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" ON DUALITY AND STABILITY OF PARAMETRIZED

OPTIMIZATION PROBLEMS AND RELATED TOPICS v
Ivan Singel

Abstract. We present a survey of some of our contributions to the theories of dua-
'{lity and stability of parametrized optimization problens, conjugations of functionais,
and generalized convexity. We place the survey in a historical framework, giving an ins
‘troduction to some of the ideas in these topics and chowing also some related develop-

ments. :

t 1. In his monograph of 1976, at the end of the introduction to the chapter on dua- i_
ility, Avriel (L31, p.106) wrote: vp,ittle can be said about duality in general nONCONVEX
“vprogramning, for. this subject is at about the same stage as Comvex duality was in the |
“_early 1950 s. A few works on the subject exist, such as..., but results are not very sa—‘
%tisfactory. .." Also, in the introduction of their paper of 1980 on duality. Jefferson
‘.»'and Scott ([36] ,p-519) wrote: "An essential concept in the analysis of mathematical pro—,
:’grams is the idea of duality. This has furnished new approaches and interpretational jn—l
ésights and has provided the basis for many powerful algorithms. To date, most of this |
étheory has concentrated on convex nathematical programns, whereas the vast spectrum of
inonconvex prograns has remained relatively untouched. . I onaEhe other hand, in the Ab— |
Estract of his paper of 1977, Balder [4] wrote: "By an effective extension of the conju- 5
;igate function concept a general framework for duality—stability relations in nonconvex ")
%)ptjmization problems can be studied.s.". ‘
= The aim of the present paper is to present a survey of some of our contributions to
l;t:he above mentioned tOpPics, i.e., to duality and stability theory of parametrized Optilm':‘z
ization' problems, and to the theory of conjugations of functionals. We shall also mentionl:
‘some of our related results on generalized convexity. We shall place this survey in a ,

bistorical framework, giving an introduction to some of the ideas in these topics, and

-t

";showing also some related developments (naturally, from a subjective point of view). .{

In order to keep the paper within a reasonable size, We shall simplify some parts

£ the presentation (where it would have been toO technical to glve more details) . Also,%

—y—

we shall omit deliberately many related subjects, e.d- Lagrangian functionals (for their

}

:general definition, see (823, definition 1.1), minimax theory. e—subdifferent’lals, cha- ’?

racterizations of solutions, local optima, etc., and some particular cases, €.9«: semi~ a-

E{Lnfinite optimization, gifferentiable optjmization, discrete optimization, etc. We shall
concentrate especially on explaining the developrent of various concepts, methods, and '
their connections, rather than on stating or proving theorems. Tnstead of aiming .at com-i

!
pleteness of bibliography, we shall only give some samples of references. We hope that

the present paper will offer a picture of some recent developnents and will stimulate
ifurther research. ' |
9. et F be a locally convex space, G(#P) a subset of F and niF-Rel -, +=], and let

us consider the (global, scal_rar) "primal” infimization problem

®) . o=inf h(G)[=inf hiy) ], : ‘ 2.1)
: . yeG '
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crbedded into a famdly of paran\étriééd (or "perturbed”) infimization problems

.lral perturbation functional" ((671, [681)

py  £bosmEply ~ o),  (2.2)
: yer

where the parameter set X is @ jocally convex space and where the parametrization func-

tional piF X %R satisfies : f

_{ny) if yeG
| ol AT e , (2.3)
by (2.1)=(2.3), We have ]
| |
‘1 =inf ply, 0=E(0) e
| yeF ? &\

‘ The functional £:%-R of 2.2) called the oEtjmal value (ox, the"prjmal", or the “max';
{ginal“) functional, 1S of great jmportance., gince it shows how the optimal value of pro—;
blem (P X) varies when the parameter X yaries. AlsO: the pmperties of the functionals p,;,\
:f and IXg are intimately relmated, where Xg genotes the indicator functional of the set |
,‘G (i.e.s xG(y)=0 for yeG and =t* for veF\G) sndihere =t : \
’ There also exist some other parametrization schemes. FOL example, instead of perturb-“
:“ing the objective functional h of (®), by {2 .2); 00e. CET perturb the constraint set G l
Pf (), embedding (p) into the family of problems

x (BL) £(x)=inf h(y) ' : : (xeX), (2.5) ‘,

1\ yeF (X) ; \I
i . |
‘-yvhere % is a locally convex space and F:X*2F (where oF denotes the collection of all 1
‘subsets of F) is a mul tifunction, satisfying g |
{ , ; . |
r(0)=C- @6 |
\ ~ \
|

\

]

However, this scheme turns out to be a particular cace o (2e2) By taking the "natu-|

hiy) if yer (%) : ; 2.7

1

!

“ p(yr F=eo G yeF\F(X). 1
. 4 |

Furthexmore, One can perturb poth h and G, embedding (@) into the family of problems |

\
‘z

W) f)=inf P ¥ : (x€X) s (2.8)
‘\ yel (%)

|

put this tarns out to be a _particular case of (2:2):p- by taking

_fply, x) if yer(®) 3 (2.9)

|

|
| |
i ; |
! 3 p' (y' X) oo if yeF\\F(X); 1‘
x_ : |

for some further relations between these schemes, 9€€ [68] and (771. In the sequel we
“ shall consider only the embedding schene (2.2)—(2.4) . For a more general “semi—anbeddincj'

1

lqscheme, see [75); §6. |
o

3, The Lagrangian dual problem to (p) relative o the param?etrizati'o_g (X, p)s in the

‘gense of Rockafellar [57] (see also [281, (551, [56) Sng LT s by definition, the

supremizat'lon problem
Q) B=sup AKF) (3:1)
where X* is the conjugate space of %y endowed with th_e'Weak* topology and

Vw10t {p(y,x)—W(x)} (wexX*) « (3.2)
(y,x)eF XX



T IR A ]

