INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

COCYCLES ON TREES

30

by

Mihai PIMSNER

PREPRINT SERIES IN MATHEMATICS

No.29/1986

· BUCURESTI

flea 23733

COCYCLES ON TREES

· by

Mihai PIMSNER*)

May 1986

*) Department of Mathematics, National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

\$

1

COCYCLES ON TREES

by Mihai V.Pimsner

Let X be an oriented tree, endowed with an orientation preserving action of the locally compact group G . In their paper [2], Julg and Valette constructed in a geometric way a Kasparov bimodule $\mathfrak{F} \in \mathfrak{E}_{G}(\mathfrak{c},\mathfrak{c})$ [4.] and showed that the class of \mathcal{F} in $KK_{G}(C,C)$ coincides with 1_{G} , the unit of the ring $KK_G(\mathfrak{C},\mathfrak{C})$. They achieved this by exhibiting a homotopy s_t , t $\in [0,\infty]$, (i.e. an element in $\mathcal{E}_{G}(\mathfrak{c},\mathfrak{c}(\mathfrak{c},\mathfrak{o},\mathfrak{o}))$, such that $\mathcal{E}_{\mathfrak{o}}=\mathcal{E}$ and $\mathcal{E}_{\mathfrak{o}}=\mathfrak{1}_{G}$. If $G = \mathbb{F}_n$ is the free group on n-generators acting on its natural tree, the Kasparov bimodule & reduces to a construction done in [7] for the computation of the K-groups of the reduced crossed products by \mathbb{F}_n . Moreover, the fact that $\delta = 1_{\mathbf{F}_n}$ was needed in order to carry over the above computation." (To be more specific one needs that $j_r(r)$ is the identity in the ring $KK(F_n \ltimes_r A, F_n \ltimes_r A)$, where $j_r : KK_G(\mathbf{C}, \mathbf{C}) \longrightarrow KK(G \ltimes_r A, G \ltimes_r A)$ is the map defined by Kasparov in [4] and [5]. (see [6])). Lacking G-equivariant KK-theory, most constructions in [7] seem complicated and unnatural.

The aim of this paper is to show that the homotopy exhibited in [7] for the free group, can be naturally constructed out of the tree X. The idea that was behind this homotopy is to perturb the action of G on the vertices of X by an explicit cocycle, so we construct the cocycle first. This leads to a continuous family 8 w of Kasparov bimodules, with $w = (w_v)$ running over the direct product TT U(2) of $N = \operatorname{card} \Sigma^1$ copies of the unitary group U(2), where Σ^1 is the orbit space of the edges of X. If $w = (w_y)$ is the constant N-tuple $w_y = 1$ we get $\delta_w = \delta$ and if w_y is the transposition matrix $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, for every $y \in \Sigma^1$, we get $\mathbf{y}_{W} = \mathbf{1}_{G}$. The explicit knowledge of the cocycle is useful for computations. We illustrate this by computing the character of the 1-summable Fredholm module 8 [1]. This simplifies some of the computations of Julg and Valette in [3] and shows that their results remain true even if one drops the condition that the tree is uniform locally finite.

Let X^O denote the set of vertices of the tree X . By an action of the locally compact group G on X, we shall mean a continuous action $G \times X^{\circ} \longrightarrow X^{\circ}$, denoted $(g,x) \longrightarrow gx$, that preserves the natural distance d on X° . This determines a continuous action $(g,y) \mapsto gy$ of G on X^1 , the set of edges of the tree X. We shall denote by $\Sigma^1 \subset X^1$ a fixed transversal for this action of G on x1, that vis a complete system of representatives of the orbit space $G \setminus \chi^1$, and we shall denote by $\hat{y} \in \Sigma^1$ the class of the edge $y \in X^2$. The set Y of oriented edges will be identified with the pairs (x',x") of vertices such that d(x',x'') = 1. If y is an oriented edge y = (x',x'')we shall denote by \overline{y} the oriented edge (x",x') and by lyl the (unoriented) edge determined by y . We shall also fix an orientation of the tree, i.e. a cross-section of the map $Y \rightarrow y \mapsto y \in X^1$, and consider X^1 as a subset of Y. We shall moreover assume that the action of G preserves. this orientation, that is the action of G on Y leaves x^1 invariant. If $x^1, x^{"} \in X^0$ are two vertices we shall denote by [x',x"] the geodesic joining, x' with x" . We shall say that the oriented edge y belongs to the geodesic [x',x"] if y is of the form $y = (x^{i}, x^{i+1})$, $x = x^{1}, x^{2}, \dots, x^{n} = x^{n}$ being the path that defines this geodesic.

