INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

SUR LES SOUS-FACTEURS D'INDICE FINI D'UN FACTEUR
DE TYPE II, AYANT LA PROPRIÉTE T

par

Mihai Pimsner et Sorin Popa
PREPRINT SERIES IN MATHEMATICS
No. 27/1986

pled 23731

SUR LES SOUS-FACTEURS D'INDICE FINI D'UN FACTEUR $\mbox{ DE TYPE II}_1 \mbox{ AYANT LA PROPRIÉTE T }$

par Mihai Pimsner*et Sorin Popa*

Avril 1986

*' Département de Mathématiques, l'Institut National pour la Création Scientifique et Technique, Bv. Păcii 220, 79622 Bucharest, Romania.

SUR LES SOUS-FACTEURS D'INDICE FINI D'UN FACTEUR DE TYPE II, AYANT LA PROPRIETE T

par

Mihai Pimsner et Sorin Popa

Nous démontrons que si NCM sont des facteurs de type II_1 avec l'indice de Jones [M:N] fini alors M a la propriété T si et seulement si N l'a aussi. Utilisant ce résultat nous montrons que si M a la propriété T alors l'ensemble des valeurs possibles des indices [M:N], pour les sous-facteurs NCM, est au plus dénombrable.

On subfactors of finite index in a property T type $\overline{\text{II}_1}$. We prove that if NCM are type $\overline{\text{II}_1}$ factors with finite Jones' index [M:N] then M has property T iff N has it. Using this result we show that if M has property T then the set of possible values of the index [M:N] for subfactors NCM, is countable.

Soit M un facteur de type II_1 , \mathcal{T} sa trace normalisée et N \mathcal{C} M un sous-facteur de M. Alors l'indice [M:N] de N en M est défini par Jones ([6]) comme la constante de liaison de N dans sa représentation sur $L^2(M,\mathcal{T})$. Quand M est l'algebre $L(\mathcal{G})$ associée a un groupe discret \mathcal{G} et $\mathcal{N}=L(\mathcal{G}_0)$ pour un sous-groupe \mathcal{G}_0 c alors $\left[L(\mathcal{G}):L(\mathcal{G}_0)\right]$ coincide avec l'indice $\left[\mathcal{G}:\mathcal{G}_0\right]$. Il est bien connu ([7]) que, pour $\left[\mathcal{G}:\mathcal{G}_0\right]$ fini, \mathcal{G} a la propriété \mathcal{T} de Kazhdan en même temps que \mathcal{G}_0 . D'autre part Connes a défini ([4]) la propriété \mathcal{T} pour tout facteur fini M et dans le cas $\mathcal{M}=L(\mathcal{G})$ cette propriété equivaut la propriété \mathcal{T} de \mathcal{G} . Le théoreme suivant est l'extension au cas des facteurs du résultat précedent sur les groupes.

Théorème 1. Si N M sont des facteurs de type II et si M:N alors M a la propriété T si et seulement si N a la propriété T.

Réciproquement supposons que N a la propriété T, que y_1, \dots, y_n $\in \mathbb{N}$, $\epsilon > 0$ donnent un voisinage critique de la correspondence trivialle de N et soit \mathbb{N} une correspondence de M et $\epsilon \in \mathbb{N}$, $\mathbb{N} \in \mathbb{N} = 1$, tels que $\mathbb{N} \setminus \mathbb{N} = 1$, $\mathbb{N} \setminus \mathbb{N} = 1$, tels que $\mathbb{N} \setminus \mathbb{N} = 1$, $\mathbb{N} \setminus \mathbb{N} = 1$, tels que $\mathbb{N} \setminus \mathbb{N} = 1$, $\mathbb{N} \setminus \mathbb{N} = 1$, tels que $\mathbb{N} \setminus \mathbb{N} = 1$, $\mathbb{N} \in \mathbb{N} = 1$, $\mathbb{N} \setminus \mathbb{N} = 1$,

Une question fondamentale posée par Jones ([6]) est la suivante: pour M fixé quel est l'ens mble des valeurs possibles $\mathcal{G}(M)$ des indices [M:N] pour les sous-facteurs N4M. Si [M:N] 4, [M:N] $\{4\cos\frac{2\pi}{n}|n\geq 3\}$ ([6]). Si [M:N] $\{4\}$ on a une application $t\mapsto (1+t)^2t^{-1}$ du groupe fondamental de M dans $\mathcal{G}(M)$ ([6]). Ce groupe étant dénombrable pour M ayant la propriété T ([3]), Jones a conjecturé que pour un tel facteur $\mathcal{G}(M)$ est également dénombrable. Le théorème suivant donne une réponse affirmative à cette conjecture:

THEOREME 2. Si M a la propriété T alors $\mathcal{G}(M)$ est au plus dénombrable. En outre, pour chaque té $\mathcal{G}(M)$, $t < \infty$, l'ensemble des classes de conjugaison par automorphismes intérieurs de sous-facteurs d'indice t est au plus dénombrable.

