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CHARACTERIZATION OF REGULAR RIESZ
SPACES USING ORU-COMPACT OPERATORS

" Dam PTudor VUZA
0, Inigoduction

In our paper [7] we have characterized Banach lattices with order continu-
ous norm as being those order complete Banach lattices F with the property that
foxr any—Banach lattice E, the Riesz _space L (E F) of all oru-compact operastors
from E to F is a band in the Riesz space L (E P) of all order bounded operators
from E to F; the class of‘orumcompact operators was introduced there as & natural
enlargement of the class of finite rank operators, The purpose of the present paper
is to extend this result to the case when F is no more @ Banach lattices ‘hamely,
the main theorem asserte that an order complete Riesz space F has the property that

orw(E F) is a band in Lr(E F) for any Riesz space E if and only if P is order sew
parable and regular, It is known that regular Riesz spaces are especially importsnt
for the theory of integratiom of vector valued functions with respect to veetor
measures {see [2] ). As every Banach lattice with order continuous norm is 0’~regum
lar and there exist regular non ¢ -regular Riesz ‘spaces (see §?), our result is
“indeed a generalization of the result in E?J

When applied to the Riesgz space of all equivalence classes of measursble
functions on a ¢’~finite measure space, our theorem yields an extension of Schepts
. well~known result on kernel operators [4] s a8 the set of kernel operators is in
general a proper subset of the set of oru~compact operators (see353 )

As the establishment of the main theorem requires the proof of the fact
that every super order complete regular Riesz space has the Egoroff property, o
discussion.of some aspects involving the Egoroff property forms the object of §>2,
Namely, we give a study of a elass of Riesz Spaces, the so called Riesz spaces
satisfying the abstract Egoroff itheorem, The main results in the sectiom are the
followings evemy‘ahorder complete Riesz space satisfying the abstract  Egoroff
theorem is w&akly‘a”~distributive, also, assuning the continuum hypothesis to hold,
. every order complete Riesz space satisfying the abstiract Egoroff theorem has the
Bgoroff property, As oach a’morder complete regular Riesz space satisfies the gbg~-
tract Egoroff theorem, we obtain as corollaries the facts that every g’~order com-
plete regular Riesz space is weakly ¢’ ~distributive, every super order complete
regular Riesz space has the Egoroff property and, assuming the contfnuum hypothesis
to hold, every order completo regular Riesz space is order separable, We draw the
attention om the fact that we make no use of the oontinuumzhypothosis except for
the already mentioned results which are pfoved only for their own interest and are
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not employe& in the proof of the mainm theorem in gaE;; consequently, we shall not
think of the phrase "super order complete regular Riesz space® as being redundant,

fo Preliminaries

Throughout the section, B and F wdll be Riesz Spaces, '

Whenever F is order complete we shall denote by Lr(E,F) the Riesz space
of all order bounded linear operators from E to F. The notatiom BV will be used
for Lx_(E,R) 5 EX willte the order ideall 4n i consisting of order continuous functiow
nals, Jf(E,F) (respectively D’X(E,F)) will denote the band in Lr(E,F) generated
by the operators of the form X ey £(x)y with fevEN (mspectivel‘y LCE" ) and
YEF. ‘ S

' t‘E will stand for the identity map on E,

The projection on the band generated by am elément x in a ¢’ ~order complet
Riesz space will be denoted by [x] « C(x) will bve the set of all components ef
some positive x im E (that s, the set § y|y €B, yA(x » y) =03,

For a double sequence (xnm)’ the symbol (xmn)m will be used to emphasize
that we want n fixed and m as a running index,

The symbol e will be used to denote order convergence im E: xn—».}x
if thewe is (y )CE such that |x, ~ x| ¢y, and y_Y0, .

; A Riesz subspace F of E is called: order closed, if whenever (x,) is =
net in F, x¢R and x_ 1 x it follows that x£F;; relatively g'-order closed, if
whenever (xm)CF+, %2 ¢E and xn{:x it follows that x€F, : :

For every x&E o Ex will be the order ideal generated by x5 the seminorm

: n nx om Ex is given by

I3, =mffdld€R,, |y|¢atx} .