Definition : Suppose that $\pi : G \longrightarrow L(H)$ is some unitary representation of the group G on the Hilbert space H. We shall say that a function

$$c : X^{\circ} \times X^{\circ} \longrightarrow L(H)$$

is a cocycle on X for π , if c satisfies the following conditions

- 1) c(x,x) = 1, $c(x^2,x^1) = c(x^1,x^2)^*$ 2) $c(x^1,x^2) c(x^2,x^3) = c(x^1,x^3)$
- 3) $c(gx^{1}, gx^{2}) = \pi(g) c(x^{1}, x^{2}) \pi(g^{-1})$ for every $x, x^{1}, x^{2}, x^{3} \in X^{0}$ and every $g \in G$.

Note that if we fix a vertex x° , then the function $g \mapsto c(x^{\circ}, gx^{\circ})$ is a cocycle for π , that is $g \mapsto c(x^{\circ}, gx^{\circ})\pi(g)$ is a unitary representation of G on H.

The cocycle c on X is completely determined by its values on Σ^1 . We shall call the restriction of c to Σ^1 the generating function of the cocycle. It satisfies

$$r(y) \pi(g) = \pi(g) c(y)$$

for every g in the stabilizer of the edge y, and every $y \in \Sigma^1$. Conversely, every function $c : \Sigma^1 \longrightarrow U(H)$ with the above property determines a cocycle on X for π , still denoted by c, for properties 1) and 3) uniquely determine c on the set of oriented edges and since X is a tree, properties 1) and 2) show that the value

$$c(x^{1}, x^{n}) := c(x^{1}, x^{2}) c(x^{2}, x^{3}) \dots c(x^{n-1}, x^{n})$$

does not depend on the particular path x^1, x^2, \ldots, x^n with fixed end points x^1 and x^n .

We shall construct now a particular class of cocycles on X for the representation π° : G \longrightarrow U(1²(X^o)) induced by the action of G on X^o.

If $u \in U(C^2)$ is a unitary matrix and (x',x'') is an oriented edge, we shall denote by

$$u(x',x'') \in U(l^2(x^0))$$

the unitary defined by

$$u(x^{1}, x^{n}) = v u v^{*} + 1 - vv^{*}$$

where $v = v(x', x''): \mathfrak{C}^2 \longrightarrow l^2(X^0)$ is the isometry defined on the basis of \mathfrak{C}^2 by $v(e_1) = \mathfrak{S}_{x^1}$, $v(e_2) = \mathfrak{S}_{x''}$. If $w = (w_y)$, $y \in \mathfrak{L}^1$, is a card \mathfrak{L}^1 -tuple of unitary matrices belonging to $U(\mathfrak{C}^2)$, we shall denote by

$$c_w : x^\circ \times x^\circ \longrightarrow U(1^2(x^\circ))$$

the cocycle on X for the representation π° , given by the generating function $c_w: \Sigma^1 \longrightarrow U(1^2(X^{\circ}))$ defined for $y = (x', x'') \in \Sigma^1$ by

 $c_{W}(y) = W_{y}(x^{*}, x^{*})$.

It is easy to see that if we extend the function w: $\Sigma^{1} \longrightarrow U(\mathfrak{r}^{2})$ to all oriented edges by

$$w_{y} = w_{\hat{y}} \qquad \text{for } y \in X^{1}$$
$$w_{y} = \tau w_{\overline{y}}^{\underline{x}} \tau \qquad \text{for } y \in Y \setminus X^{1}$$

 $(\cdot \mathbf{z}$ being the transposition matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then the value of c_{w} is given on every oriented edge $y = (x^{*}, x^{*})$ by

$$c_{W}(x^{*}, x^{*}) = W_{Y}(x^{*}, x^{*})$$
.

<u>Remark 1.</u> If we fix a unitary matrix we $U(\mathfrak{c}^2)$ such that $\mathfrak{r} \otimes \mathfrak{r} = \mathfrak{w}^{\mathfrak{X}}$, then the formula

$$c_{m}(x^{*}, x^{*}) = W(x^{*}, x^{*})$$

defines the cocycle corresponding to the constant function $w_{v} = w$, for every $y \in \Sigma^{1}$, without any reference to Σ^{1} .

