE LIMITS OF C*-ALGEBRAS RELATED
TO SOME COVERINGS
. by ek

Marius DADARLAT

In . -5} E.G.Effros posed the prpblem of studying
inductive limits of C*-algebras of the form C(X) @ Mn' Because of
the complexity of the possible *-homomorphisms é:C(X) ® Mn —
~—» C(X) & Mo (ef [3--3 and [6 ] ') it is reasonable to restrict
our‘baAttention to specific classes of homomorphisms. In this paper
we prove a unicity result con.cerning inductive limits associated

with a sequence of coverings.

A unital. homomorphism é is called homogeneous 1f
for every y e Y. the subalgebra C‘@(C(X) ® Mn). () Mm has dimension
m/n. (Note that n n;ust divide m since @ is unital). Suppoese that
© Y has the homotopy. type of a finite CW-complex of dimension
£~. 2m/n and that K°(Y) has no n-torsion. Then if follows from
Y 31 that there is a (m/n)—'f‘old covering '\!( 2 7 -—v’){, a monomorphism
@1 L CZ) D Mn,-—wC(_Y) ® Mm which satigfies :
" (0) Py loet @ 1) - g8 1. . me oy,
and a continuous mdp ¥ :7Z Y such that we have the factorization
¢ - @1 ol
: The homomorphisms @1 satisying equation (0) are called
compatible with the covering a4 or + -compatible, and they were
introduced in 61 for oﬁher reasons. The previous deco‘mposj-tion

confirms once more their importance, since they are now identified
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as the nontrivial part of the homogeneous homomorphisms.

We shall consider inductive limits with homomorphisms
compatible with some appropriate coverings. Our result is based

onn- a detailed description of such homomorphisms.

An interesting example is supplied by Bunce-Deddens

“algebras ( 123 ) which can be described as inductive limits of
the form:
(1) et ou —c@ @M, —s .. ’
- : al S k]

where m=1, T is the unit ceirecle, and the hdmomorphisms @i aré
: N :
compatible with the coverings T 3 z v»2z ot e 7.
In [-6] C.Pasnicu has studied induetiwve limits of
the form (1) with m=2 and he proved that thege limits do not depend
on the'particular choices of the homomorphisms @i compatible with

: -2 2 e :
some product coverings T —s T . Moreover, these limits were seen

to be isomorphic to tensor products of rtwo Bunce-Deddens algebras.

The aim of this paper is to consider the same problem

in an abstraet setting.

: : m =
Given a free action of T on a compact connected

manifold X and a strictly increasing sequence of finite subgroﬁps

of Tm:

-m
@ €6 L ...G LG, 416 o 0T
we consider inductive limits of the form
L«:l’_l;lg (o—:»C(xi)@Mn : i, C(Xi+1)®Mn —3 )

it > 1



- 3 -

where X.l = X/Gi’ n, = lGil p and.the homomorphisms ¢i are compatible

with the coverings Xi~d'xi+1'

Under some topological restrictions involving the

‘absence of torsien in the cohomology H*(Xi, Z) , we prove that the

inductive limit L does not depend ont@i and it is isomorphic to the

Pt
C*-algebra transformation group C(X) ¥ G, where G = U Gi' For

i=1

- the case of Bunce-Deddens algebras this isomorphism was noticed

byaP. Green.

¢ Nsaa corbllary, we extend the result from {6] to:. the

m-dimensional torus.

The auther ‘is grateful to V. Deaconu and C. Pasnicu

for stimulating discutions.



1. PRELIMINARIES

We shall denote by Mn the C*-algebra of n x n complex

" matrices and by 1n its unit.

Suppose that X is a compact‘connected,réal manifold

and let S be a finite greup écting freely on X.

°

1& k= s\ (the order ol 51, then the quotient map

onto the orbit space ¥.: X —» X/S is a regular k-fold covering. Let

n be a positive integer.

We recall from (6] that a unital kpmamorphism
. ¢ : c(x) @M ~»CX/S) @M
is called compatible with the covering Stror qucompatible if

(2) G qgo @) - 901, g & C(X/S).

i

’

Looking at the following diagraﬁw

5

C(X) @M —— C(X/S) @ My

k. -

C(X/8)

where & *(g) = (g oY ) ® 1n and &(g) =:9g 8)1k£, bliie e liaars
that P -compatible homomorphisms may be viewed as a kind of

sections for the fibering X -» X/S.

aAssume that the K-theory group K°(X) is torsion-free
And Ehat dim(x) & 2k Then it follows From [3, thm .3 that