In case E is Archimedean, || I, -is a norm,

The symbol m?ﬁm} ¥ill be used to denote the convergence with respect to
the regulator wéE+: xmmg%x if lixn - x“u % 0, If we do not want to SPecify-
the regulator we write L5 == %3 by definition, this means that there is me’;E+
such that xmzu%;‘@& X, We also say that (xn) is relatively uni‘fomlg convergent to 'x‘

A subset M of an Archimedean Riesz space B is called relatively uniform-
ly totally bounded if it is contained in a principal order idesl Ex and it is toe
tally bounded for || ”}: n :

Suppose F Archimedean, A linear operstor UsE —=3% F is called oru~compact
(see [7]) 1f it maps order bounded subsets of E onto relatively uniformly totally
bounded  subsets of F, The vector space I_'om(E'F) of all oru~compact operators from
E to F is a Riesz space for the usual order relation whenever I is relatively
uniformly completesy; L?ra(E,F) will denote the order ideal in Loru(E”F) formed by
those U for which JU| is order continuous. :

E is called order separable if whenever M (E, x€E and M’f‘x there is an
at most countable subset NCM such that ¥4 =x, By theorem 29,3 in [:ﬂ e &N Archimee
dean Riesz space is order Separable iff overy order bounded subset of nonzero
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palirwise diiSjoin’c, elements is at most countable, It is customary to call super

order complete an order complete order Separable Riesz space,
B 1s called weakly ¢f~distributive (see [81) if it is ¢’-order complete
and If for every order bounded double sequ.nce (x )Cl:. such that (x ) is decrew

asing for each m»0 we have

sup inf Xr = n,nf suﬁ X
nyo kY o QN =2 ny0

Wright®s criterion (lemma L im ) shows that im order to prove that a @ -order

m,p(m)

complete Riesz space is a"-.dis’tributive, it suffices to show that

in€ | sup
@ :IN ~3dl my0
whenever xEE,, (th)c C(x) and (xnk)kl‘bo for each n,
E has the Egoroff property (see ['5]) if for every order bounded double
' sequence (x )CE such that (x_ ) LO for each n»0, there is (x )Cm and Q¢ N
—-)N such that % Cp(n) x for n>0 and X, Yo, ,
We mentiom the following connectlon between the above properties: :
PROPOSITION ¥, % [5] « EVery super order’ complete weakly ¢’-distributive
Riesz space has the Egoroff property,
Finally, B is called regular (see [2]) if x =3 O whenever (x )(__E and
X =» O. Regular spaces are ealled in [3] Riesz spaces with stable order converge~

xﬁ,cp(n) = O

nee , It Is well known that for sm order complete Bamach lattice, regularity is
equivalent to the order continuity of the normg in fact, order complete regulsr
Banach lattices are already ¢ ~regular, that is, for every double sequence (x )
such that (x g => O for each n, there fs w0 such that (x ) =) 0. for ea,cn
m (see [2}). 'Ehe space of all real sequences (x ) such that x = 0 for all but a
finite number of choices of ny is an well hnmm example of regulmr non g'-regular
Riesz space; howevexr, it has no weak order unit, An example of regular non O »Tegum
TYar Rieaz space with a weak order unit and without atoms is provided by the order
ideal inm the space of all equivalence c¢lasses of Lebesgue measurable functions orx'
LO 1] formed by the funct:wns X with the property that there is m&(0,%) (depend im
ng om x) such ﬁha‘c‘j |z(t)] dt <o,

For every set X, 1 (X) will be the Riessz 8pace of all bounded real funce
tions om X; for every eompact space X, C(X) will be the Riesz space of all contie

nuous real funetions om X,

‘2o Riesz spaces satisfying the abstract Egoroff theorem

We say that a ¢ —order complie te Riesz space h satisfies the abstract
Egoroff theorem if whenever (x /Cfﬂ‘*, ¢ CE, amd X Y0 there is (e )gh such that
e 7‘@ and ([e e S ‘=p 0 for each m}0,

By 'theorea:;s‘ 74.3 and. 74,5 in [3], every g'-order complete Riesz space
with the Egoroff property satisfies the abstract Egoroff theorem,
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PROPOSITION 2, 1, Every relatively ¢ -oxder elosed Riesz gubspace of a
- @’=order complete Ri@az space sa@;is_fymg, the abetract Egoroff theorem also satise
fies it. : _

PROOF, Let E bo a ¢'-order complete Riegz space satlisfying the abstract
Egoroff theorem and let F he a relatively g'=order closed Riesz subspace of &,
Let (r )CF and e(,l”‘ be such that x ¢Q By the hypothesis there is (e )C_E
such that (fes» ]? ) ww} 0 for each B, We shall pmve tha® to every m thore
corresponds £ ¢F .;uch that e £f ge am& (Lﬁ. ] n =%» O3 this will conclude the

proof, since mf '
e:’ m\/ f

then e: ef,, ef ’f‘e and ([c’}x ) mma}() for each m (remark: that [e"]x equals the
order px’ojection of ®, on e;B wm:pute& in F), :

