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COCYCLES ‘ON TREES

by Mihai V.Pimsner

Tet ¥ Dbe an oriented tree, endowed with an orientation
preserving action of the locally compact group G . In their
paper [2] , Julg and Valette constructed in a geometric way
a Kasparov bimodule %e ﬁg(@,@) - [47] and showed' that the

class of ¥ in EX,(C,€) coincides with '1 s the unit

: : G
of the ring KKG(ﬁ e They achieved: this by exhlbltlng a
nomotopy ® i be ook Lol iae an element im
(e, (Lo,e1)).). such that ¥ and ¥, = 1. .

If 3 :,Fn is the free group on n~fen erators actlnv on its
‘natural tree, the Kasparov blmodule‘$ reduces to & ‘construc-
tion done in [7) for the computation of the K-groups of:

the reduced crossed products, by Fn . Morebﬁer, the fact

that ¥ = iFn was needed‘in.order to carry owver the abpve
‘computation. (. To Be more specific-one needs that ‘jr(rv)

is the identity in the ring KK(ﬁnbcrA,Fnr:rA) , Where

ip ¢ KK (£,€) iy KK(G® A,G% A)  is the map defined by -
Kasparov in [47 2nd [51. (see 161) ). Lacking G-equivariant
KK-theory, most constructions in 171 seem. complicated and
unnatural. ’ ;

The aim of this paper is to show that the homotopy
exhibited in [7] for the: free group, can be naturallv con-
structed out of the tree X . The idea th&t was behind thls
homotopy is to perturb: the action of’ G “on the vertices of
X Dby an explicit cocycle, so we construct the cocycle first.

This leads %o a contlnuouo family $v, of Xasparov bimodules,

¥

with w :(wv) running over the direct product TV I (2) of
N = carag? covjies of the unitary group U(2) , where gl
is the orbit space of the edges of X . If w = (wy) is the
constant N-fuple w =1 we ﬁyt'f$“f: & =nd if W onds
the transovosition patrix T (2 o ) for every y e b y We
get tw = 1G . The explicit Pno'ledwa of the .eocycle is

useful for computations. We illustrate this by computing the
claracter of the A-summable Fredholm module X‘W 21 This
simplifies some of the computations of Julg and Valette in Lj]
and shows that their results remain.true even if one drops the

condition that the tree’is uniform locally finmite.



R g ' o : ‘ -
Tet X  denots the set of vertices of the tree X .

v

By an -action of the loeaglly compact group G on X , we

shall mein o continuoué_actioﬁ kix?f) -¢‘ KO ,.denoted
(g,x) > gx , that nréseryes the natural distance d on
x° . This determines a ZQQtinuous getdon - lg,miies gy . of
I " \,fL V

G -on "% , the set of edges of the tree X . We shall dencte
by S5 ¢ %X a fixed transversal for this aefionm of G
on X, that.is a complete system of representatives of the

P ?

orbit space” e , @nd we shall denotie by ﬁ»e-ii the

: : 5 : £
class"of the edge ~ve¥X . The set ¥, of oriented edges

will be identified with/ the pairs (x',x"). of wvertices such

H
i S
b
N
=

tha't. dlx'cxr )= L If ¥ is en oricntied edies v
we shall denote by F the oriented edge (x",x') and by

iyl the (unoriented) edge determined by y . We shall also

fix an orientation of the tree, i.e. @ cross-section of the

i s ; 4 S <7
map. ¥ 3y v A¥le X, and consider X~ &g & subzet of Y .
We shall moreover assume that the action of G presérves:
this orientation, that is the action of G wom Y leaves
4 o e " :
X invariant. 1o -x',x" ek are two vertices we shall de-

note by [X',x"] the geodegic. jpining, x' wigh . X" . e

shall say that the oriented edge y Dbelongs to the geodesic

~

]

n

f i (‘V':L Xlu"*) ,}:\_a,o"}‘: ::X”

. % 5 ~ N 3
Buv w0 ] o4t v asef ahe ferm. yo= (X e

being the path that defines this geodesic.