\ ; »
@ = v(¢)(@ el )v*, for some unitary v & C(X/S) ® M n and some
n
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Ay -compatible homomorphism@’ : C(X) —»C(X/S) ® Mk' Moreover, it
is proved in (37 that there is a continuous map p:X-VP(Ck) =

= the space of all one dimensional self-adjoint projections acting

on Ck 7 such that.@' is given by the following formula

(3) dtgeh ( wea) = T flsam) pla) L f el x ek
S+ €5

Of course since<@’ is unital we must have

(4) 2 ool =, e x
: s &€ 58S
Alsoi, dt is:clear that bothtﬁ and.@’ are monomorphisms. Despite
the previous description, we don’t know a priori- it %'—compatible
homomorphisms (or-équivalently maps p:X-—aP(Ck) satisfying (4)).  do’

exist.

However, if we assume that S is an abelian group and
that the second cohomology group HZ(X/S, Z2) is teorsion—-free, then
such homomorphisms can be constfuctéd as follews: By 137  there
is a continuous map ﬁ:X-ﬂfU(k{ ﬁ.U(lz(S)) such that ﬁ(s.x) =
= f(s) u(x), x € X, s &€ S, where _?:S-—vU(k) is the righﬁ regular

representation of S. Now if (e; 4 :

& S
sub -

projections onto the Yspaces [ Ssl spanned by the vectors in the

are the orthogonal

: : ‘ 2 :
c;nonlcal basis (Ss & seme of 1°(sS), then the homomorphism

: 4;1' :C(X) —»C(X/S) ® Mk given by

(5} s <#'(f)( Po(x)) = u(x)*( E: f(s.x)ellu(x), £ ey, e
' ' s &S -

is compatible with the covering X — X/S. Note that @’ is well definec

[e:]

since 9(3)* eg ?(s) Sae Ty

‘t,s € S. Consider now the crossed-product

C*-algebra



C{X)-w s= L P e (X ®Mk:F(s.x)=

plsiEi pioyt; ke Xk med 0 5

Then the unitary u can be used to give @n isomorphism

H:C(X) 8 S —>»C(X/S) &)Mk. To see this, we identify C(X/S) @)Mk with

L E EC(X) @Mk:F(s.,x)=F(x),' o JL x€X, s es}‘,

and we take H(F)=u*Fu. Note that if

JRCHR) = C(X) B, JiEllm) = B flsaiel,
) s €8S

is the canonical embedding, then the isomorphism H is such that

H0j=¢)'.

e e,



2. INNER EQUIVALENCE
Assume S a,Tm and also that the action of S on X is

* induce by 'a ‘continuous free action of ™ on X.

Then we are able to give a more complete description of
homomofphismsz? which are compatible with the covering X - X/S. Our
description will imply thaﬁ any two such homomorphisms are inner

equivalent.

Lemma 1.1. Let X &%, let p:X-vaP(€k) be a continuous
map which satisfies equationl(4) and assume that HZ(X, Z) is

torsion-free. Then there is a continuous map u:X —+*U (k) such that
(6) pls e =nle)¥o (s.x dulx) R sk

Proof. Set eS(x)‘= Dils. %) . Then '<es % s &g 1S g
partition 'of the unity  in the C*-algebra C(X) & Mk' Since the'
action of S on X is induced by a continuous action of T which is
a pathwise connected space, it follows that . the projections
(esk S E are mutgally equ;valent ime @ (X) @)Mk. To see this let
a: {O,1§-«¢Tm be a continuous path frem:l to s. Then ea(t)(x)=

= plalt).x] 4€t0,1l is a continuous path of projections from

y
1 to e, - By a standard argument we find now a partial isometry

e E CX) ® Mk v
: = = *
Define eS’S eS and es,t s i et'1

ins C(X) Mk' Now considgr the C*-homomorphisms @,F@Q:Mkwéc(x)cg Mk

, . h: | . .
& sueh that es,1:es,1 eg and es,1 es,1 e

e to obt8in a system of matrix units

given bj

£ Zg) k= laix)

ch (es,

oo ) = oy

(3 es,t(XO)



e e

(Note that in the above definition we identifi¢dM, with the C* -algebra

k
generated by (es't (xo) & s,t:eS) Since the complex line bundles

on X are classifiediby HZ(X, Zz) which we suppose to be torsion-free,
it follows: form. L3, prop.T.ﬁ ] that there is some unitary

U6 CEX) @)Mk sugh that.¢0 = u(p u*. This implies that .