So let m>0 be given; as ([em] mm%vo there is & Sequence (nk) such
that (e 'jx Ln e for any k3 2, Put k™ Bl w0 e - xnk) les as F 1s

e

relatively o’Juorder closed we have f EF, Let o( = (k - 1‘)'4 k
tiom

"ﬂ.. From the relar

({x » 1)V ~ x ) 3 (k w )¢ wx wol ot ke o n >
o i By =&

: o fi 3

;qk@..-.f(k emxnk)m

we obtaim

\((kwi) o ) +b(kn’r€-w ) Py
G e b.4 e xﬂkm

m+
Then, observing that we always have [w + v:[{. [u] [_v] and Ec(u] [ul for ol >0,
we derive from the above relation

(1) (] R0k~ i O % ), ]+ [(x%e - x| g

Applying Lo, ] to both sides of the inequality [e ]znk< e ve bk [e ]x%\
Sk [e ']@ i hence _ : 5

C%I(k“’% - %kk. = (" "[e Je - [ogls, ) = o.

g

This implies that e A(k e o xng) = () snd therefore, C(k P xnk) 1@ -

Consequently, we obtain from (1)

' R g : AT
e m[eaemgﬁ(k - 1)""e - xﬂk)Je Sl o s Xnk);l@ -E

- Now put

fu/\f 5

k=2
as F is rﬂlatively g —order c¢losed, f é;r and e £Lf ge To prove the rel vtion

(L'f JX 5 m =5% 0 we note that
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; et ; e |
alifﬁkl((k - 1)""e + (Xnk ﬁ-(? - 1) e)+ -
: | _ mk '

[z g1 S : :
as Eﬁmk}(xnk - (kK o 1) ®)+ =0 by the definition of‘fmk.

9

PROPOSITION 2,2, A ¢'~order complete Riesz space satisfying the abstract

- Bgoroff theorem is weakly ¢ ~distributive,

PROOF, If a ¢ ~orvder complete Riesz space E satisfies the abstract Lgorofi
theorem, then all its principal order ideal also dog as B is weakly ¢ -distributive
Iff all ﬁﬁs principal order ideals are, it suffices to consider the case when B

‘has a utrong order unit, But in this case, B is order lsomorphic to a space C(X)

for some ¢'~stonean space E; henee, by Wright's criterion, it suffices to show that

every ¢ -meagre subset of X is nowhére dense, So let

U
M = M
K ne=f "

where the M *s are closed nowhere dense %g subsets of X, If M is not nowhere dense
there is a closedpnpem subset NCX such that MAK is dense in N; replacing X by

N we may assume that N = X, We may also assume that the Mnfs are pairwise disjoint:
indeed, let

n

X =X~ H M, .

Ag X is an open F subset there is a sequence X ) Byt of pairwise disjoin%t closed.
m)l

‘open subsets such that

oo

X = U

mesf

v‘{ s 9 % e %
 Put Imm1“ nﬁizxx 3 then the M s are pairwise disjoint and L_J Mnm is dense

in X, : S n,mai
Let f:X w3 2 be defined by

£(t) =uo?, tem

£(t) =0 , ’c-éX\M:

T is an upper semicontinuous Baire iunctlon, hence there.is a sequence (f )C;C(X)

such that £ (t)w'f(t) for every t£X, As the complement of = ajumeagre subset in

& compact space is dense, it follows thah f Yo in C(X); as C(X) satisfies the

abstract Egoroff theorem, there is a sequence (e )c:C(X) such that e 1\3 and

(Ee jf ) z&ﬁ% 0 for each m (e being the function identically one on X)° Bach e&
ust vani sh on M: indeed, if em(to) # Ofor some tyEM 4 there are o >0 and a

closed-open neighborhood V of tO such thai<ikl <¢3 (% 'being the characteristic -

funetion of V). It follows then from the relatlon

Uity =% ]e, =[ak 12 4

.‘1] bl
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that

o = £(t) 42, (40) = (%,£.) (t0)¢ Sl s

But this contradicts the relation ([e‘]fﬁ_r =550 ,

As M is dense in X we obtain that g = 04 which contradicts the relation
e ff\ &, The contradiction so obtained completes the proof,

PROPOSITION 2, 3o Assume that the continuum hypothesis nolds,, Then every
order complete Riesz space satlsfying the abstract Egoroff theorem is order S@pam

rable, ; :
. PROOF', Suppose tilat thelcrder complete Riesz space B satiafying the
abstract Egoroff theorem is not order separable, Then there is an uneountablx,
order bounded subset MCE \%_OS consist:ing of pairwise disjoint elements.. Define
Hsl (M) -3 E by

B(E) ~mwp 3 flt)s |, el (w),
. FCH &R T =
F finite

H is an orderr isomorphism of 1 (E) onto a relatwelv q’»order closed Riesy subsnace
of E; hence, by proposition 2,1, 3 48 (M) satisfies the abstract Egoroff theorem,

