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In [27 ©Nikolskii and Vasyunin analyze the interrelation between
the functimal models for contractions of de Branges~Rovnyak and
Sz-Nagy~Foiag . We present here a slightly different approach , using

Bl
the relative structure of subspaces of a Hilbert space and avoiding
with the exceplion of Fro«posih‘on 3,

3

computations as far as possible , Thus ,¥ this nofe 15 malnly a suamary

of the main results of [27). , but presented in an alternate manner ,
which appeals to simple geometric intuitions « It may be useful for
better understamding of other questions relating to this subject ( for

instance , the scalar case investigated in B )

%1{ Complementary subspacese

Let. €& . K = be Hilbert spaces , € cotractively enmbedded
il s o This means that there exists a Hilbert space H and a
contraction To = r K s such that TH= € , and
ﬂ'relu% = | %;ITWL &{hi (L thwg o AL ke Ti=fod , then “1”&“8=NRUH){
It is well known then that there existd a Hilbert space na and two
isometric embeddings (: H e i e O s such thet

Jpem il o I Hoand T are given ., then e i
are uniquely determined ( up to unitary equivalence ) by the minimality
cénditid n K= H w'jK o There are several ways of construeting ¥ {
for instance , start w ith HeK endowed with the e¢emi scalar
product given by the positive operator

| (r.T)
T _

}T then"measures the angle" between the embeddings of H and K :
it corresponds to the projection from tH  on- K, and yé is the
image of this projection . In this sectioh we fix M ! and identify ,
for simplicity, H and K with their embeddings o Then,if P is the

projection onto K , we have C-FH

The "complementary subspace! gl is.a contractively embedded sub=
space of K 4 uniquely defined by the conditions (see ) '
(i) :llx-ex‘l\Lé \\><\\2;g +1ix’“lgr for any - xe¥® g %€ €',
(i) eacﬁ fhek has a unique decomposition D e oy
Keg! , with AL = il + Uiy o '

We have then , with thw notations above :



Proposition 1, Tet W=V . Then €~PH' ,with WPRl, =41,

Proof, We may suppose  ker T={0}, that is, \\P‘M(}g =l I xe €
e B - ithel - o RRL X PRl wikh Dol £'e H' « We have

(1) e W= IR < | Br BN - YR NE [ = fuxufg + qqu;
We have prowed (i) o Fer (£i) , let ~ReK 5 bhpn le-p . p! |

&eH ,. aléH! o Put sze\ 9 ®iz PQ\, « Then k:x«-x/ ¢ and‘

R I TN TR E U T ¥

For any other decomposition k=xsx' s we may write (1) , where
s A : r el : /
equality dmplies:  Rad oK o, whence k=Rl @nd B anig A

must be the projections of k onto H and &' respbctively . ®

The proposition shows that cowplementarity of cotractively embedded
subspaces is orthogonality in a larger space projected onto K . Note
that for this construction Suv(P{H,) = {03 , although we could have
had ken (P[;) # O3 .

,§2.The canonical model,

Suppose E 5 E are two Hilbert spaces, ®() is a contractive

*
analytic function in D with values in X(E E ) oIt is well
known ( B3] ) that ®(z) has nontangential stromg limits on T ,

and the formula
@) - A=)

yields a contraction in ZL( L'CE) CE ), which maps H(E) into H(E,D .
Being a‘ contraction operator , O may t_pe interpreted as measuring the
angle between two ewhbeddings of L (E) and E(E*) into a larger.
space ( as in §l ).“, We then obtain the canonical model for contractions
(-03) ) , which we will describe below in the "coordinate free" manner of
Vasyunin ( [‘7],[61) « Thus , we have a Hilbert space ®  and two isometric
embeddings T e - K R alte N L epehii e ¢ o
X=T(LlE®y T, (XE) and  9¥T-@ o The analiticity of Q) is
equivalent to ,’ch.e condition T (K (&) BE (x—(‘_(g@) e Since 8]
commutes with multiplication by =z , it is possible to define a unitary

operator X - on - ¥y swehithat TUT ds multiplicatien by =

s
on Ll(E7, s while 'N: 1.3 T\‘* ' is multiplisation by 2 on L}(E,ﬁ) o
TAEY) and T*(LI(E*)) are then reducing subspaces for U o

Define

K=K o (Taie) o, ()



Then XK is a semi-invariant subspace for U , and T®:?€Ufk
is a copletely non-unitary contraction , whose characteristic fugction
( T3} ) is the pure part of @ . :
_ For comparison ¢ in the actual construction of Sz.Nagy and Foiag ,
we define Bl (1= @*Z@@(_Q)‘/z o Then
%= C(E e A

9= T

:f @f @A% ) e g & O
and it follows that - o

%: [he)oa(e) | © {BOu ®au : nel @}

In the sequel , if H is a subspace either in & or in LL(E7 or

L?(E;) s We will always deﬁote by AR, the orthogonal projection onto H,
Also 4 we will denote: :

~ r~% . """‘4‘
P*.: I I o P o= Ul
ke = = P
.?H= i PHﬁ(Eﬁ)n* : P*__ P* o
P G

s H"(E) ! & +
By S we will denote multiplication by =z either in H(E) or ﬁl(EJK)

(it will be clear from the context where ) j ST ds dts adjoint.