es(xo) = u(x) eS(x)\u(x)*. Hence p(s.x)=u(x)*p(s.xb)u(x)‘for all

»idn - Xeand: s 65,

gl

Let f :S —wB(lZ(S)) be the right regular representation
of S;: We identify B(lZ(S)) with C* { e =) ssib &5 }’:& M , so
st 0 k

* a® e :
that f(r) es,t .f(r) esr,tr' As an easy consequence of the

: - ¥
equation (6) we obtain that every u(s.x)u(x)*'g (s) commutes with

1] =5 % < * * %
all et,t(XO)’ t € Sf Setting ws(x) u(s.x)u(x) °F(s) it follows

that W is diagonal with respect to the projections e {x More

t,t O)'

precisely there are continuous functions w(t,s):X —%, s,t € S,

such that
i <\ ; . -
(7) walxhos . wt,S(X) et,t(XO) 3 x & X
£ GG
Moreover, it follows from the definition of {wSQ s &5 that
= * *
wS(t.x) wst(x) 2 (s)ws(x) Pols)®,

" Then we have corresponding relations for W :

,S

(8) wt,sr(x) = Wﬁs,r(x) wt’S(r.x) : r,sJ:E—S,x & X.
Equations (8) look like some "cocycle relations". Our next task

is -te resolve-the "cocycle (wé t)" i.e. to find continuous maps

4
dS:X —»T, s &S such rithat
s 7 =i
(9) ws,t(x)_dts(x)dt(s’x) : X e X, s,£€£5.
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Suppose now that the maps {dss have been found and set

SEe S
v =0 2L dgle, (lxg)) ulx).
& 60

Then an easy computation shows us that

(10) Vs.x) = .?(s)v(x) : N6 X; s & S and

(11) plx) = vix)* plx,) vix), " X & X

&
To make clear the proof We choose to resolve the cocycle (ws t)
§ 7

in a@n abstract setting. For technical reasons we make the following ¢

Pefinition 2.2.A finite abelian group S is said to have

"the property (H) if given any six-tuple E=(A, ¥ ,D, o(,w,(b,db))
consisting of: ‘
1) a free transitive action & of S on a set A

S > (a,s)—,a.s ¢ A,

'

27 an actlen olief S by automorphisms, on an dbelian
group D, :

3) a cocycle w : A x S~=D satisfying,
HZ)wm,mJ=xMaﬁfU xtWMaﬁ)L a € A, s,LES.

4) a couple (b, db) & A X D,

~ there is a map d : A—-eD suéh that

(13) d(b) = d, and w(a,s)=d(a.s) D(g(d(a))"‘,aeA, s

‘femma 2.3. The cyclic group Z, has the property (H).

Proof. et 7 = { 1,s,...,sn—1> . From (12) we get

©

0(‘s‘k(w(a.sk,s))=w(a.sk,s_k+1)w(al.skﬂ,s_k)"1
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and consequently

(14) T1 Lo (w(a.sk,s)) =1 a & A.
k=0 s : '

Since S aects transitively on A it follews that A-b.S. 1o define

the map d:A —»D we put d(b) = db and then we’ find recumivelyl

d(b.sk) & Dyl k £ n=1 isuch that

(15) d(b.sk+1) = w(b.sk,s) o<é(d(b.sk)), Og k£ n-1

Combining (14) and (15) we get that the formula .
15 holds even if k=%%.
Therefore we have now proved that

1

(16) i) = s x_(d(a))” el e

Let t=sk and assume'that

1

(17 wila t)=dia ) o{t(d(a)),— Forigli ae b

Since by (12) we have
wi(d,st)=wla.s,t) d(t(w(a,S))

we infer from (16) and (17) that

=i

w(a,st)=d(a,st)‘ o, (d(a.s))

1

o, (d(a.s)) °<t (d(a))-1=

1o s

=d(a.st) X, (d(@))
The assertion followslqowvby induction.

Lemma 2.4. If both the groups G and S have the
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property (H) then the direct sum R=G (® S has the property (H).

Proof. Think G and S as subgroups of R. Given a
R-six~tuple E=(A, ¢ ,D, g(,w,(b,db)) as. in DefindEitens 2.2, we

apply the property (H) of S with respect the S-six-tuple:

Bl B mm D el e Wl e R ))

" Therefore we obtain a map d’:b.S -» D that satisfies

(18) a’(b)=d, - and w(b.s,t)=d’ (b.st) gt(d'(b.s))”)s,t G S.

To extend d’ to an appropiate map on A, note first that

A= N b.sG and then apply the pfoperty () of i&, for each s & 5,
Si.&S :
relative to the G-six-tuple

P (baos, - altb.s))).