As M is uncountable and we assume the continuun hypothesis to hold, & result of
Banach and Kuratowski [;1'1 asserts that there 1s S & double sequence (M ) of subsets
of' M such that MOk s M, M "{‘M for each m and (\ MH,{?(H) is at most cowntable for

ﬂw
n

-each (P :IN m-}ﬁ\( - Replacing, if necessary, Me ®W N M\ we may assume

1=0
‘h;h.ay l‘im1’kaM « Define fk(?l (M) vy

Al
fk(t) = ()", térim{\ﬂmhk

£,(t) =0 O - [\ e o e _

n=0)

 The monotony properties of (I‘»’T ) dimply fk-ﬂ <f}r°’ As £ (-{;)4 (n+1) =1 for € M SO

M ‘MI for each n, we have f.’ LO Consequently, there io ‘byhypothesis(e )C 3 (I’I)
such that e '1‘ e and Le Efp)k *m%() for each m ( e being the function idenbicallv‘
one on M), If wo let N {th{lxie e (t))()fg‘&heui\? M and sup £ (N ) > 0 as

k w300 for each m, We bhall 8ee that each N must be at nost c:ounmble' this will
contradict the relatiom N TM and the proof mll be oomplet@, Indeed, given mx0,
we can find (s Q\mmg»ﬁ\] uuc,h that sup f(?( )(E* )<Z,(z1+1) ~Y2or each n>0, By the defi-
nitlon of the fk* s this implies l}% CM ”(“) for each ny  comsequently, Nm(:

€ m l“ ,¢(n) and therefore, it-is at most countable,

=0
.COROLLARY 2 A ﬁssume that the eontinuwa hypothesis holds, Then eVEEY

order complete Riesz Space satisfying the abstract Egoroff theorem has the BEgoroff
property,
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PROOF, Follows from propositions 1,1, 2,2 and 2%,
PROPOSITION 2,4, A ('=oxder complete Riesz space 18 regular iff it satise
fies the abstract Egoroff theorem and evem‘* order bounded disjoint oequenc@ in 8

is relatively uniformly convergent to 0, :

PROOF, Let E be a (’worder complete regular Riessz space and let (x )Ch
@&E be such that x \LO By the hypothesis there is u&E‘ such that X, m@ O
Put e =[(ne ~ w) j’e $ (e ) is an increasing sequence in G(e). 1f

4 1
e = \/ e
w0
then (6 e‘)/\e, =0 form>»0, which implies

Om(e»@')/\\/ (e~m u) = (6 we')\e = € weot , -
=i :

Thus, emﬁ’l‘e. The relatiom

[em]u o [eb;\(me + (w - me).+ = (0 = ne) )£ me

implies that ([’em;]xn)n == 0 for each By cbn;sequently','E satisfies the abstract
Egoroff theorem, o ‘

On the other side, 1et (x )(_E be an order bounded disjoint sequence, Put

¥, o e
| m=n

As ¥ L0 4t follows by the hypothesis that y mw% 0; consequently, X =m» O,

Conversely, let B satisfy the candltions in the statement of the propositi.
o and let (x ) O(_E be such that x Lo, As B satisfies the abotmct Egoroff theo~
rem, there is (e/)(;’f,h such that e "f\zo and

x
(foadri——> 0

for each m3 0., Replacing, if necessary, e by Ee ]x we may assume thai; e e(,(:n Yol

. The sequence (e - ®. )HIM is an order bounded disjoint sequences; themfore there

is by hypoth%is u(;L such that R mm%» 8 o Me may assume that x, {u, The
proof will be concluded 14, we show that L mm% O, 1ndeed, g:ven €>0, there is p .

such that 8y e 1,52 ,gu wheneverf il ;—pQ Then

' e
g fm \/ (0 ~ey y) €27 gu
i=p+1 ]

for any o} p+t: as e ’Te we obtain from the above relation e o epé 1&11. As

L ] k) m::m% 0 there is m such that (_ "]x <£2 gyo.,, We have

X - [e X +[:x - e] <, & eapj}xn +-XO - epéﬁﬁx

which proves our assertion,



>

&>

COROLLARY 2,2, Every g ~order complete regular Riesz space is weakly

(o34 mdistributive., If we assume the continuum hipothesis to hold, then every order
complete regular Riesz space has the BEgoroff property,

The following proposition shows ii particular that super .arde:é** complete
regular Riesz spaces behave like g’»«ro gular spaces with respect to order bounded