Actually, in the formulation of (571, there ig () instead of ~w(x) in A of (3.2) +
which yields the sare value for B EAEL ) s shall find it nore convenient to use
(3.2) apove (following €-9- [191). This definition of a dual problem tO (P) has turned
out to be very useful, since it has yielded as particular cases (L.€¢ for suitable choi~
ces of (Xi p)), the nagual" dual problems o various concrete problems ®) (@efined, j.m'.—'
tially, in & direct wayr without perturbatj.ons) . as well as some "hew' dual problems to

them (see €.9- E570). Eor @i exanple of recovering the "usual” dual problems with this

nethod, let us consider the convex programming problem : -5

(®) o=inf_ hiy)s . @) o

I - ; ';
o4 . YER !
i : ~uly)=0 : |
'where w:R" LR® and n:R=-R are convex and < is understood in the sense Of "the natural ?ar—-
ltial order of £ this is the particular case =R, o= yeR uy) <0« of (2.1)- hen tak- |
ing xR and - =,\

-,_ _fnly) if e xeR july)s :
xl\ ; e L i e @ |

'one can compute (see €:9- (571, P»23 9 1193, p-64) that A of (3.2) becomes the "usual"
‘dual objective fmc’d_onal i

i )} we @, w20
! AN if we (B *, w20,

\ ; Z .
where w>0 means that w(x)20 for all xeX=Rm, 0. Note also that £ of (2.2) becores now

| g)= inf B : (xex=E . (3.6) z

\ y
\ uly)sx

(3.5) |

‘ 4. A major observation has been that A and g of (3.2) ¢ (3.1), can e expressed with

iithe aid of (Fenchel) conjugation. wie recall that the conjugate of a functional (D:X—'ﬁ is |
f}iue functional @* 1 X*R defined by

‘ o (W)=Sup fw(x)-0(x)} . e Y
| : x€eX

| : 3 52

jthe second co_n_jugate of © is, bY definition, (p**=(cp*)*:X~>R, i.Cer
@ (%) =5Up i (%) —o* (W)} (%€X) « (A2 )
li WeX*

i

e

Tt is easy @ compute (see e.g. (57 [191) that

|

A()=p* (0r W) wex®), (4.3)

where we use the canonical jdentification F*XX*Q— (FXX)*, given by

e el (g, W=viy)twx) : (v, W eFFX¥*s (¥ geExx); (44
"also, by (3.2) (2.2) and (4.1), we have - : \

N | (4.5)
e b 2 D) e e _ vi

g=sup inf {f(x)-w(x)}=sup(—£*) (xx)=£** (0) - (4.6)
wex* xeX

The importance of the above observations lies in the fact that they permit to use the
well~deve10ped machinery of Fenchel conjugation to study the dual problems (3.1) (3.2) -



For example, by (4.5), A is ‘always concave and w*—dpper semi-continuous (this also fol-
lows from (3.2)). Furthermore, since for any o:%-R there holds @@**, from (2.4) and
(4.6) we obtain ;

| ng. ‘ 3 (4.7)
(this follows also directly from (2.4), (3.1) and (3.2)). Also, for any @:3-& we have
(see [23] and formula (11.13) below)

‘ PF*=p< (4.8)
the closed convex hull of © (i.e., the greatest closed convex functional <p; we recall
that a functional (:X»R is said to be "closed", if either ( is lower semi-continuous,

nowhere havmg the value ==, or § is the constant functlonal -x) . Hence, by (4.6), we ob-
tain |
{ ¢
% p=f.5(0). . : (4.9)

! . Tormlas 45) and (4.9) are called in [57], p.19, "the central theorem about dual |
problems", Indeed, let us recall that the most useful cases are when weak duality holds
é(i.e., a=B), or, when strong duality holds (that is, o=p and there exists a "solution"
dl)f the dual problem (Q) of (3.1), (3. 2), i.e., a functional W €X* such that A(w )

-sup A(X*)=B; in other words, we have a=B,. with sup replaced by max in (3.1)), since then
often the "solutions" of the primal problem (P) (i.e., the élements 9,€G such that h(g =
—mf h(G)) can be found via the dual problem (Q) (see e. g. [57], pp.4- 5). Now, from (2. 4)

and (4.9) we see that weak duality orB is equivalent to the "stability" relation £(0)=

i

_'-f.“(O), hence, in particular, when p of (2.2), (2.3) is convex and ce=£(0) is finite, we:
J’Jave o=B if and only if f is lower semi

~continuous at 0 (see e.g. [19], p.50, proposition
2.1).

Also, it is known (see e. g. [571, theorem 16 or [19], ps50; proposition 2.2) that
st:cong duality holds if and only if the subdlfferentlal of (0)

of £at 04s. non-empty,and _
then 3£ (0) coincides with the set of all solutions e of the dual oroblem Q).

quel for brevity,
Stablllt\/,

In the se-
we shall concentrate only on relatlons between weak duality o=g and

and we shall not mention the corresponding results for strong duality, involv-
:Lng various concepts of subdifferentials (e. 9.,"quasi-subdifferential"[341, [93], '
gio—subd_lfferentlal" [69], "semi-subddiferential" [721, [75]1; ete.) of f at 0 i
X The equalities (2.4), (4.9).are also useful when (weak or strong) dualltv does not
.hold, since they lead to formulae for the evaluation of the ;
} : ] Y=a-B; | (4.10)}

'pseu-

"duality gap"

for results of this type, see e.g. [2],
[ D iAS shown e.g. by the above mentioned characterlzatlon of weak duallty o=B, the
dual problems (3.1), (3.2)

§
|
i
|

are useful espe01ally in the convex case. However, the assump—
thl’l of convexity is too restrlctlve,

deals with infimization of quasi

for example, in mathematical economics, one often

—convex functionals. Therefore, it has been necessary to
develop more general concepts of dudl problems.