PROPOSITION. Soit K>1. Il existe un $\delta>0$ tel que pour tous sous-facteurs N_0 , NcM vérifiant $[M:N_0] \le K$, $[M:N] \le K$ et $[E_N(x) - x | 2^{<\delta}]$, $x \in N_0$, $||x|| \le 1$ il existe un unitaire $u_0 \in M$ satisfaisant $u_0 \cap u_0 \in N$. Donc ([6]) si $[M:N] = [M:N_0]$ alors $u_0 \cap u_0 = N$ et si $[M:N] \ne [M:N_0]$ alors $[M:N] \ge [M:N_0] + 2$.

La démonstration de cette proposition est une application dirécte des technique et résultats de ($\{1\}$) comme suit: Soit M_1

l'extension de M par N, $\ \ \,$ sa trace normalisée et $e=e_N^{\ \, \in M}_{\ \, 1}$. Pour $u \in \mathcal{U}(N_0)$ on a 11 ueu -e $\|\frac{2}{2} = 2\tau(e) \| u - E_N(u) \|_2^2 \le 2[M:N]^{-1}$. Donc si[M:N]=t, $h \in K_e = co^{-W} \{ u \in \mathcal{U}(N_e) \}$ est l'élément unique de norme $\| \|_2$ minimale de K alors $\|h-e\|_2^2 \le 2t^{-1} \le h \in \mathbb{N}^n M_1$. Il existe donc une projection $e \in \mathbb{N}' \cap \mathbb{M}$, avec $\|e - e\|_2$ petit et on peut choisir des projections fen, $f \in \mathbb{N}_0$ et une isometrie partielle $v \in \mathbb{M}_1$ tels que $v^* v = f e_0$ vv*=fe, | v-e | 2 petit (1.4, [2]). Comme eM, e=eNe=Ne il résulte que e f N f e x -> vxv*6 efM, fe=efNfe donne un isomorphisme v de $f_{0}N_{0}f_{0}$ dans fNf et on a $\tau(x)v=vx$, $x\in f_{0}N_{0}f_{0}$. Donc $a=E_{M}(v)$ satisfait $\tau(x)$ a=ax, a=faf et || a-t⁻¹ ||₂ est petit. On déduit que si v_0 est l'isometrie partielle de la décomposition polaire de a alors $v_0 x = \tau(x) v_0$, $v_0 = f v_0 f_0$, $\|v-1\|_2 < \xi'$, ou $\xi' \to 0$ quand $\xi \to 0$, et $v^*v \in (f N f)$ 'Af Mf. Par ([6]), si $v^*v \neq f$ alors $c(f - v^*v) \ge f$ $\geq [f_0Mf_0:f_0M_0f_0]^{-1} = [M:N_0]^{-1} \geq K^{-1}$. Donc δ suffisement petit impose $v_0^*v_0 = f_0$ et $v_0^*f_0 N_0^*f_0 V_0^*cN$. Comme N_0 , N sont des facteurs de type II_1 vo peut être prolongée à un unitaire uoéM telque uoNouocN. Le reste résulte de [6].

Cette proposition renforce le résultat ([8]) concernant la stabilité de l'indice aux perturbations dans la distance $(N_0,N)=\sup_{N_0} \{\|x-E_{N_0}(x)\|_2 | x \in N, \|x\| \le 1\} + \sup_{N_0} \{\|x-E_{N_0}(x)\|_2 | x \in N_0, \|x\| \le 1\}.$

Nottons que le théorème 2 implique la dénombrabilité de $\mathcal{F}(M)$ ($\{3\}$), mais la preuve n'utilise pas ce résultat.

- [1] E. Christensen, Math. Ann., 243, 1979, 17-29.
- [2] A. Connes, Ann. Math., 104, 1976, 73-115.
- [3] A. Connes, J. Op. Theory, 4, 1980, 151-153.
- [4] A. Connes, Proc. Symp. Pure Math., 38, 1982, 43-109.
- [5] A. Connes et V. Jones, Property T ofr von Neumann algebras, preprint 1984.

PU,

- [6] V. Jones, Invent. Math., 72, 1983, 1-25.
- [7] D. Kazhdan, Funct. Anal. Appl., 1, 1967, 63-65.
- [8] B. Mashood et K. Taylor, On continuity of the index for subfactors of a finite factor, preprint 1985.
- [9] M. Pimsner et S. Popa, Ann. Scient. Ec. Norm. Sup., 19, 1986.

Math. Dept. INCREST,
79622-Bucharest, Bd.Păcii 220
Romania