&ouble Sequences,

PROPOSITION 2,5, For any super order complete Riesz space the following
are equivalent: :
i) B is regular,
ii) For any ordcr bounﬁed double sequence (x )Q_I} such that (x ) ‘i/()
for each n there is u(,h such that (x B kma%;» 0 for each n,
iii) For any xEB_ and any double sequence (*{ )CC(X) such that each se—
quence (ym{ n is dlsjoint. there is m(-;.,E_’_ such that (Xnk km@o for ea;ch o,

PROOF,. , 2
1) =% #i) Replacing, if necessary, x_. by \/ X, We may assume that
. fally 120 ik

xmté 1,k By proposition ¥,1 and corollary ft. 2y B has the Egoroff propertys;
hence theve are (x )C.E and @ : [}l —»@N such tba‘t X vLO and X (?(n)é X .o AS B is
1 th 8 E such that 0, As er
regular, ere Is ug uch tha x W§ A X ,(p(n)w m,ﬂf‘(n)’é . vhenever
m&n it follows that (xm:)k = 0 for each m,
$i)==» 1ii) Let

o0
e =N 7

(yJ{) is an order bounded double sequence such that (y ,{)kLO for each ny consew~
quently, there is u:é_h such that (¥ ) m«-ﬁ% 0 for each m, As X &7, e the same
is true for (}:nk) 5 , .

’ 1ii) == i) We prove first that B is weakly o“wdistributive. So let XER,
and let (yﬂk)cc_(x) verify (ynk)k\bo for each n, Put

y o= ini sup y.
P »m.}D“i n30

1if Xge ™ Fpge ™ T, k1 then x kec(x) and each sequence éx’m%g)k is disjoint, By the
hypothesis thewxe is u(,_L with the property that (x ) ===» 0 for each N COnm

sequently, given £ 0, tnerfe is c:l:) NMN h tnat‘ xnkgﬁw whenever ki}c‘&(n) o AS

yn’(fh( m) = ;ng) "ok

1t follom: that Y, Wr}‘g u for each m Hence y<g€u be the definition of yy as &
ﬁ IL

@ = : 5 5

9'{'(3)

is arbitrary, y = O
As E is also order separable, proposition fi, 1 implies that E has the
ﬁgoréff property, hence it satisfies the abstract Hgoroff theorem, On the other
& s o0
side, if (x )CLE is an order bounded disjoint sequence and if x wr\// X , thenm
n

n=0
x € € C{x)and consequently, (?’ )m}» 0 by the hypothesis, An application of proposi-
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|  tiom 2,4 econcludes the proof,

3« The operatorial characterization

The proof of the main result will rely on two lemmas and a proposition
which presents interest in its own, as it gives a non topological version of a
pri»mipali*:;v theorem for module.s of operators (theorem 2,5 im tﬁ] Yo

LEMMA 3.%. Let E be an Archimedean Riesz space and let MCE 0% be
a subset of pairwise disjoint elements which is totally bounded for é& “u » Them
M m at most countable: if M is int’inl’ce and if (x ) is any amz‘angement of M into
a sequence, thon x ,m:*% 0.,

PROOF, Our assertions will follow if we prove that for every £>0, the
get fx[xem ii:"ii ‘53 is finite, Imdeed, there are ZapeocsX EH (depending om &)

sueh that inf ”x mxﬁi‘ L& for any xem B % ¢ xem\ﬁx““.,x %“rhen x/\x = ()
isidm
for 144.5..4.2'1' consequently, the inequality

@

X

IP‘

x + x, = | x ...'xil
shows that x{| (£ and the proof is complete,

LEMMA 3.2, Let B be a super order complete regular Riesz space and let
(“f ) be a sequeﬁee of relatively uniformly totally bounded subsets of B such thas

U M_ is. oxder bounded, Them thers is uel i such that esch Mn is totally bounded

for i li

: )
PROOF, Lot xe{E be such that b M C;me x] Fm* each n there is wu ﬁ-‘;,If‘
n=0

‘such that M_ is totally bounded for |l fly, »Patx, = L{m =~ kx} 1x; (x,) is an

™
order bounded double sequence decressing in k for each n, Inm fact, (x ) \LO s

indeed, if

X mﬂ‘/\x

41 =0 Rk

then,

kxﬂélzxmmf(u kx)j(( ;t»»u) (k.xmn)- +u)¢mn

for each k, wich implies tmt x =0, Convequently, there is by proposition 2.5

me{;L sueh that (J"m) 5 D> 0 f“or“ cach n :, We DAY assums %.nm; X &0, Ye shall pmve\

~that each M_ is totally bounded for || 5 o Indeed, let E, >0 and n be give% A8

k7 i

(%), ===> 0 theré is k such that X .(, 47 Eu, As M, is %otally bounded for || §m
: n
there are Fyro0es¥, é;Iz such tnm any yeh satiefins |y = yiez; (?‘k)“éu for soms