("f

Definitisn : Suppose that wmw: G —» L(H) is some

unitary representation of the group G on the Hilbert svace

B . We shall say +that a Tunction



ig a.coecyele on X  for &« , if ¢ gatisfies thedollowing

conditions >

Toriavery " X, X ;X & ek

g St o g ] ‘ o
Note that if we fix a wvertex x° , then the function
: o) 0 ;
g c{x ,2x")
is a unitary representation of G on H .

The cocycle c¢ on X is completely determined by its

4 = : : 7.
values on Y. . Belshail o cell-the yrestrictionset o to. %

oo

the generating funebion of the coeycle. It satisfies

e(y) m(g) = m(g) cly)

-
for every g in the stabilizer of the edge. v , and every
. unitary valved, Sl
ye 5 . Conversely, every'function ¢ & L —3 U(H)
with the above property determines & cocycle on X for #
atidill denoted by ¢ , for properties  4) and  J)eiuniguely

determine c¢- on the set of oriented edges and since X is

a tree, properties ‘1) and 2) -shew that the value

a5l SEel
8 y X )

, e : bl n
the. particular path DB e

4] n

with Tixed end points  x 7 and. 3 .

does not depend on

¥ R et L ,
is & cocycle for T , that is gvb c(x ,gx (g

s



He ghal J conastruet now a particular class of cocﬁcles
o8 -k for the resent Y oan u(1%(%°
{ A ¥ ne. repres sentation prag o Ax sy U(l (,‘: ))
induced by the action of G on i

o Pt A Ces el i e o nu

If ueU(C") dis & unitery matrix and (z20,%x") is an

oriented edge, we shall denote by

the unitary defined by

4

¥* :
Vuay e less UV

Lt

it

Q(X',X”)

e

, 2 ps0 ; : b =
where v = v(x',x"): £"—>» 1°(X"). is the isometry defined

v(ie,) = &

on the basis of ¢ by vie - : ,
S . : ﬁ) gx* ’ 2 xn

If w=iw.) , ye Zﬁ”, is a card £1~tuple of unitary

matrices belonging to U(£°) , we shall denote by
et BLLELEY)

A

: A f. e iy 0 . ;
the cocycle on ¥  Tor the renresent&tlon T, given by

: g e a o g :
the generating function ¢ ¢ i. — U(1 %) defined

w7
o oy = (" e 1 by

ol

C,(}'-) = VJ"/(X"}"”)

Vv
¥

.

{L)

It is easy to see that if we extend the funection

' i i B o
w9 T e (1) to all oriented edges by

: el
W o= Wa ~for. yelX

* ; o el
Worm L e 7 oy v T

. . B dF scih 0
(- being tane transnosition matrix (R 5 , then the value
T

of e -is given on every oriented edge v = [x'yx") by



)
Remark 4. If we fix 8 unitary matrix we U(%") such

that =i

i

% o
w- , then the formula

Fou S AR e L

W

defines the cocycle corresponding to the constant function

o

: 1 : q
for every ye L~ , without any reference to T .

W= W
W Wy

Let us record for furtheruse the following two straight-

-

forward properties of the cocycle Co. *
, %

¥) 3£ xv,xY .o are arbitrary wertices ol e fPed X
and p(x',x") denotes the orthogonal projection on the

spzce spanned by the vectors {SX Yo% e[?',x“]& y Ghen

plxt, x*) commutes with . ¢ (x',x") and
e s W 5 /

ol 2, 1) cw(x‘,x”) o oo plat gt eue (b 3l

i3] ‘ I,f bl l Ae[onq.p fo K(: fhen: . . *
Ce it xS = TE e

:‘,'T&LX' ,XHK Vo

‘where (w ) ig.the - A,2 -epfry of the matriz W .
ARt TE 9 y

2 hs €

' R g : 4 Tan & X
Tet now “x € X ' be a fizxed origin of the free X .