§3‘.‘ The "yremodei" space of de Branges and Rovnyake

From our point of view , the construction oi‘A de Branges and Rovnyak is
a reconstruction of the above objects from their ! shadowe "' on H(EY) (that
is , projections ogto TW,(H'(E,) ).It is then natural to break K. into -

two parts , namely

X-K DK,
where. S i
Y el
'.}(, = PB(" ekoo. .

o
Thus, koo = TT*(LL(E;&»‘L A T(H”-CE\)L
Also, X., dis ianvardant to s s and U*lko;, is an isomotry‘.(
(obviously X, ds then invariant to 'l‘(i; s and AT@; |y s av
isometry),l Actually,it can easily pe show n that Ko twe 'l;hgdlarg;;est
subspace of X on which Tg -~ is an isometiye
But the space we will consider in this section is e o Since

K“: [T'*#(L:L(EQ) Y T(HI(EWTL ¢ We have
i
X, = [T (CEIY TOEN] ~ T(HEN » Ty (WL () =
- [5, OREN VTGEEY] © THED

3 . o AL
( for the last equality we have used the fact that _U(H‘L’(Eﬂ < W (H,(EQ) e



We shall demote ¥, = T (HED VTMEY , mus %, is
invariant to U and ) :

(2) WK, =%, o u(u(E“

Now,we denote by ﬂ(@) the c’ontractively embedded subspace of
HQ(EQ defincd (see  $1) by Gbl 5t Relation (2) and proposition 1
* ghow that T (X, is the complcrnen%ary space of XC(®) , This is the
Upremodel! space 3. it will be denoted by 3«@) o, Also,by proposition 1,

(o]

’ﬁ: is unitary operator from ¥, to H(®) .,

Proposition 2, (i) S (@) S R@O) ( that is, ¥(©) is invariant

to o S and o acts contractively on :Lt).

(ii) For any Ye;'}(,(@) s We have the ”1nequa.llty for dlfferwce

quotlents” ( ) 3
“p | W, ol
e < &
[ J[‘) (@) - { (@)

Proof. Denote by UJF*—U)X\L o then K e invariant to Uj i
S=MU. T, , 5% MUil, s, It {e%®), then W7 R 4 heX;
therefore :

/\» r~ A N - *
(3) =1 Sty G0 AT uly e U
since  I— B, \%4_ is the projection onto X,Te"“ (.(Hﬂl(EQ) , and this

last space is invariant to UX . Since . )6, is invariant to ‘\Jjs St
follows that @) is invariant to S™ .
Denote L= kU\U:‘ « Then

any oo ¢ We have

Lo is an isometry . For
+ x+e}(,

“&ﬂRh4@wﬁwgmh\Uﬁrﬁmﬁ+ﬁﬁ@ﬁmfﬂﬂﬁﬁu

If ?63@@)9 ;{__r\:g , then by (3) we have

e - hal- B T
(%) \sf;m@) NS A= IR \l?%ﬁu R e I %y

But W =R oUW, . If Y, =" ( constants in W(E,) ) , then
~ " & 0 ~rya e
el UTQ “,AHq(E,Q) y and also - N6 1 U+< WK (E}\. s Since
o Thercfore '](OCK y yand

T U (R(HE) =1, ¥, (RCTEN
0 = % 2 o \ s
l}(_o%\\ = \kg “}6(@) ( %(o)\\

bl o

st 3@(@) < Wy !
since e

P}C g\ S PKOP*% = i, e . ®

o s
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If the inequality for difference quotients is actually an equality
for any f e?CGQ}, H(®) is said to satisfy the identity for difference
quotients . Let us investigate when this happens . By relation (40 ,
we should have PK&= P.Koﬁ for any AeX, , or , equivalént_ly,

Neade e s that is, ‘)\(’@\NLC (G

Denote by L. the wandering subspace of the p ure isometry

U‘\‘

oo

%, . From the definition of K and the relation
00 .

Ned, =¥, o ,(HE) v U (7 ¢ ]

it followws that : ;
KNel, =ux
Thus 4, the condition e LK, becomes
UL ¢ WGie) , Since , in any case , UX ,L"U wlHTCe) T, it

follows that Uy =T(EY , where F is a subspace of €& and
we have identified comstant functions in H (E) with their values .
Consequently , Xoo.’:%(}'{t ('), where E'cE . We may also

rephrase this condition in terms of (@ 3 we have thus proved

Proposition 3. The following are equivalent:
(i) H(®) satisfies the identity for difference quotients;
i) X =R Cowith EleE
(iii) There exists a deconposition E-~€E'® E" , such that

@ 6 while A EIb B2

Dor taglante

(the equivalence of (ii) and (iii) is immediately seen)on the model of

Sz oNagy and Foiag).