; itiu,“,”m} . 1akir~g}; :an account the. fact that x &C(x) we obtain that any yen

satiafies

gF - Sfil 2 [:;‘{353? s 3?5‘”6 i EX s X}ﬂll{j&y PR yié & [Kﬁkjiy Ak yii é“
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S ,
()" glx - X o fo * E@yﬂlx

for some % L%inam,m? The fdemtity f{}ﬂv“} Lul{v]) emebles us to derive the
Eelahions

LA - :rn;]‘ae m({_ﬂ:’; {x ‘;1)1:; m{_xj(t ME(u e X} ])m &
%(%3 ‘»L(w o Jex) 3)'@% .

= (1 e [(u) - kx) D ((uy o kx) - (u, = kx) + dx) $kx
and >

: Exﬂk o xnk :
Hence

lywyi( Z ex + 2 T&ué&m
and the proof is completes, -
Reczall that an {~algebrm is @ Riesz space A endowed with a structure of
algebra such that A A CA and acAb = caAb = 0 whenever m,b,c (:A and aAb = 0,
Any space G(X) in an f~algebra for the usual algebraic wnci order structure
For any order complets Riesz space B we denote by Z (I:.) the algebym of

- operators om E genersted by order projectionss it is w&ll»known that 2 (Is) is an

f-algebra for the usual algebraic and order stmctur’es,

If X is a compact space and E is an order complete Riesz 8pace, the cone
é 2" LB, ifi&C(X)w ﬁ‘iézp(g)i'%

defines an order relation on the tensor product’ algebra C(X)®Z (B) turning it

into an f-algebra, To verify for instance that C(‘X)@ZF{E) is aRiesz space,note

that every ag 0(1{)@2 {E) can b-e written as

(1) wm‘S"'f@P
=1

where fie G(X) and the Pi“s are mutually disjoint order projectionsy it is i:fxerg

i

readily seen that the modulus of a s given by
(2) jaj - ; | £\ ®P, .

There is a unique structure of C(X)® /‘.p(}*‘)mmodulﬁ on L (C(X) E) such that
({(£@W)U)g) =T U{fg) whenever f L.eeCX), e (E) and UglL (G(A),u) 5 one cam
verify (by vsing (1) and (2)) that, for the modu,».e structure so defined, we have

jaf] = {al] U] whenever aé;f‘(z{)cf/, (B} and U C,L S C(X},E) . From this relation we may
obtain for instance that

(%) (aAB)U = aUA BT

whenever a,b& C{X) g?uz (P) and Ug 278 ((‘( IEL -,
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PROPOSITION 3,1, Let X be a compact space, let E be a super order complet

Riesz space with the Bgoroeff property and let e denote the function,ldmntifbl]y o1
om X, Then for any U VQ,L QL(X),E) such that 0£ ULV there is a sequence (*\)(ﬁ
CeN@z ( i) such that !U N Vi(e) ey U,

ERQOE Ve assume firbt that U is @ component of V, Put V, = U, V_ =V « U

i * 2
As‘V1/\V' = 0 we have

%.'1:» VAEIATV(£) | np0, £,e0(X), '*2"‘ £ meg\\,o.
&=0 :i-'a()

As B is order separabde, there is & double sequence ( )H)O 0gigk C 4G (X)

that

fﬁ}im’e

M

for each n and
; k
_n "
Z_ YL IAVE ) o
88 M ==y o0 . Since
(V(f) -V, (f g AL ) =V, (f )7+ =
there is an order projection P4 such that

(g = P (VA2 5) = Vol 000 ) = 2 UV(8, ) - Valfad)y) = 0.

Let %
¥
n
B @P o
B =0 ﬂj’
The relation
: k
e m )
oY, = a = 1ﬁw
e e - s :

shows that

Ve also have

0% (Vg s ﬁnvi)(e) j§- (1 ni)vf(fni) o
k %
i o = V(g 3)), -
f=0 (1p =2 YUV, (g ) =7 ("«é it by F VAL P ANV 2 Tps)) %
‘a
4; 'g"’"’ .'_* i
Consequently, & - a V. )(e) e 05 & similaw ccﬁpur%ﬁion shows that (a aVp) () ~-d

3 0, It fﬁllOW‘ then from the relation



O

8 -2 F\(e) =¥y wa¥y ¥ lle)d (V) wa ¥ohle) + (m.¥ ) e)