Let us record for furtheruse the following two straightforward properties of the cocycle c_w .

i) If x',x" are arbitrary vertices of the tree X and p(x',x") denotes the orthogonal projection on the space spanned by the vectors $\{S_x \mid x \in [x',x"]\}$, then p(x',x") commutes with $c_w(x',x")$ and

 $p(x^{*}, x^{*}) c_{W}(x^{*}, x^{*}) + 1 - p(x^{*}, x^{*}) = c_{W}(x^{*}, x^{*})$.

ii) If
$$x' \neq x''$$
 belong to X°, then:
 $\langle c_w(x', x'') \delta_{x''}, \delta_{x'} \rangle = \prod_{y \in [x', x'']} (w_y)_{1,2}$

where $(w_y)_{1,2}$ is the 1,2 entry of the matrix w_y .

Let now $x^{\circ} \in X^{\circ}$ be a fixed origin of the tree X .

Definition We shall denote by π_w° the unitary representation of G on $l^2(X^\circ)$ defined by

 $\pi_{W}^{o}(g) = c_{W}(x^{o}, gx^{o}) \pi^{o}(g)$

In the sequel, $V: l^2(x^1) \longrightarrow l^2(x^0)$ will denote the isometry defined by Julg and Valette in [2], induced by the map that sends each vertex $x \in x^0 \cdot \{x^0\}$ to the (unique) edge y that has one extremity x and lies on the geodesic $[x, x^0]$.

Lemma 1. a) If $w: \Sigma^1 \longrightarrow U(\mathfrak{c}^2)$ is the constant function $w_y = 1$, for every $y \in \Sigma^1$, then $\pi^0_w = \pi^0$. If w is the constant function $w_y = \mathfrak{T} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then $\pi^0_w(g) = V \pi^1(g) V^* + p(x^0)$, where $\pi^1 : G \longrightarrow U(1^2(X^1))$ is the unitary representation induced by the action of Gon X^1 , and $p(x^0)$ is the orthogonal projection on the space \mathfrak{CS}_{x^0} .

b) $\pi_{W}^{0}(g) - \pi_{W}^{0}(g) = p(x^{0}, gx^{0})(\pi_{W}^{0}(g) - \pi_{W}^{0}(g))$ for every $W, W' : \Sigma^{1} \longrightarrow U(\Sigma^{2})$ and every $g \in G$.

c) The function

 $\mathrm{u}(\mathfrak{c}^2)^{\Sigma^1} \ni \mathbb{W} \longrightarrow \pi^{\mathrm{o}}_{\mathbb{W}}(g) \in \mathrm{u}(1^2(X^{\mathrm{o}}))$

is norm continuous for every geG.

<u>Proof</u>: a) If $w_y = z$ for every $y \in \Sigma^1$, then it is easy to see that

$$c_{W}(x',x'') \delta_{X} = \delta_{X}$$
 if $x \notin [x',x'']$

while if $x = x^{i}$ belongs to the geodesic $x' = x^{1}, x^{2}, \dots, x^{n} = x^{n}$ then

$$c_{W}(x^{i}, x^{n}) \delta_{Xi} = \begin{cases} 5_{Xi+1} & \text{for } i < n \\ \delta_{Xi} & \text{for } i = n. \end{cases}$$

An easy computation shows now that $c_w(x^\circ, gx^\circ) \pi^\circ(g) = = \sqrt{\pi^1(g)} \sqrt{\pi^2 + p(x^\circ)}$.

Point b) follows from property i) of the cocycle $c_{_{\rm VV}}$, while c) is obvious.

We shall denote by H_w , $w \in U(\mathfrak{C}^2)^{\mathfrak{L}}$, the graded Hilbert space $l^2(X^0) \oplus l^2(X^1)$ endowed with the continuous G action $\pi_w(g) = \pi_w^0(g) \oplus \pi^1(g)$. The Kasparov bimodule determined by the isometry V will be denoted by $\mathfrak{F}_w \in \mathfrak{E}_G(\mathfrak{r},\mathfrak{r})$. The preceding lemma obviously implies the following proposition

qed.

<u>Proposition 2.</u> The above constructed family \mathscr{E}_{w} : $w \in U(\mathfrak{C}^2)^{\Sigma^1}$, belongs to $\mathscr{E}_{\mathbb{G}}(\mathfrak{C}, \mathbb{C}(U(\mathfrak{C}^2)^{\Sigma^1}))$. Its restriction to the point $w_y = 1$, for every $y \in \Sigma^1$, is the Kasparov bimodule \mathscr{E} constructed by Julg and Valette, while its restriction to the point $w_y = \mathfrak{T} = \begin{pmatrix} \circ 1 \\ 1 & \circ \end{pmatrix}$, for every $y \in \Sigma^1$ is $1_{\mathbb{G}}$.