For problem (3.3), with uw:R™R" convex and hiR=R g quasi-convex, Luenberger [41]

has considered the dual problem (3. 1), with the dual objective functional A: (R™)*»
-R defined by




S o

inf_ h(y) if we(®) *, w20
veR
w(uly))=<0 . :

A= o if we(Rm)*, w20, : (5.1

and has used it to construct a theory which parallels the results on the dual problem
(3.1), (3.5) for convex h. The main difference petween (3,5) and (5.1) is that in (3.5)
the "penalty term” wu(y)) is added to the objective functional h, in order to "compen-
sate" that the constraint set of (3.5) is F (instead of G={yeRn|u(y)sO}),,while in (5.1),

wuly)) is used to form new constraint sets
fyeR 1w (u(y))<0} (we (R *, w20, (5,2

‘for the unchanged objective functional h. Also [4a11,x» of (5.1)is quasi-concave and upper
semi-continuous. The constraint sets (5.2) have been introduced initially by Glover [29]
for 0-1 integer programuing and have been called (see e.g. [297, [301, £320) surrogate

constraint sets; also, problem RS RE B called a Surrogaté dual problem to (P) of

(3.3). Note that, in the above case, the sets (5,2) are convex and they contain the =

tial constraint set {yeRnlu(y)sO} . More general surrogate dual problems, involving surro-—

gate constraint sets and penalizations in the objective f_unctional, have been introduced
in [32]. :

Greenberg and Pierskalla [33] have observed the following obvious connection between

the Lagrangian dual problem (3.1)., (3.5) and the surrogate dual problem (ol oel)n D
(P) of (3.3): we have : :

o=p_ . TSUp inf h(y)z ‘ | | 5‘ :
% SWT o (RY* yeR' : |
| w0 w(u(y))<0 ‘\
| n =i int SRGEEEIE 5.3) |

w20 : ‘ ‘

|

| ;
pence . for the corresponding duality gaps. we have 3

]
1 < S D : :
i,. Ui BsurrSYLaqr—a BLagr ’ (5.4) |
hnd thus, in particular, the equality o=Bg holds for a larger class of problems (3.3
than the equality OL:BLagr' For evaluations of the "surrogate duality gap" Ygurr of
(5.4), see e.g. E155 : .
' Let us note that "surrogate ‘quality" is useful even for some convex problems for
which we have o=f (whence also =B ). Indeed, fOor example, if F ig a nommed lined:
Lagr surr ‘

;space, G a convex subset of F,; yer'\a (where G is the closure of G), and ‘
hiy)=lly,y' : (yer) (5.5)
(which 1s.a finite, CONVEX, continuous functional), then (2} of-12:1) pecores

(P) o=inf llyofyl\ =dist(y,s G), ‘ (5.6) |
yeG

for which it is known that

o=ax dist (yo, D)=max inf h(D), ~ : (5.7)
DeD Del
GIYO GIYO




R ok

where DG v “denotes the collection of all support half-spaces D={yeF\w(y)zinf w(@3 26
r
o

(OFWEE*) s with yO;éD. rormula (5.7) used in approximation theory, may be regarded as a

formula OFf " gurrogate duality" o=Pgipr! with surrogate constraint sets Del, - and dual
Iy

variables ¥ (see e.g.L77] and the references therein) e

gurrogate dual problems are also convenient for computations; for some recent re-

sults in this direction, see€ e.g. r18l, [61]. |

: 6. Due to the importance of Fenchel conjugation for tre study of Lagrangian duali-
Lty, Greenberd and Pierskalla [34] have introduced a new concept. of “quasi—conjuqation",

\“as‘a tool for the gtudy of surrogate duality. :
“ For any locally convex space Xr and any CD:X—»'ﬁ and veR, the ! first v—ﬁsi-conjungt_e“
‘gg @ is the functional cp\\{):X*»'}i defined [34] by ' :

cpj)(w):v—inf o(x) ; (wexx),  (6.1)
xeX !
‘ w(x)=v ;

the second v—ggasi—conjugate of @ is the functional (cpY)Y:X—:Ii defined."[34] by
! o ‘ T Y

v
| (@Y o=v-inf oW G 6.2
= V'V v -;
! weX* 1
i w(x)=Vv i
\ ‘ ; ‘
, |
‘and the normalized second ggasi—conj'ugate of @ is defined [34] by \
oN=sp (@) %R. (6.3)
: o ; : |

Greenberg and pierskalla [34] have shbwn, among other results, that for any cp:X»'ﬁ
| |
g o @020 . (6.4
‘ VER : , ’;

\ :
‘where ok, oF* are the Fenchel conjugates (4.1), (4.2), and that

| g @tlD) (6.5)
\1\ surr ! : 4!
where Boder and £ are those of (5.3) and (3.6) respectively.

1

\ ILet us also mention that a more ‘synmetric approach to "quasi-convex conjugation“, :
‘and applications to duality in _quasi—oonvex optimiza’rion ; have been glven by Passy and
‘Prisman ({513, [521); for a different approach to conjugation and quasi-convex duality,
see also Flachs [271. In the sequel ve shall consider only the quasi-conjugates 6.1)- |

bie. )

7. The construction of a duality theory for quasi-convex infimization has been COI
itinued by Crouzeix ([91-1111) 4 who has replaced problem (p) of (3.3) by the general pri-
mal problen (P) of '(2.1), embedded into & parametrized family (2.2) (instead of (3.6))+
‘:with the aid of an arbitrary p:FXX—»§ satisfying (2.3), and has defined the surrogate
dual Eroblem relativé to the parametrization (X, p)r @S the supremization problem (0))
'of (3.1), with

Alw)= inf - plyex) (WeX*) i (7.1

(y,x) EFXRZX
w(x)=0

the main difference betweenh. the Ms of (3.2) and (7.1) is gimilar to the one between

(3.5) and (5.1) ¢ mentioned after (510 Taking, in particular, problem (p) of (3.3)¢

i
A
1
t

e e ERTTREETT
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ambedded into the parametrized Gy e ibiseasy B0 Sompute [91 that A of (7.1)
reduces to (5.1); on the other hand, for the best approximation problem (P) of (5.6} 10
a normed linear space F, taking X=F and p:FXF-R defined by

oy, x):{\lyo—yl\ if yeGtx : (7.2)
\ 4o if YEGHX, :
one can campute (see e.g. [74], theorem 3.4, applied to b of (5.5) above), that g of
(3.1), with A of (7.1), becames the right hand side of V(5.7) ,with max replaced by sup-
' Furthenmore, Crouzeix [9] has shown that A and p of sl (3,1) can be expressed
With the aid of the Greenberg—-PierskalQ_a quasi—-conjugates (similarly t© tﬁe case of A
md poof (3.2} (3.1) and Fenchel conjugates) , namely,

x<w)=~p{yo’0)(o, w)==£} (W) Sm O
g=sup inf £ (x)=sup (-£1) (x%)=£77 (0. (7.4)
- wex* xeX : = 1

w(x)=0

where yOeF is arbitrary. Hence, Aof (T51) 1is always quasi-concave and w*—upper semi—con-

tinuous, and the inequalities (5.4) remain valid in this general case (by (6.4))