L

ES=(b.sG,'q‘l

G °<-\G’w \ b.sGxG!

1

In this way we obtain a map d:A —D which extends d’ and: such that

1

(19) wila,gl=d (=, g) r)(g(d(a))'—1 , . for @ in 2 and

g €& G.

Since R=S.G, to complete the proof, it remains to show that the
map d satisfies all needed relations:
(20) wia,sg)=d(ass9) o{sg(d(a)) a €A, s € S,

g & G.

It is convenient to prove first (29) with g¥1. If a &£ A then we

may write a in a unique way as a=b.th with t € S andth & G. Since
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wecan derive from (12):
wibLth, s) ol S(w(b.t,h)=w(b.ts,h) X h(w(b.t,s))

(both terms beeing equal to wilb.£,sh)) it follows thet

w(a,s)=w(b.ts,h) of  (w(b.t,s)) o S(w(.b.t,h)_1) :

so that using (18) and (19) we get

(21) ‘ w(a,s)=d(b.tsh) Mh(d(b.ts))~1 oy, (d (b Es}) o0 GdboE)

1 =1

.o<S<d(b.th))’ ozsh(dm.t)'):d(a.s)  (d(a))

Since w(a,sg)=w(a.s,qg) o(g(w(a,s))

(20) can be derived from (49): and (21) ds in the proect of Lemma 2.3

Corollary 2.5. The finite 8belian groups have the

property (H).

Vi

Proof. Since the finite dbelian groups are direct sums
of cyeclic groupssour Corellary ic o straig%k%forward consequence'

of the previous lemmas.

ﬁcsgumc ok HY s, T ) e HLQ( 1) o ?:msﬂw (}/UL&

Theorem 2.6. If@ :C(X) — C(X/S) @ M, & C(X/S) @B(l ()

is compatible with the covering X —X/S, then there is some

continuous unitary valued map u:X —»U(k) such that
22 ul(s.x)= ‘f(s)u(x) : x &€X, s &5

(23) B (£) (¥ (x))=ulx)*( 2, £(s.x)eg)ulx)



). be the 'eoegycle! thalk appesred in

Proot. Letiw= (Ws,t

the d.iscussion before Definition 2.2. Let S acts on S oy translations
q‘s(t)=ts, let D=C(X ,T) and lét define an ac.tion. of S oﬁ' D by
setting c;{s(f) (RN=filsia), 5 &5, f-e D. Applying the property (H)
of 8 relative to the sik——tuple E=(S,; % ,Db, ol ,w,,(”l pA e follo;/vs
that the cocyclé (wS t) can be resolved, so that the.‘c.iesc»rip»tion of

r

é is given byé%}zi@f)) e -

~Corollary 2.7. rAny two C*—homomorphismé

{%),?\{/ SC(%) -—-:=;-C(X/S) A® Mk compatible with the covering X—3X/S are

inner eguivalent  i.e. there [is: so:ffe unitary v & C(X/S) & Mk such

o @-:—" r\r'l‘{’,\]»*‘,

Proof. Theorem 2.6. provides us ‘descriptions of@ and

(\{" with appropriate unitaries u and u After conjugating

1
with an unitary in C(X/S) @ Mk’ we may suppoée that these descriptions

T : : : o
vare given . relative to the .same pro:]ectlons{es ‘I Sipes

Consequently we may choose v=u%‘u since

/

v(s.x)=u%(s.x)*u(s/.x)=il,l(x)* 37 (s)* j’ (s)u(X)=v(x)

and it is cléar from (23) that “’{) = v@v.*.

o

7/

A (\Qg&#;lﬁ Examﬁé T Le' tue {»;wq{)}\,ewe anél

Q%ﬁ T be the +twe -dimensione] yeol Fm&eé‘h’ve SFQC_& L AEe
: T

'{’.il(f??'"ﬁ.) =lly .Cova\iﬁx"j Z--'f" ,_-Loeagh‘%' &}i@rlx . s %a& o
'\» 0 »@e‘; "f’h,«;ﬁ’ Anane &,Yf‘. (M@mtﬁ‘xﬁ W\&V\ﬁ MMon’isz\%a&m
cant e prov i
C(Sﬂa') 1.—‘3 c(PH)® M, cow F’““‘"’:\’Qﬁ/ wit e oD

: : 3 - mneyr € m«;alm‘& :
ConRALN s" — " wiieh wv.m”f l 7



3. SOME INDUCTIVE LIMITS
As in the previous section we start with a continuous

‘i free action of ™ on a compact, connected real manifold X. Let

glee @ 08 0T

be an infinite tower of finite subgroups of T. Let n,= (Gi\ ;
e = 1 Gi+1/Gi\ and note that n, , =0, ki..If x; denotes the
quotient space X/Gi’ we have a natural ki—fold cévering Xiu~>Xi+1

whose deck—-group Si is 1somorph}c to Gi+1/Gif

In this séction we deal with inductive limits of the

form:

t

(24) s P - e Gl @l b .