<u>Remark 2.</u> Julg and Valette defined in [2] besides V the isometry U by U = VS, where $S: 1^2(x^1) \longrightarrow 1^2(x^1)$ is given by $S \delta_{(x',x'')} = \epsilon(x',x'') \delta_{(x',x'')}$, ϵ being $\epsilon(x',x'') = 1$ (resp. -1) if $d(x',x^0) > d(x'',x^0)$ (resp. $d(x',x^0) < d(x'',x^0)$). If we denote by s' the Kasparov bimodules determined on H_W by U we still get an element $s' \in \epsilon_G(\ell, C(U(\ell^2)^{1/2}))$. In this case 1_G corresponds to

7.

the constant function $w_y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, for every $y \in \Sigma^1$, while the restriction to the constant function $w_y = 1$ yields an element that obviously equals δ in $KK_G(\mathfrak{C},\mathfrak{C})$. Moreover, it is easy to see that their homotopy corresponds to the path $[0,\infty] \ni t \longleftrightarrow w^t \in U(\mathfrak{C}^2)^{\Sigma^1}$, where w^t is the constant function

$$w_y^t = \begin{pmatrix} (1-e^{-2t})^{1/2} & e^{-t} \\ & & \\ & & \\ & & \\ & & \\ & & -e^{-t} & (1-e^{-2t})^{1/2} \end{pmatrix}$$

for every $y \in \Sigma^{1}$. Note that the above matrices satisfy $\tau w_{v}^{t} \tau = w_{v}^{t} \star$ (see remark 1.)

It is easy to see from lemma 1. point b) that the Kasparov bimodules & are 1-summable Fredholm modules in the sense of Connes [1.], so we pass to the computation of their characters.

Lemma 3. a) The trace of the finite rank operator

$$p(x,gx) \pi_w^{o}(g)$$

does not depend on the vertex $x \in X^{\circ}$.

b) The trace of the above operator is equal to

y e[x,gx] ^{(W}y)1,2

for every vertex $x \in X^0$ satisfying $x \neq gx$ and $[g^{-1}x, x]n$ $n[x, gx] = {x}.$ If x is fixed by g; then the above trace is 1.

<u>Proof</u> Let $x \in X^{\circ}$ be a vertex such that $[g^{-1}x, x] \cap [x, gx] = \{x\}$. Using property i) of the cocycle c_w we get :

 $tr(p(x,gx) \pi_{W}^{0}(g)) = tr(p(x,gx) c_{W}(x,gx) p(x,gx) \pi^{0}(g)) =$ $tr(p(x,gx) c_{W}(x,gx) \pi^{0}(g) p(g^{-1}x,x)) = < c_{W}(x,gx) \pi^{0}(g) \delta_{X}, \delta_{X} = < c_{W}(x,gx) \delta_{gx}, \delta_{X} > .$

Thus point b) of the lemma follows from property ii) of the cocycle c_w .

To prove a) note first that if $x \in X^{\circ}$ satisfies $gx \neq x$ and $[g^{-1}x, x] \cap [x, gx] = \{x\}$, then every $x' \in X^{\circ}$ satisfying $[g^{-1}x', x'] \cap [x', gx'] = \{x'\}$ has to lie on the geodesic $[g^{i}x, g^{i+1}x]$ for some $i \in \mathbb{Z}$. Point b) then implies that

 $tr(p(x',gx')\pi_{W}^{O}(g)) = tr(p(x,gx)\pi_{W}^{O}(g)).$

This shows that the trace of the operator $p(x,gx)\pi_w^o(g)$ is constant on the set of vertices satisfying $[g^{-1}x,x]n$ $n[x,gx] = \{x\}$.

Let now $x \in X^{\circ}$ be any vertex and let $x=x^{1}, \ldots, x^{n}=gx^{n}$ be the path that defines the geodesic [x,gx]. If $[g^{-1}x,x]^{n} \cap [x,gx] \neq x$, it follows that $g(x^{2}) = x^{n-1}$. The properties of the cocycle c_{w} imply that

$$tr(p(x,gx) c_{W}(x,gx) \pi^{o}(g)) = tr(p(x,gx) c_{W}(x,x^{2}) c_{W}(x^{2},gx) \pi^{o}(g)) =$$

$$tr(c_{W}(x,x^{2}) p(x,gx) c_{W}(x^{2},gx) \pi^{o}(g)) =$$

$$tr(p(x,gx) c_{W}(x^{2},gx) \pi^{o}(g) c_{W}(x,x^{2})) =$$

$$tr(p(x,gx) c_{W}(x^{2},gx) c_{W}(gx,gx^{2}) \pi^{o}(g)) =$$

$$tr(p(x,gx) c_{W}(x^{2},gx^{2}) \pi^{o}(g)).$$

It is now easy to see that the last trace is equal $tr(p(x^2,gx^2) \ c_w(x^2,gx^2) \ \pi^0(g)) \ .$

Since G acts without inversion we may proceed inductively until we find $x^{i} \in [x,gx]$ such that $[g^{-1}x^{i},x^{i}]n[x^{i},gx^{i}]$ = $\{x^{i}\}$.