& 8. The next natural question has peen whether weak duality o=B, with B of )it
is equivalent to a "stability" property of problem (P) relative o the parametrization
i(X, Dl L<euy whether o= holds if and only if £(0) coincides with. the alie of a Mmall!
of £ at 0 (following Moreau (471, p.149, by a il of f is meant the fanctional - if it

exists - which, among a given set of functionals, is the greatest minorant of f). More

%generally, it is natural to ask s

Question A. For any q):X—:P:, is (pYY some hull of ® (i.e., does cpYY satisfy a rela-

ition gimilar to (4.8), with 0z replaced by a suitable hull of 0)? g
Tn this direction, Crouzeix [9] has shown ‘that, for any ©:%R we have l

i
i

| !
qﬂqﬂo qu(s(p) 5 (8.1

i_/vhere (.pq is the lower semi-continuous quasi-convex hull, and @ is the quasi—convex hull,
of «; hence, in particular, FE @({'{p (i.e., if o is quasi-convex and lower semi~continu-

etts), then (pq=(DYY=(D =p. In the general case, rather than answering question A, formula

;(8.1) has suggested, in view of applications to duality-stapility relations, the follow- i
' ing further questions: A i
‘( Question B. Is there a concept of "conjugation” such that, for any @: %R, (pa coin-
cides with the "normalized gecond conjugate" of @? : :

Question C. Same as B, with q>Ei replaced by q)q. any conjugation with this property
is called [45] "exact quasi-convex conjugation” .

An affimative answer to question A has been given, independently, by Martinez=
Legaz (1421, (431 and Passy and prisman [51]1, who have shown that, for any (p:¥%~R, we ha

ve

S : (8.2)

eq

where @ is the "evenly quasi-convex hull" of ©i we recall that a function P:x-R is

said to be evenly quasi-convex (511, if all level sets

'Sc(kb)= (xeX | (x) <c} (ceR) (8.3

‘{:\




i
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of b are'evenly convex sets; in the sense of Fenchel [261 (i.e.r intersections of open

nalf-spaces) . From (8.2) it follows that for B of (7. 4) we have
B=feq(0), (8.4)

(which corresponds to (4.9)), and hence weak dua duality o= 1is egulvalent to the stability
lelatlon f(O)—f (0) (where £ is the optimal value functional (2.2) )
In connectlon with question B, et us mention that Crouzeix [9] has mtroduced,

for any q):X»R and VeR, "another \)—quasrconjuqate" @i.x*»R, and has shown that

. (*=sup (p v (Da—ll’lf (q) N* ' : (8.5)“
: VeER eR : !

Whefe o*, (@ )* denote the Fenchel conjugates (4.1) of o (pC respectlvely, however (8.5)
"expresses 05 only as a mixed second conjugate: since at mvolves two different types
of conjugates. Furthermore, E1 Qortobi {201 and AttEla and E1 Qortobi [1] have introdu-
‘ced, for any ®: ¥R, the progectlve conjugate (p*t X *»R and the "pro:;ectlve biconjugate"

ch:X»R, of ¢, and have shown that ‘
agott (8.6)
'however, they have observed ([201, [11) that, in general (p’”#((p V¥, nlso, Martinez-Legaz
([42], [431) has introduced, for any ¥R, the "H-conjugate” © of f, with respect to a
famlly H of functions h: R+R, as @ certain mappjng 0) O yx.11, and the ng-conjugate” y° of |
any Y X*-H, as a functional o ¥R (whence <p (@O)O:X+§) , and has shown that if H is the

famlly of all non-decreasing functions h:R-R, which are continuoué from the left, then
? & () () =05, () (wexx), 070 v ~ : (8.7

Wlth cp of (8.5); howevelr: here the values of the H-conjugate (po are not in R, but inthe
famlly H of functions h: RR. l
i A natural colution tO question B has been given in [7273, defining, for any locally

convex space X and any @: X»R and VveR, the first v—semi—conjugate @%:X»ﬁ of o by

l
|
i

i

o ) =v-1-inE o(x) (wex¥), - (8:8)

| w(x)>v-1

i

‘the second v—serm—congugate ((p ) ¥R of ©r by :
| ; - A
AN e T 2 () ®eX), (89
! wex* s ;

- . wix)>v-1 : !

and the normalized second semi-conjugate cpgezx»ﬁ of @, Y

O=sup ((DG\)))?)' (8.10)
: veR =
indeed, in [72] it has been shown that, for any :¥-R, we have |
00
O=Q . : - : (8.11)
a

; Note that definition (8.8) is similar to definition (6.1), with the difference
that, jnstead of the closed hal f-spaces {xeXlw(x)>\)} of (6.1) e opeh half-spaces
{X€X\W(h)>\)‘l} are used in (8.8), and, instead of the & added term VvV in (6.1), the term

v-1 is added in (8.8) (in order to ensure @*2sup @ O ox-1, corresponding to (6.4)) .
’ VeR

us mention that, instead of cloged oxr opeh half-spaces, one can also use (closed) hyper-

%
t
}
i
$
s
|
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planes, to define a concept of conjugé"ﬁion. Indeed, in [69.],‘ for any Jocally convex spa—

ce X and any (p:XJFl and veR, the first V- seudo-conjugate @“:X*;ﬁ of @ has been defined
; - Vsk £ L oL

Seudo—Co ) o —
by.

o (w)=v-inf o(x) (WeX*) ¢ - (8. 125
v
xeX
w(x)=V

~and ((pT\E)T\E' ,(pm havé peen defined correspondingly (i.€er replacing 2V by =V and Yy by T

4n (6.2) and (6.3) )¢ Toeny 25 has been observed in (691, we have (Q*Z(p\\{)Z(pT\E , @F=SUp cpz)-f
© veR

b3
ésnrp 0, and @20 _q)chp**. For further results on pseudo—oonjugates and semi—conjuqates,:

R :
see [691) [70] and (723 L5 respectively:
| In connection with question Cr ‘Martinez-legaz [45] has jntrodu'ced,' for any ©0:R=R,
the “H—conjugate" (pv of @, with regpect tO -the family H of all lexicographically ron-de—

n = (i.e., hefl if for all-x,yeRn such that x 1s Jexicographically

less than y, W€ have h(x)<h(y)), as @ certain mapping cpv:a‘i(Rn)——H (where ¢ (R") denotes

creasing functions hiR

the cet of all linear endomorphisms of RY), and the "H—conjugate“ \bv of any V:d (Rn)»H, as
a functional \IJV:RQA”\ fvhence @W=(@V)V:Efl»'ﬁ) , and has shown that for any (p:Rn—»T{' we ha-

e - :
'g cpqqu. | (8.13)

; 9. Using the above results, there have been introduéed some new dual problems to
a!(P), relative tO the parametrization (X, P+ and the questions on equivalence of duality
and stability for them (corresponding to the one raised, for B of (7.4), before question:‘

L

?A above) have been answered.