% ) . ; . - - 3 O 5 .
Definition We shall denote by X The unitery repre-
: e ¢ SRR, g ek '
gentatidn of G om o 1°(X") . defined by



o

N : : e D = :
Tr-the esguel - 10X J =l ) will denote
the isometry defined by Julg and Valette in. [27 , induced
N7 1 ‘ne ey e - 3! e i " 1ro O it : : o
by the map that sends each vertex xe X ~ix Y to the
(unigue) edge vy that has one extremity x and lies on

: . o
the geodesic [x,x 1

= B o
Terma 1, &) If w ¢ % ~—2 ULT) is the constant

e . : . 4 0 )
fometion W= 4-, Tor eyery yé& L , then e e,
Vi

: s : Bl She
It w18 the constant function W= T = (1 o) s then

B W10 (]

T

2
y Ri(g) V" o+ p(xo) , Where &

~

2 0O
~~
[hib}
g
i

is the unitary representation induced by the- action of G

«‘l R 7Y A ,O\ ook s e . 3 3 ; il % =
on X , and p(x ) is the orthogonal projection on the
space £ SXO o

o) o) Qv Oy )
b)Y mo(g) - T, (e ) p( vex JE () - &, (8]
X q Gl =
for every w,w' : L7 —a U(L") and every g2£eG .

¢) The function

‘.U(Eg)z 2 Wi 7,(2) e T (0 )

is norm continuous for every geiG .

Proof a) If w. =%  forevery ye E  then id

is easy to see that
3 ~ 1 " i - ~‘5"‘ - ~ 1 17
( Y (»‘ ? ) SX = S x 1L x # CW ¥ ]
e - oo s L A 7o
whaskesad so ke % belongs to the on°<lo D@ R e e o



~

g ” oyl

6.1 fer = R,

Vi

, E ; o) ol 0 :
An easy computation shows now that ¢ X sue ) B g =
J’O »

?'
= Vamle) Vo op(x").

Point b) follows from propverty i) of the cocycle

e cowhile e©) is obwieus:

VY

¥e shall denote by H_, we U(® ;

+ o the wwaded Hilbept

L oo e q e : .
gpace I (g 1 endowed with the continuous G

: 7 2
Yo N g) 7= (g) . The ¥Kasparov bimodule

’v'i *‘

action T (g

determined by the isometry V will be denoted by XW

The preceding lemma obviously implies the following vproposition

1

Proposition 2. The above constructed family ¥ _ ,

ﬂ 2 Ve %
e R P o Sty e
welU(D%) , belongs to és(@,c(u(w") ¥y o 1be vestrietion

to the point w, = 1 ., for every y €L , is 4he Kesvaroyv

bimodule ¥ constructed by Julg and Valette, while itse -

o : : : ' o4 ; ’
restriction to the point w = € = 7 o) ol every yie ZL

A R et
\r

Remark 2. -Julg and Valette defined in [2]1 besides V

; . : il e 3 SR
the deometry. -0 by U =8, where 5 3 104

is given by S 5, =l gt ) g( £ beingA

&,.K',X") Xl’xu) 7

Elx" ;xn) & d Arespei~% Jdf d(x',x°) » d(x”,xo) (resp.

0 0 L ; i L
d(x'yx ) & d(x",x ) )~ If we denote by y' the Kasparov

Vi

bimodules determined on -H, by U we Bt1ill get apn.elenent
> W

:v-) I:. 3

A\
i

g
e
s
Lo
%
2]
ct
G
B)
L&V
U
D
3]

14 - corresponds 1o

- L%



does not depend on the vertex xe X .

the constant function - w

Hi

R

.

the restriction to the constant function W= 4 vields

(Mi %) : fcr‘@very vV e Zi, while

an element thet obvionusly equals & dn ¥ 0000 . More-
) ¥ =

over, it is easy to see that their homotopy corresponds to
7

e ~ = 4 't ] 2 Z g R 't 2

thepath - lewe) 8l b w € U@ ] . where w' is the

constant function

(o lle et

5 4o : T Al . p
for every yve L~ . Note that the above matrices satisfy

'C Vi -5 = Wi

2]

%

(see remark 4.)

il o

b

It is -easy to see from lemma 4. point b) that the

Kasparov bimodules ?W are “fl-summzble Fredholm modules

in the sense of Connes [41.] , so we pass to the computation
of their characters.
L