Proposition 4. The character of the 1-summable Fredholm module & is given by

 $\tau_{w}(g) = \begin{cases} 1 & \text{if } g \text{ has a fixed point in } x^{\circ} \\ T_{y \in [x, gx]}(w_{y})_{1,2} & \text{otherwise, where } x \in x^{\circ} \\ \text{is any vertex satisfying } gx \neq x \text{ and } \\ [g^{-1}x, x]n[x, gx] = \{x\}. \end{cases}$

q.e.d.

<u>Proof</u> We have to compute the trace of $\pi_w^o(g) - \forall \pi^1(g) \forall^*$. If we denote by w_o the constant function $(w_o)_y = \tau$ for every $y \in \Sigma^1$, then

$$\operatorname{tr}(\pi_{W}^{\circ}(g) - \vee \pi^{1}(g) \vee^{\mathbb{H}}) = \operatorname{tr}(\pi_{W}^{\circ}(g) - \pi_{W}^{\circ}(g) + p(x^{\circ})) =$$

$$tr(\pi_{W}^{o}(g) - \pi_{W_{o}}^{o}(g)) + 1$$
.

By lemma 1. $\operatorname{tr}(\pi_{W}^{\circ}(g) - \pi_{W}^{\circ}(g)) = \operatorname{tr}(p(x^{\circ}, gx^{\circ})(\pi_{W}^{\circ}(g) - \pi_{W}^{\circ}(g))$ and by the preceding lemma $\operatorname{tr}(p(x^{\circ}, gx^{\circ})\pi_{W}^{\circ}(g)) = 1$. This shows that

$$\boldsymbol{\tau}_{W}(g) = \operatorname{tr}(p(x^{O}, gx^{O}) \boldsymbol{\pi}_{W}^{O}(g))$$

which together with the preceding lemma concludes the proof of the proposition.

q.e.d.

Remark 3. The same formula (with the same proof) holds for the characters τ_{w}^{i} of the 1-summable Fredholm modules δ_{w}^{i} of remark 2.

<u>Corollary 5.</u> If $w: \Sigma^1 \longrightarrow U(\varepsilon^2)$ satisfies $(w_y)_{1,2} = \lambda \in \mathbb{R}$, for every $y \in \Sigma^1$, then the character of \mathfrak{F}_w is given by

$$\tau_w(g) = \lambda^{p(g)}$$

where $p(g) = \inf_{x \in X^O} d(x, gx)$.

きろ

<u>Proof</u> The proof is a straightforward consequence of the preceding proposition once we notice that $(\mathbf{z} \ \mathbf{w}^{\mathbf{x}} \mathbf{z})_{1,2} =$ $= \overline{w}_{1,2}$, for every $\mathbf{w} \in L(\mathbb{I}^2)$, and that p(g) is equal to the length of the geodesic [x,gx], for every vertex satisfying $[g^{-1}x,x] \cap [x,gx] = \{x\}$.

d.e.d.

Remark 4. In view of remark 3. the preceding corollary holds for the 1-summable Fredholm modules \mathscr{E}_{W} too. Remark 2. then shows that the formula obtained in chapter 5. of [3] holds for arbitrary trees.

Moreover, corollary 5. shows that without any assumption on the tree X.

金風

References

action on the associated tree" J.Funct. Anal. 58(1984) 194-215.

3. P.Julg and A.Valette "Twisted coboundary operator on a tree and the Selberg principle" J.Operator Theory

4. G.G.Kasparov "K-theory, group C^{*}-algebras and higher signatures"(conspectus) preprint Chernogolovka (1981).

5. G.G.Kasparov "Operator K-theory and its applications" in Itogi Nauki i Tehniki "Sovremenie problem matematiki Tom 27.(in russian)

6. M.Pimsner "KK-groups of crossed products by groups acting on trees" INCREST-preprint Nr. 69(1985)

7. M.Pimsner and D.Voiculescu "K-groups of reduced crossed products by free groups", J.Operator Theory, 8(1982), 131-156.

Se.

8. J.-P.Serre "Arbres, amalgames, SI2" Asterisque 46(1977)

13.