Namely, one can define (see 1691, [11ls [721) the pseudo-qru;é_ and semi~dual pro-

.
1}
blems to (P) of (2:4)5 relative to the parametrization (X p)rof (2+:2% (2.3), as the

supremization problem ©) of (3.1)« with

i : A (w)=inf plyrx) ' (WeX*) (9.1)
3 (y,%) EF XX : : oo
s W(X) =0 ] : §
z :
: A(w)=inf plyrx) e (WeX*) ¢ (9.2)
! wix)>1 Rt

‘;espectively. Then, one can show (1691, fLEd: k72l that, for the B’s of (3.1) oorrespond-
2 ing to (9.1): (9.2), we have, respectively, ) : :

' o>p=sup  inf Fl)=E (0, ; (9.3)5‘
- weX* xeX =
w(x)=0

oep=sup inf f(x)=f®9(0)-—-fa 0), S (9.4)

'

with £ of (2.2)i hence, by (2.4) and (9.4), weak dual_‘g:_x o=p of (2l (9.2) is equiva-
lent to the stability relation £(0)=£.(0) . : :

gimilarly, for F=R’, one can decéine [45] a vgual" problem to (p) of (2.1), relati-
ve. to the parametrization x=R",p) of (2.2), (2.3), as the supremi zation problem Q) of

(3.1), with X* replaced by & (FY) and with

Mmmmnw«$< e



XGI=int ply,x) ' e R ) (95
(y,x) €R ><R‘“

W(x) = 0

where =, Teans "equal or 1 exicographically less than". Then, one can show, using (8.13)
and [79], formula (2.30) (or [451, proposition 2.4 and corollary 2.5) that, for B of
(3.1), with X* replaced by £(@® Y and with A of (9.5), we have '

ap=sup _ inf £)=£" (0)=E_(0), v
: wel (R) Xe i - ’
w(x) z 0

where f is the functional (2.2). Hence, by . (2.4) and (9.6), weak duality o=p is equiva-

lent to the stability relation f(0)=fé(0).

‘ 10. The similarity of the definitions of quasrconjugdtes, pseudo—conjugates and
semi-conjugates and of the results on them (including applications o duality and stabi-
llty in ontlmlzatlon) suggests to try to unify them. TO this end, it is useful to obser—
ve that the terms V and V-1 have been. added in (6.1), (8.12), (8. 8), (6.2), etc. only in
‘order to compare "DlCely"q) and (p M =y, 1,0 0) with the Fenchel conjugates o*, o** (see
e.g. (6.4)) and that their omission does not alter the normalized second conjuaates (pw
(wy,n 8); nor the dual optimization problems defined with the aid of q) ,but pemlts to

wrlte the conjugates @ in the unified form

‘ (p‘\l)'(w)“mf ol %w) : : (weX*, U=Y,T,0)s (_10-1»)‘.
Enhere - :
Ar),wz (x'ex|w(x") =V} (wex*) (10‘2)1
‘\. LS el = (weX*) , SR
“ 20 = eXlw (x> e (Wex*) . (10.4)
E VW |

Now, given any family of sets A WCX (veR, wex*), for any @:%R and veR one can

v, .
defme [73] the v-A-conjugate functio functional cpA :X*R, by |
|

9, B (w)=—1inf o \),w) (WeX*®) ; (10.5)

4n [73], these have been also called "surrogate conjugate functionals". purthermore, it is
'convement to consider the sets A, ., @S images of a multlfunction Az (v, W)=B from R;(x*'
into 2 and to assume that A mduceb a multifunction A: (v,x)-»A from RXX Lr'1to 2X ,de~
fined "in the same way" (for the preu.se definition of a "univa’ersally defined multifunc-

th"l A, see [73], §1);this is satisfied for A, W”AL)’ of (10.2)-(10.4),and it permits

;o define [731"the second v-A-conjugate" ( \A))e and™the normalized second A-conjugate"@ L

: ; Fdr A:RXX*»ZX as above, one can define [731 a "ourrogate dual" problem to (P) of
(2.1), relative to the parametrization (e p) 0F (05,20, (2830 as the supremization pro-
blem (Q) of (3.1), with ;

A(w)=inf ply %) (weX*) ; (10.6)
(y,x)eF XX
xeb
0w
in particular, for A W—A‘jw (u=y 1, 0) above, (10.6) reduces to 71, 9.l) and (9.2) ¢

respectively. One can show [731 that, for Bof (321 corresponding to A of (10.6),we ha-



e dSialnic

-ve

wep=sup inf £(4, y=£22(0), ; - (10.7)
wex* v e

with £ of (2:2)3 hence, by (2.4) and (10.7), weak duality OF -0 of sl (10:7) 48 eo;ui—

vale.nt o £(0)= —¢22 0y, The latter equality may pe regarded as @ stabilitv X¢ rolauon, sin-

ce f congg}es (737 with the A—E{uacn—convex hull offiWe recall [73] that a fsubset
-

W (x) W
xeA o () W (i.e.,M can be separated from cach xfM by a set. of the form X\A w(x) , with a

M of X is said to be A-conveXx, if for each %¢M there exists weX* such that MNA

qultable weX*) and that A—quasrconvemty of Y- ¥»R means that all level sets (8.3) of W

are Aconvex sets; in the particular case when A, o A\\() - above, this yields the evenly

1 14

lconvex. sets M and the evenly quasi-convex functionals U, and for A\) w:A% - it yields the
I

closed convex sets M, respectively the lower gemi~continuous quasi-convex functionals U.