1

that |U = g V[(e) ~3 0,

- Fow the general case, by Freudenthal®s theorem thewe is g gsquence (V
of finite linear combinations of components of V such that 04~V £V and (U - V L&
£n ﬁv. By the previous ergument, there is & double sequence (a )C:C{X)ﬁﬁé ( )
such that (iv - Qxﬁ)) 2 0 for each m. Replacing, if necessary, a by

nk

(an ) ﬁ\(oﬁﬁf ) and t&niﬂ” 1nto account (3), we may sssume that 0413%‘V<5V Theree

fore, thﬂ uouole sequence (@V m-&th§(G)) is order boundedy the Egoroff property

gives then a@: gdeW?JQ guch that l% o &m.?(n) l(e) wePp 0 , The relation

1 ws o VHI& V) + |7 wa V(o)
B n

#,0n) mp(n)

shows that |U - & ( )vl(e) ~=» 0 and the proof is complete,

Ve maj'ska%e now the main result of the paper,

THEOREM 3,1, For any Riesz space B and any super order complete regular
Riesz space F, L (E F) is a band in L, LB, 7).

Convers elvg let I be an order compLote Riesz space such that Lorn‘%xﬁﬁ)
is order e¢losed in L (L (M) ,F) for any set M. Then F is super order complete and
regulay,

PROOF, Let F be a super order cowplete regular Riesz space, In order £o
prove that L (L F) is a band in L (P F) s it suffices %o do it cnly in the case
whemn: E has a tromg order unitmx&';ﬁ Let G a»ix(xézﬁ,iexLu =04 3 t the guwotient
Riesz space E/G is Archimedean and has a strong ordeyr unit v20, If H denotes the
ecompletion of E/G for the norm {| “v ¢ it is straightforward to verify that Ly(E,F?
is order isomorphic to L, (%,F) through an isomorphism taking L, (BE,F) onto

;vu(ﬁ F), As H is eraev'iﬂsmorwujc to @ space (X)), it uufﬁiceé finally to consie
der only the ease E = C(X} for some compact space X,

We show first that L (C(X),?§ is an ordeyr ideal in L (C(&) sF)s as

Q”h(b(k) F) is a Riesz uub¢pacug it suffices to prove that the relations U €&

&L (c‘(x) 2 Ve, (ukk) Fly OLULY fmply Uegz.‘,om‘(c(x) +F)o Denote by e the
fﬂthLOﬂ 1aentica¢iv one on X, Thewe is xg¥F, such that V(Tke,é3) is totally boune
ded fgr'ﬂ %X o By propositiom $,¢ and eowollalj ody F has the Bgoroff propertyy
we may then apply propositiom 3.1 and obtain a sequence (@ )C:C(X)de (F) such
that |U - 3{@) ~=y» O, The regularity of F implies that there is yg,?% such that
EU‘m.anyg(QS wﬁm¢ Q s we may sssume that X&¥e As amy([fe,ég} is %otallyfbohn&ed

for i ﬁy and

sup_ o) - a V()] -0

£E-e,e) ‘ , :
aﬁ-n;mm§go » it follows that U([-e,e]) is totally bounded for i Ey s the oru-com-
paci ¢f U being thus established,

To prove that L (C(X),F) is a band, let UéZLT(C(X),F) be the supremum

of a subget of 1 L, (“’“),f)¢ As F is order separable, we may find = sequence
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(‘{ﬁm)gbom(ﬁ(x) ) such that omns.,v and, “Jm(e)‘if Uf{e)e The regularity of F implies
the existente of x€F _ such that U (e) =2 Ue), As Un(f-,—e,@:}) is relatively unim
 formly totally bounded and :
: s

\J v ([=e,é)) c[-uCe),u(e)]
nre() ' ;

lemma 3.2 gives an y€F  such that eabh set U (Eme e"l) is totally bounded for | ﬁy

- we may assume that x / » A8

fé}»@ ejNU(?) ~ V(D £llvte) ~ Unlellly
it follows that U([-e, e}) is wtau_v bounded for || R} » the oru~compacity of U
* belng thus established, ;
' Conversely, let F satisfy the conditions in the statement bf the theorem,
We prove first thet F is order sepaéable, To this pufpose, let MCPF \{0} be an
order bounded subset of pdlrwibe disjoint elements, Define Vel (1 (M) oF) and,
for every finite K¢ M, (1 (PI) ,F) by

S

U w;’“ f(t)*& »

el
U = sup U o
NCM 4
N finite
As L (3 ("i) ¥) is by hypothesis order closea; it follows that UCL (1 (4),r).

oru oru oo
Conoequpn’cly, if e denotes the function mentlc'nly one on M, then Mc‘_U({fO e]'t

which implies that M is relatively uniformly totally boundeds by lemmas 3.9, M must
be at most countable and the order separability of F is proved,