2k . et

where each homomorphismé)i is compatible with the covering
S e
The main result is the following:

Theorem 3.1. Assdme that the ' ..

manifolds Xi have noﬁorsion in cohomology i.e;‘H*(Xi, T s

torsion-free for any i 2 1.

Then the inductive limit. lim (C(X. )-8 M @.) does
_ e n i 1
not depend on the particular choice of “the homomorphismsi@i. Ih

fact it depends only on the group G &= SNJ Gi since it is isomorphic

: . = i=1
to the crossed product C*-algebra C(X) s G.

Proof.l|As a first step we prove that any two homomorphisms

<

@‘,3 comyidl e g o retinemen 5 1 o &-@ip&ﬁ;m(‘.ﬁ‘f}

R I diormin S,
o

e

o (24} we may  afgume. that dim X & Wikt /ng



w5 =
"\ 5 3 g A} : = K
. in F& .C(Xi) ﬁiMnimwmwgc(Xi+1) @;Mni+1°are inner equlvalent,

3 = s *
Recall that n, n, ki. Since H (Xi+1’

&) is totsion free, it
follows from {17 that K°(X, ,) is torsion free. Hence, by the
results quoted in section 1, we may assu@g that n, = 1% At this

point the assertion foliows frdm Corallary 2.7, To cehclude the
first part -of the theorem we recall.Lemma 2.1 of R 5] whicﬁ asserts

that the inductive limitsilim (Ai’épi) and - Jdm (Ai’ ‘E}) are

isomorphic if the homomorphisms @i'and &Vi are inner equivalent.
To procéed further, let us consider the diagram

: I 2 : :
i
.
s e ! ,‘ﬁoi s : % C(X) _)QG:H,i ey

k25l £ y : o

i
o Le)en —

: .-—aC(Xi) &M
v i : L]

where (Ji) are the cénonical embeddings, (Hi) are the isomorphisms
described in section 1, and (@.) are chosen such that(@.zH: TR

, fi : G e e P
With this definitioﬁ it is straighforward to check that the
homomorphisms(@i are compatible with the coverings Xiuw%Xi+1. Since
the inductive limit of the‘upper row ie the diagram (25) is equal
to

C(X) VG = ( C(X) % Gi)"‘

[

it turns out that the unique limit that arise from the diagram

(24) is disomorphic to C(X) 9G.

Let T™ act 6n X = T" by translations. Given a finite

subgroup:. S of ™ it is well known that Tm/s = o™ pFurther, since
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H* (T, Z) =z ® 7, it follows by Kiinneth formula that H*(T , Z) is
torsion free. Therefore we may apply Theorem 3.1 to obtain a unieity
" result concerning the indugtive limits of the form

2

- - c(r™) @ M —
19 St 1915
i i+

(26) ey e

where the homomorphismsébi’are compatible with (ni+1

/ni)~fold
coverings " % T, Moreover if these coverings correspond to :ithe
tower of subgroups

m : ©
Giet oo gt - _ ‘

and we assume that G= \J Gi is, dense-in Tm, then it can be proved

i=1

that the C*-algebra C(Tm)w G is simple and it has a unique f8ith -

ful trace state.

Suppose now that the_homomorphisms éi are compatible

with the coverings
(27) ‘ (B

and let nk(i):: gj Pk(j), 1 ¢k & m. Let A(n,) be the Bunce=Deddens

k
j=1

aléebra associated with.tﬁe generalized integer n, =(n (iU. . Then
; k k i
we have the following Corollary which extends the main result of

o

Corollary 3.2. The inductive limit (26) dees not

depend on the choice of the homomorphisms @i compatible with the

coverings (27). Moreover it is isomorphic to the C*~-tensor product
m

Q%D A )

T k

Proof. We apply Theorem 3.1 with
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Gi=G1(i) X G2(i)'x...xGm(i);
where

¢ (1) = {z en:8 o

. w ; 5
Let Gk: 7 Gy(i) and note that G=G1 x G2 x...x‘Gm. If we denote
i=1 |

by L the unigue limit @rising from (26) then

m
L=ielpl ) oees v @ Clmiemic,
k=1

and

C(T) » G Lo A(nk).
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