| 11. An important generallzatlon of ‘the Fenchel conjugates (4.1), (4.2) has been
‘glven by Moreau [asl, 0491, replacing the locally convex spaces X; X* by arbitrary sets
X, W (without any structure assured on them) and replacing the natural bilinear couplmq

functlonal n:XXX*>R, 1.€.1 the functional

(x, W-nlx, W=E (xeX,wex®) . (.0

i
i
i
|
i

-by an arpbitrary functional k: X>/W+§*[—oo +eo], called ' couplmg functional. since here k
may take also the values ** (which tums out to be ugeful in various appllcanns) Mo—
reau nas extended the usual addition on R to R, deflm_ng the upper addition" + and the

"lower addition" 1 on R, by

el adp=atb=ath e peRli a1.2)

1 o () =he, at(==)== (aeR) , . (11.3)]
and has worked out the rules with these operations [491. ;
% The (chchel—bfbreau) oonjuqate of a functlonal ®: X-R, with res spect to & coupling’
c(k) 5o
1funcuonal ke XXW»R, is the functional <o R defined ([481, [491) by i 11
l
l C(k) w)=sup {k (2,%) -0 (x)} (weW) ¢ (11.4)‘
| xeX |

~ and the second conjugate of @ with respect to k, is the Functional @ (k)e(k) .y R defin-

e (1483, [49D) by

| LS00 (msup Bt e ) ()} (xeX) (11.5)
i weW
clearly, for a Jocally convex space X, W=X* and k™ of (11.1), (n_} =p* and (pc (nyeln) -
—(p** of (4.1) and (4. 2), respectively- Concerning I‘enchel—[»breau conjugates, see also
[4], e [171, k211, [591, (601, 80T, L9, [9213.
! Tn the sequel, we shall assume that X is an arbitrary set, WCR (where R denotecs -
the family of all functionals w: .%-R), and k=n of Gl E 1tn X* replaced by W; this n
is no longer pilinear, but it is still linear on w, if WcR (endowing WCR with the
usual vector operations, defined pointwise on X). As has been observed in [g1l, rem nark
2.2 and Addendum (see also 821, 81, this assumption Jig=10 restmctlon of the generali—
ty, since it is equivalent to the case of arbitrary sets ¥X,W and an arbitrary coupling
functional ©:XXWR, but it will simplify the formulas below.

Let us embed now. the infimization problem @) of (2.1), where G ig a subset of an
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arbitrary set F (assuming no structure on F) » into a family of parametri zed problvems

(2.2), where x is an arbitrary parameter set ang P:FXX-R is an arbitrary functional ga-

tisfying, for some erX, =

| = /ly) if vec oIy |

Py, Xo)—{er if yemgG. ULse)

Of course, ‘it is NOw necessary to use thel"embedding” condition (11.6) instead of

(2.3), since we assume no structure on x (and hence no "zero element" of X). By (2.1),

(2.2) and (11.6), we have

3

f(x )=inf p(y, x Isa (11.7)

o o) i

yer |

| Some authors (eag. 597, [4]1) assume, in order to simplify the formulas, the "nor-
malization" w(xo)=0 (WeW) , which is satisfied by X

‘Wg X*, but we shall not make here thig assumption, since it is too restrictive. .‘

| One can define (C790, L8210 the Lagrangian dual problem o (P), relative to the pa-

—=2zgliglan dual ;

rametrization (X, p), as the Supremization ‘Problem

=0 in a locally convex Space X and

i

P

@ . Beswp Agw), : (11.8)f
Where ; _
A(w)=inf (P v 40 )3 ) (WeW). (11,9
(V,X)eFXX _
, Formulae (4.3), (4.5 ena (4.6) admit the following extensions ([821,[79]) to this:
Ease: ) ; ; : i
,{; )L(w)=~pc(n) (0, w)wfw(xo) (wew) , (11.10j
C Alw)=SM) ) () (we),  (11.11)
; Bsup (220 () 1y )y e tmcm) (), (11.12)
|

weW

|
? - i : , FoogX . —pxx ]
where, in (L100), vetee the canonical embedding (4.4) of R XR" into ® . Thus,again,
§Aze have (4.7). Furthermore [79] (see also [49], for R replaced by By (448)extends i

!

c(n)c(n)_
4 PHwmr) 1

(11.13)

Z'the " (W+R) ~convex hull" of @:x-R (i.e.[l7], the greatest (W+R) ~convex functional <p; we ‘;'

ieca-l], that a functional P:X%-R is saig to be " (WHR) ~convex" (171, if it ig a supremum of

é family of functionals of the form wtd, where weW and deRr) . Hence,-by (11,12), we ob= ‘

tain : : ; ey

Bsz(W+R> (xo)=$2£’ e (w(xo)+d). (11.14)
wHd<f

3 1]
From (11.7) ang (11.14) we see that weak duality o=R is equivalent to the "gtabj-

bility" relation f(xo)sz(WJrR) (xo) s

————= e atlon .

: The above generalization can be applied to a large class of problems, encompassing
both the continuous case and the case of discrete optimization (since there are no struc-

tures assumed on F and X); for example, in a subséquent paper (in preparation), we give

applications to combinatorial optimization, Also, as has been shown, independently, by

Lindberg [40], Balder L4], and polecki ang Rurcyusz [17], this generalization provides a
unified way of obtaining various known dual problems (Q) defined with the aid of so-cal- ;
led" augmented Lagrangians", just by taking suitable particular sets WCﬁX SnEAIES) : 5



(11.9). A further advantage of this general approach wil_lv be shown in section 12 below; |
L'et us mention that it has also been a matter of interest whether a given duality
theory is "symuetric", i.e., such that, under some mild assumptions, the "dual" to the
dual problem (Q) of (3.1) or (11.8) (defined as a suitable infimization problem, usually
with the aid of a parametrization of (Q)) coincides with the primal problem (P‘) of 2510,
For example, the duality theory of Lindberg [40] is symmetric, while those of Balder )

and Dolecki and Kurcyusz [17] are non-symmetric.