Now we may apply proposition 2,5 io oxdcr to establish that F ig regular:
-in fact, we shall see that F Satisxies condition £ii) in that proposition,

Let xeF, and let x )CC(X) be a double sequence such that each sequence
(z ), s disjoint, Define U U, ot mm;, ?) and n@,_;;ru%(mm ),F) by

U (f) = @._: 2""*“%‘(@,3):{“ .
= Of’;i,jéﬂ e
U = sup U ”
120 4

»(»

The definition of U is correct because

NoT A N SRy
U (é) T F PRGNSR ) ixijé 2 2 Txs2x
0<%, jen : i=0

A1 (EzlnL\i) sF) is order .
¢losed by tx;poihcsv U ds oxuma,omm,e% consequently, thero is ugji* such that
u(fo, e,l/ is totally bounded f(ﬁ‘ “zx » Let e

(e being the function identieglly one on [ﬂ&iﬁ\i . AS

e e the function defined by

enk(m,}:) =,

®ni{®,p) =0 for {(m,p) i (xg«:,};)

3



)

% b

N

kernel operator if there is a measurable :iftmc*'tloz’a k on §:: )ﬁb

Then U(e_ ) = 2% i © By lemma 3,1 it follows that

i LY W

consequently, we also have (},ﬁrﬁf)k =zwcy O for each n end our assertion is proved,

ok b

THEOREM 3.2, Let E,F be Riesz spaces such that F is super order complete

cand regular and at least one of the following comditions holds:

1) E has a strong order unit,

1) TN separates F,

Then I (E,F) = Y(5,) and 2 (5,5 =YX (8,5),

- PROOF, Bv theorem %, 1, 01&(}3 I‘) is a: band in L (E,F);; by corollary 3.2
m[7] , L;’f’m’(ﬁ ') is 2 band in L__ (B,F), hence a band in L #LEoF) o As every operator
of the form X )» f(:»)w with féﬂ‘“{respeetiwlf £& 5% and y&F is in L (T‘ )
(resyeef':\_voly L (E,F)), it follows that :)’(u,F)CLON( JF) and ,7 (E 1‘) c
ey ‘ » _ .

On the other side, theorem 5,4 f.n[(]shows that L Q(E,F)C‘J (B,F) and
Lz‘m(E,l ;C_;}‘K(F ‘

We close the section by giving s characterization of kernel operators in
terms of oru~compacity, ; :

Let (u,g};,ﬁj) be ¢°~finite measure spaces and let L (/4 ) (i=1,2) be
the Riesz space of all equivalence classes of measurable functions on Sj, Consider
an order ideal E in L (H Je Recall that an operator U:E --3 L (H is called &
> with th@ following
p:coper‘ﬂt;m

For every 2 £E there is = /Jg;mmxll set Nk suéh that tl'ae_func:ti‘ou
I l{(ﬁﬂ,sz)x(s,ﬁ) is p ~integrable and

U’(x)(sz)' m 53 }g(s?gsz)}:(sﬂ)c}ﬁi{%)‘

b |
whenever & ,Q»: S?\}?‘ 3 o
"‘UZ’(}H 3.3 Lok (”‘%f”?"i’ ﬁé ) (i=1,2) ‘and E be as abovm Then the set
of all kernel operstors from B into L (f4 ) is precisely L (I:, 0\,(4 3

PROOF, As it was already pointed out ia [4] , an ape?mor UtE owd L (/iég,)
ie a kermel operator iff the restriction U of U to E is so for every x¢€R
4 & ‘;{ A
ru(b L (IM n)) LU € Ioru(Lx'””O(lM )) for eve Ty
xézby Then the result #nllows observing that the %t of kernel operators from
B into L (f-&,,) equals, by theorem 2,5 in[4], gX (EK’LQ( /WZ)) and the latter
equals, by theorem 3,2,

eimilarly, we remark that UL

IS AN G 2) (as Iy M,) is super order complete and

regular) , : 42 -
Schep's ‘theo‘*’&m Céj asserts that the set of all kernel operators is 'av

band im L €E,.u {j«= ,ﬁ})c Our characterization shows that in general, the set of all

kernel opt rators is a proper subset of L (L LO( H 2)}., Hence our results may be

viewed as an improvement of Schepts tnoore.m ag they show that not only the set of



)

kernel operators (= order continuous oru~compact operators) but the whole space
LopulBelig(M 5)) is a band in L (B,Ly(M,)),

COROLLARY %.1, If IQT
operator defined on the whole space L (f’ )a

PROOF, By theorems 4, and 4, Zinﬁ} Lmuwbgu) L(ﬂzﬂ m{Og then

apply theorem 3.3,

hag no atoms, then there is no nontrivisl kernel
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