The most tmportant case in which the conditions in proposition 3

are satisfied im> :‘;Coo= {of ) 0P Aler = b ) o Yhis happens
if and only if T(g contains no isometric part ( see (27 for other

equivalent conditions)».i Then the premodel space already coincides with

the model ( X,-X ) , In this case , by © s We obtain that

'Vé is unitarilg equivalent to gﬂ}ﬁ(@? 3 this last operator acts
by the formula

() — £(0)
(S‘@(z): {Ez :

Moreover , the idéndity for difference quptients yields then the relation

D W
H T;3£ w®) '



(%5

g 4, The model space.

In the general case, we will describe the elements of K by their
projections onto Sl (e ) and L3l Qhdy) o Let k be an elenment
g 0k ; define £-T[k e MECE ) o g2 0kl £ BE ey o We have

to determine which pairs {2 93 € «(g)®H.(E) occur in this way and then
we have to recapture from K%Z‘:Z} the norm of k « An qsg?:::'xmetry' appears
between the roles of ? and g , since we want to rely eventually on K@),
which is included in  H'(Ey). 5

Suppose ko =beotleny, k, < ¥, ’ koOQKOO o Since P}Fk = P*k
follows that @ must belong to “35(@7 o Alsa, any %e’}@(@) determines

e
uniquely  k,e ¥, .

To recapture o we have to "take out! vectors from X-w ywhich is
orthogonal to W (W(E) and therefore is not related to (@) o This

will be done by applying powers of U .



For any wn% O 4 we have
h-r

(5) D e BOE T e . EEL e
et ¢t :
SEUE L BB LR T e

But, since k e T, (ul(e » M e WG
{ nt
(I- 7)ok <X s Since P ¥.e ¥ ,‘it follows that Ty(r-#)U 'k ¢ @),
This last statement may be rew.rj.ttén s using (5) , in terms of the

functions !f and £

B e z"*’% € (@)

W (&)
Also - S
; A nif
b= U™k = 1R U ks feepaReisl [
; 2
~HR U e R (- P+)u“”u e
But , for any R 36 . PK, U 19\~*> O for o - oo

( this may be checked ueparately for vectors in '\t\*(f(E}\) and in
(@ =)) » It follows that :
A 2
Bl s Lo (10, B T 1R (1) U™ ) -

iea ol
4!

= Qi (ll 1““% "“{’ - OR,, )E 3 ‘ér((@)>

n—= oo

On the basis of th:n.u comnputations , we def:me the "model" spacé
: S
D@) =1 ¥4 - %e}ﬁc@vqeu_(@) B p ® Ty T HO for oy nz0

v\*i
oundl = OFg ™ %Nk«m s bovonded 0 0 3

nNZo

5 nel nel
{§ ‘211‘ S E b T s % W+ e e !

: For the moment , @(@> is only & norned linear space, We have
shown above that the operator . U: K — — D(®) , defined by

UK = g“w, S

is an isometry .

Proposition 1+‘,' @(@) is complete and W is unitary .

Proof. We will show that U is ontos Let {P 9% belong to @),

Let 4 X, 4 such that w (?«9:{2 o Then.  U(h,)eDO®) , and

»

£ {\ 371__2,((.2 e {Ol%o} s Where Ve T W¥ A, 3 we know that

ey E B + Loal 1
@Pmal ‘3 <1 (®) for any w3yo s and that |\ OPn(gE %"“JtCe) is
bounded in . n o That means that BB U“‘"% ’P k. s Where
o i ' W are bounded in « Therefore P’TUM'Jg*
is orthogonal to %, (e y o, It follows that fh*U""”f; "*,,3 U'?‘M{Lf
is orthogonal to '\T* (I}CEQ) and also to j\T(Hi(E)) jothatids, ey

44 2 Y
Now, 1j3*° (>*U“ﬂ 'R’% _,,f\ya for w— oo , while the sequence
© A



{U*ML,S has a subequence converging weakly, say,to 0 b e Since
kL ey Gl 0 P Gy
ihwentetaee. ks e ow o en e Koo ( since it is the weak limit
of some Qﬂ-—s )iy ange h‘“Lu%o . ”\T”‘*'k:(? o We have thus
Ul haly- 1t

and the proposition is proved &

Ve May now write the action of the "model operator® }f@®= L T'® Ui o
Using the fact that

T‘,@ = (1’ T Px~7U} S e

straightforward computations lead to the formula
S0 et L T O (x9)0), 1q-(g)(0)

Aétually s the standagd form e@f the de Branges-Rovnyak model is
.written with 35H1(E) ; this amounts in changing,in the definition of

D(®) , ! by ]%: 'izﬁj (and correspondingly in formula (6] ).

y and th'erefore %L'\\\(Ll(&-\) .

205
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