12. For any multifunction A:RXX*—»ZX as in section 10 above, if we take V=VAC§X de~
 fined by b ’
V={x, +dlyex, wex*, deR}, o
w(y) ,w
where Xy denotes the indicator funct'Lonal of the set McX, then, as has been shown in
1731, for any ¢: X»R we have

A - : i)

c(n) (w)+d (yeX, wex*,deR), (12.2) |

® (s, +d)=q
bien @ of (10.5); indeed, this follows directly from (11.4) applied to k=n of (11.1),
w1th X replaced by V of (12.1). Similarly [73], when A is universally defined (see sec-
t;Lon 10 above), we have ' : ‘
pSinlelm)_ pa (12:3) |
Thus, v-A-conjugation (and hence, in particular, quasi-conjugation, bseudo—conjuga—i
\tion, semi-conjugation) is a "particular case" of Fenchel-Moreau conjugation (11.4),with

‘W replaced by V=VA of (12.1), and with k=n corresponding to this V. For A\) sz?) = of sec-
I 7

tion 10, a related result (involving "conjugation" in the sense of Lindberg [40], which !

_iis equivalent [81] to Fenchel-Moreau conjugation), has been given by Martinez-Legaz [44].

From the above and from the expressions of the dual problems with the aid of conju—
gate functionals (see e.g.(7.3), (7.4 ), (10.7) and (11.10)-(11.12)), it follows that
the various surrogate dual problems (11.8), (7.1), (10.'6), etc. to (P) of (2.1), relati-
ve to the parametrization (X, p) of (2.2), (2.3), are "particular cases" of the general '
Lagrangian dual problem (11.9), for a suitable modification V of W. Of course, this can

‘be deduced also directly from the definitions of these problems, without using conjuga- “

'5tes; see e.g. [82], where various other relations between Lagrangian dual problems and
surrogate dual problems have been also given (see also section 16 below) .

Similarly to (3.2)-(11.9) and (4.1)=(11,4), etc., it is useful to replace the local
?ly convex space X by an arbitrary set X, and X* by any set W QRX (whence 0 by w(x,)),
lin surrogate duality and surrogate conjugation (e.g., in (7.1), (9.1), G06) 5, (L0.5)
letc.); see [731,0781,0821. 7
‘ 13. Given two optimization problems (Pl) ’ (P2) (defined on possibly different spa-
‘ces) and dual problems (Ql)’ (02) (in some sense) to (Pl) and (P2) respectively, the
"primal-dual pairs" of problems {(P1),(Q))} {(P)), (0,)} are said to be equivalent [75] (de-
noted { (P 1), (Ql)}w{( 2),(Q2)} e oy =a, and Bl BZ’ where oni’and Bi are the optimal values
of (Pi) and (Qi) respectively. The usefulness of this concept consists in the fact that
from duality theorems for {(P.), (Oi)} (i..e., conditions in order that qi=Bi) one can
deduce duality theorems for {(P, i)’ (Q3 )} (i=1,2). For example, formulae (11.7)-(11.9)

and (11.12) show that the pair {(PG h), (QG’ )} swhere (Q ’h)ls the Lagrangian cual pro-



blem (11.8),(11.9) to (P, ,),is equivalent to the pair {(p ) 9f) (Q{Xo} f)} pith £ of
> - J’
(2.2) ,where (Q {ko} 'f)is the "unperturbational"Lagrangian dual in the sense(16.1) (below)to

(P o f) inf f({XO} )=f (XO)=QL. The latter has the advantage that the constraint set {xo}
O r

is a singleton and, by the above remark, from duality theorems for {(P {x i j,_),

© )} (which, by (11.14), amount to conditions for f(x o) fH(WJrR
G,h)

}. This method has been applied in a consequent

)( )), one can de-

duce duality theorems for {(P G, h) @
p manner, e.g. in [75], for Lagrangian duality and surrogate duality. Let us also mentlon
that the notation X for the parameter set is used (in contrast with the notatlons of ]
other authors) in order to emphasize that we apply theorems in X (e.g., separatlon theo—
rems) in order to draw conclusions on problem (P, ) of (2.1).
Ty
‘ The remarks made after formula (4.9) suggest to classify the (equivalence classes-
of) .primal-dual pairs {(P), (Q)}, by saying [75] that {(P;), (Q;)} is "better than"
{(®y), (Q,)3 (Genoted {(P), (Ql)}z{(Pz),' @Q,)3), if for the gaps we have a;-B;<a,-B,.
For example, for the optimization problem
®) a=inf hiy), = : _ feai
yeF _
u(y)=xl ; {

:where F,X are locally convex spaces, xleX, and u is a continuous linear mapping of F in—
'to X, one can consider the parametrization functionals (of the form (2.7), with parame-

'ter space F for p;, and X for p,) :
i = i} - r A Iy — ‘
| ; pl(y,x)={h(y) if yext+{y'eFluly’)=x,} (13.2) a

+o otherwise, : |
]

(13.3) |

i ;
f h(y) if uly)=x;+x
1 Py (y,x)= +e otherwise,

and one can ask, which one of the primal-dual pairs {(P), (Ql)} £(B); (Qz)} i corres@ond— !
1ng to py and p, respectively, by pseudo-duality (3.1), (9. 1), is better. In [74], 53
vlt has been shown that p; yields the better pair and, if F is a Banach space and
h(y)=llyll (yeF), then {(P),(Q;)} is optimal, since it has the gap 0, while the (pseudo—
duallty) gap in {(P),(Q,)} is related to the "characteristic" of the subspace u* (X*) of
;F*, in the sense of Dixmier [16] (where u* is the adjoint operator).
| 14. Let us mention now some further developnents in the theory of conjugatlons
Crouzeix ([91, p.28) has made the following remark:"... the notions of conjugate
“"functions introduced by Greenberg and Pierskalla do not make use of the notion of level
sets which plays in quasi-convexity the role played by epigraphs in convexity and there-
fore we have introduced analogous notions to those of Greenberg and Pierskalla, involv—
,ing the level sets" (by this, Crouzeix has meant the @S 's occurring in (8.5) above
and a notion of "tangential" corresponding to the "quasi-subdifferential" of [34],
'[93]); a similar remark has been also made in [lO] p-75. Therefore, in E763%,[73], there
have been given some expressions of (oz) ,(p;t ,mG ,co G ((p )Y @'l (of (6.1) 2 (8.12), (B.8),
(10.5), (6.2)¢ (6.3)) etc., involving the’level sets (8 3) (of y=p) and the "strict"
[49] level sets :