Lemma 3., a) The trace of the finite rank operator’

o]

b) The trace of the above overator is equal

T}"J.ﬁf s.‘e '<"ﬁ'5\? )ﬁ 2
& [x,2x] ol

o =g

N7
i



) e : e :
for every vertex x eX srtw ifying % A g% 2nd [W x,x]rﬁ

gl exl = 3%t If..x "i¢ fixed by & then e ahove troee

2 o <D .
Prpof et xeX e @ vertex such that Tg y x1n

n L“,& = §xt. Using property i) of the coeyels Cw.
3

we get 3

trip(x,ex) T (E)) = Srip(x.gr) ¢ (x,ax) plagex)m 2(a)) =

o o R :
tr(n(x,8%) o, (x,8%) ®2(g) 0(277x,%)) = <o, (x,20) () § .8

L

= (D (Y gx) Sf’”X y g}(} J

Thus point b) of thé lemme. follows from property ii)

o shhe. coeyele ~e .,

W
. : -5
Mo pirove: - ab) gioshe - fidat that 4l weX satisfies

gx £ x and [gaix,x]rwtv,gxl = §x}, then. every x'eX°

9]

atisfying [ﬁvix‘ x'To Ix',ex']=fx't  has to lie on the

h

: ; i+ x ; : T .
geodesic Lg ¥, %) for some i€ W~ Polnd 1) then in-

plies that
pte e Z.(8)) = tr(p(x,ex) T (8)).

This shows that the trsce of the operator b(?,@?)?t ( ,,,,,

is. constant on the set of vertices mutlni‘lng T M,A]:\‘
e,
. ) S ORE O e e Coa ‘
et now. x€ X" be guny veriex énd deb X=mso s x gy
be the path that defines the geodesic [x,gxY . If L& x,x1n

/) : i T
that glx%) = 2 1 . The

1451

il g ) A vx a8 follow

propertises of the cocycle e imply tha

o

7



2 iy
Joolx,g8)ie (5 ex)  (2)

(5]

Fod . 2
Cle el e e

telplz,ax) ¢ y X 2] .

is now easy to see that the

'S

@ " & /'
X

s (pla et ) o (% ex ) me))

pifices G aet e

s witnout inversion we

S T e 3
until we find x~ & [x,gx7 such that

Proposition 4. The character

module is given by

5 127
(k]

if

o

o i

y € Ix, 2

g

last tresce is equal

may proceed inductively

SN ) i
[{; X X _.In[_x y £ 1

X

the l-summable Fredi

et

of

bag arfizeddpoant 1n X

is any vertex satisfying gx £ x and.

L

Proof

5
Y
LN

fmi

~h

ve denote L5

eVvery

for

the counstant function (w

xyxdmlxyenle dal

)

Qi 5

.

0

nolm

y
&

e w0
otherwise, where x eX

B A = : o) il
Ye have to comnute the trace of 7w _ (g) - V n (g)



uiv

selr (e » @ (g]) &4 .
< v
By lemma 1. “srl{m (g} -z (g)) = wrlplx®,ex2Mn(g) %2 (g

O ) O
. () = tr(o(x",8x") T _(8))

Py

which together with the preceding lemma concludes the vroot

of the proposition.

deeds

3. The same formula (with the same proof) holds

for the chsrscters <! of the 1-summable Fredholm modu-

Tt 5, T
— U(1°)  satisfies

' &
- ) 3¢ " «L ) -
(w_) =k e W for every vy e S, then the character

o v is given by

Proof The oproof. is a straightforward consecuence of

the preceding proposition once we notice that (% w

. fov every weL(T) , and $het pla)e is equsl

Hi

geodesie Ix,gx]l, for svery vertex

satisfying {g"mx,x3n Ix,ax71 = f gl

e
-
o
=
~
1]
ey
[§0]
=
et
L
O
1%
{27
on
D



B L R e

T

nir

x 4. In view of remark 3. the preceding corollary

holds for the 4-sums Fredholm modules ¥ ! o0 .. h
4 LI

then shows that the formula obtained in chapter 5. of [3)

o ]

nolas for arbitrary trecs

T ; Tufz a,&m{ja[e“if.‘aif

oreover, corollary 5. shows that VA results of - [37]

-econcerning the Selberg nrinciple are true without any essump~

tion-on-the tree X
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