e (p)=f{xeXlol)<el . (ceR) ; (14.1)
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Vexity. The approaches of Sections 10-12 above have stimilated tpe study of ."convexitry"
of g sub§et G of a get X with Tespect to g family of sets J\{SZX (in the sense of [121)
and wi th Tespect to 4 family of finetiong]g We ﬁX(i.n the senge of [247) and related cop-
cepts of "quasi—convexity" and "convexity" of functionalg (via leve] sets ang €pigraphs,
respectively) - We recaly that a set GeX ig said to he i) Sonvex with res}pe, »_EE;CQ Mg
[12], if for each X£G there exists Mep such that GgM, XeX\M (i.e. ¢ SUCh that y "sepa~
rates" G froy %); 11) convex ygghwggggqg_@ WeRX L247, if for €ach X£G there existg
weW such that sup w(G)<w(x) (i,e., Such that v “separates" G from x), For example [797,
4E X i o locally convex Space, J‘af(—oonvexgty includes the A~oonvexity mentioneq after for-
ula (10,7) above (by taking f= {X\Aw (X),wlxex,wex*} )+ whence also the evenly convex sets

"linear Space X, the closed getg ol topologica] Space X, ete, In [79] it has been shown
that the theories of M-conveyx Sets and W-convex sets Ggx (where M§2X, w,qﬁx) are equi-
valent, ang that, correspondingly, SO are the theories of J{-quasi~oonVex, W~quasi~convex
and W-convesy functionals. Furthel:more, és has been observed in [837, §5; a number of pe-
Sults of volle [90] on ”A*A~convexity" OF Bets GeX ang "A*A~quasi-—convexi‘ty" of func-

tionalg 0:X*R, where A:2X->2w is a duality (14.6), can be simply Obtained ag the particy-

‘J‘e'nconpassing, among Others, the Lagra.ngian, the SUrrogate, ang the 'I‘ind~Wolsey dual pro-
fblems, as well as the dual pProblemg of Gouldr 31],.Klé§tzler[ 399, Hoffmann (357, ete. Here ‘:
;we shall only mention, briefly, SOme aspects of the theory of [ 781 and [821, which are

f’related O parametri zaticp, ‘ : , “‘

’problems Claay, defined without assuming any Parametrizatiop X, p) of (P), such ag in
linear Progranming oy in-(3,5) (Sl (5070, ete.) ang "perturbational" dual problems
(i.e., defined with the aid of 4 Parametrizatiop X, p) of (B)), Namely, frop each un-
pPerturbationa] dual probien one can deduee a "perturbational version" of it, with the

multifunctions [731) and, onversely, from each Perturbationg] dual Problem, witp Bx
locally convex spaces ang WS X*, one Can regain jtg "unperturbational versibn'f} by tak- :
ing x=p and p=the Perturbation (2.7), with F'(x)=Gtx, for all xer, moy eXample, the yn-
Pertirbational version of g tagrangian dual (11,9) 44 @ of (11.8) with yegF and

which is usefy] when Gup (see ©.9.0[621); similar relations holg between the unp
tional and pPerturbationg] Tind-tx’olsey dual problems to (P) (see [ 82]) and bet



wiperturbational and Perturbations SULTOga ta dlial Problems P) (see [787, [827). we
Tecall -that 1 ja Subset of a set FohipaR, wyyCrh is a set and A <P (wew) is

G WS a fa-
mily of ("surroga e COnstraint™) e £s, the i@p&@fﬁz’gﬁp&ﬁ&mq&i& dual to (p) of
(2e1) e defined [78] as the Supremi zation Problem (13 8), with
Alw)=ing hia, - ) (wel) ; (16.2)
4
furthemmore, 14 X is a set, PiFX X8 Satisties (1169 for some x ex and Ap Ty
r 2
(weW) ig 4 family of sets (the nost mteresting Particular cage beinc N(F %) §*F><
r r

o : P :
XA fXO},W rWhere {A?xo},w}wew 1S a family of Subsets of X) ,the Rerturbationa surro%
dual to (p) ‘is defined [7gy B II8) i,

— % ’L 2
Alw)=ing p(A(F,xO),w) (wew) , (l6.3)f

These geheral definitions of Surrogate dual Problemg encompas‘s, as Particular Cases,
‘the varioys SUrrogate dqua] Problems tq (®), entioned above (e.q., quasi~dual, Pseudo-

Tious Concepts of conjugations, applied to £ OF (2,2} e have seen any examp]eg above),‘
land therefore they are called [78] ”perturbational Onjugate dual" problems tq (P);their
frelations to genera] unperturbational and Perturbations] SUWrrogate dquai Problems haye

Further Tesults op dual Problems (3,1 ) and (11.8) defineq With the aid of g parame-;
;'U:i?ation (X, P) have been given, for a large class of perturbations D, in*croduced and
'Studieq ip [821, namely, for the p’g that can pe written as

ply, x)=h(y)+’~nG(y, x) (veF, xex), (16.4)

'Where T EX%R is 5 coupling functional v valueg (¥, X)eR not depending op h; thege
Pt called ”h-separated” Perturbation functionals [82], encompagy various important
"perturbation functionalg as particulay Cases, for Example , 2:7) above (by taking
;n:G(y, X):XP(X) v), for all yer, XeX). : ' :

17. Finally, let us mention that, 'besides the "usual" dizal Problemg (L1085 (P)
of (2.1), there a1qq appear, in 4 naturag] way, some "unusyal " dual Problems

©  peing Ay, _ (17:1)

Surrogate duality general i Zing the reverse Convex duality of [66] ang SUrrogate ang La-
grangian duality generalizing the Convex SUupremization duality of 56375 650, 6417,

Classeg there exigy certain Parametri zatioy, theories, (see [85] and, respectively, [871,

[381), ang for the Lagrangian CoOnvex SUpremization duality, there exigt (B 381) dua~
lity—stability Telationg involving the Fenche Conjugates ang the subdifferentials at 0

-Of the "partial functionals"




py(x):p(y, %) (yer, xeX) s (17.25

corresponding o those Jnown for convex infimization duality (see e.9: [5ily [193). How-
ever, until the present, for the above classes Of unusual dual problems, there do not
exist stability results involving conjugates OF subdiffetentials of the optimal value

functional (2.2) ¢ regpectively

£(x)=sup P{Y X) (x€X) » (17.3)
yer : x
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