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Mihai Pimsner and Sorin Popa

Introduction

Let iﬁéki be a pair of finite factors. Jones defined

in 1173 the index - W s+ ¥l of N in N o be fhe
coupling constant of N in his revpresentation on Lz(M) ;
If this index is finite, then the trace oreserving conditio-
el exnectation of W onto N , regarded as an operator

on LZ(K) y generates together with M a8 finite factor ﬁ& .
Thie facltor is called in Jones' terminology the extension

of W by -N and the construction of mi trom - Mocoand N,
the basic constructien. The pair fﬁaf%v ‘has the remarkable
proverty that 'tﬁi : M} = [u: N1, so this procedure may

be iterated to get an ihcreasing sequence of finite factors
Nc§563%}:ﬁh ese &and together with it a seduence of pro-

jections e.e H i»o, implementing the conditional
< 3 St ¥ el ¥ G )

' i+
expectations at consecutive steps.

We prove in this paper that in this seduence of factors
the basic_construction ari3es p@ri@diéaliy ireme - o n
steps, for any n . -In fact we give a formula for a projection

T in M that implements the conditional expectation

i,
n 2n+l
of ﬁn OG0 N fn is a scalar multinle of the word of

maximal length in &e. e nemely
T, b £y b ,}k o) 5 1 521’1 $ of

n{n+d )

» MeNl ™ 2 S = : >
f = [Nl 2 (ene:‘l 3°’eo)(CnL18m‘°Ci)"(Ogn"‘en)

i
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We mention that this result was independently obtained by
A.Ocneanu Y27 . we apply this theorem to show that if tﬁe
logarithm of the index CM:NX equals the relative entropy

'
H(MIN) considered in t}l , then one also has H(HH[N) =

= lnfﬁn:ﬁj for every n . Since this equality characterises

an extremal case for an inclusion of factors, from the ana-
lysis of such situgtion in [33 we deduce several properties

»of the dnclusion 1@6?&1 and of the relative commutant N'n %n .
1

§1 Preliminaries’

3

Throughout this paper. M will be a finite factor with

norpalized trace T , (1)

i

4, We denote by nxt, =
% &
= T(xkx)ﬂ/“ y xeM , the Hilbert norm given by %

o

and by L°(M,T) the Hilbert space completion of M in this

; : : : 20 : : '
norm. The canonical conjugation of L°(M,®) ig denoted by

2 i ; ¥ - b
(M,2) by Jx = x  and satisfies

U o cldedets fon o4

Je g =t L T faet, if we regard ‘M as acting by left
‘ :

multiplication on TO(M,%) then for xa¥ , JsJ is the

operaftor of right multiplication by = .

-
ot
=

# i
ly = iy

and By, will be the unique normal trace preserving condi-

Nelh will denote-a subfactor of

tional expeectation of M onto N . Note that EN 15 jhed

X o

the restriction to MEL (H,E) of the orthogonal projection

. °f L°(¥,%) onto L°(N,E) (%the closure of N in

L (¥,%) ). The conditional expectation B, s the orojection
. v Y

Y

ew and the conjugation J are relsted by the properties
N jug : , _



(Elif e Wahben: wa N ife en¥ = APQ

Gidl) ey¥ ey = EW(X)@N ; &N

{
2

Ciadi) J commutes with ey -

1# the “index of N dn B - is finite then from the paiv

Ne&¥ one can construct & new bair of finité factors
with the same index [Misﬂj~m T#:N1 . The construction of
ﬁﬂ is called the basic construction ﬂhd the. factor Mﬂ
18 called the extension of M by N..

#e recall from [1] the definition and main properties

P~

1.1 Proposition. Define N, = J B'Jd . Then we have:

[

1° ¥y = (Mufeyt )

1
2 Lmizﬂj o [ﬁ:Nj and dia denotes the unique .

normalized trace on 1 and E.,. the T preserving con-
1 1 = X

ditional expectation of. M, onto M then ﬁ Aey) =
: 7 s MY'N

: -
= PusnNl” =Ly I or.equivalently % (eyx) = LieN] Te(x)

for every xe&l .

Part 1° of this proposition can be made more precise:

oo by 1+1 % [#:N] then any element in liy is a

2

sum of &t mdst n- monomiale of the form ¥e.¥ 5 X, ye€ i .

Y
Note that N{ can also be described abstractly as the unidque

. wrr

(up to isomoyvhism) finite factor i which contains M

Ll s Yeyl=

forepell ., exg.= EN(X>G for xe ¥ , and with the trace

i}

Cye e A = SR 4Ty e ng i
and a orojection e so that [H, i)



tisfyving v (ex) = {qumx*i Llx) o xell . In

fact one of the conditions is redundant ¢ +the next Dropo-

i T

sition gives two equivalent ways of characterising kﬁ =

: 1 *

o

2 Proposition Let NCEH Dbe & pair of finite fac-

tors with finite index_snd ﬂh the extension ot W by N.

Tet

-mali

tation of N

7

i
H

ed

be & finite factor that contains M and with nor-

2 # ~ . b
trace ¥ ,.E,, the ¥ -preserving conditional expec-
i :

o

T

onto M &and ee¢M an orthogonal projection.

Then the following conditions are equivalent 1@

L
o s

Hi 13

(i)

lO

There exists an isomorphism d; of ﬁ{ onto M

that @(x) = x for xeWN and #)(e%) e .
i

¢]

Proof

(1) [@yy}: Oy Yy eN-;

i) o lel = Y;??e":_zuﬁj‘"i L= t‘z.@:m_]“‘i iy

-

(1) exe = Ew(x)e oo X&M and e digor

(i) e and ¥ as a von Neumann

imaa 0 : : : S
implies 2 by the known properties of

a0
‘:_I

SUuppbee -2 ~Holdss Then by 1.8 - of EBj we get that

the extension of ¥ by P where

- {e}'n ¥ . But

i

o

implies that Ne&P and since fuerd = Liinl = [

s

we conclude that N = P . Thus e, and ¥ generate M as

a von Neumann algebra and again by 1.8 of [33 we get

-1§(X) =

exe , for every xe&il ,



g oot i . 5.

B

Assume that 30 holds. Sing the "othonormal basig"®
of 131 it is easy to see that the ma.p ¢.:Fﬁi—~—~a S
that sends Z X enYy to Z:xieyi is a well defined
®-homomorphism. Moreover (1) satisfies n¢(x) = q')(mx)
for every xneﬁT‘and xef% . Thié shows that é(ﬂj is
& projection that coﬁmutes‘with e and_ with every mé¢ M.
By bia ] we'cdnclude ﬁhat éﬂi& is central and since
s e #0 and M is a factor (1) = 1 . This implies now

| that &@(m) = t{)(m&) = mﬂé(ﬂ.)ﬁx m  and since obviously

The pair MQH, having finite index one can construct
its extension mﬂc M and in fact the whole procedure may

be iterated to get an increasing sequence of finite factors

NCW &l i $idy e and orthogonal projections e.¢ I.
NG {LQ 5 G y and ernogancl progoctzgnu 1€ 58 s

iyo (N=1Mu,, =14 in which M. , is the extension

4 el o puae i or in other words M. and ‘e. ‘are
> i i e i+l e
obtained by the basic construction from the pair ﬁim%ez?a

Thus if T denotes: the unique normalized trace on %}Lﬁ
Bnd . the T -preserving conditional exvpectation of
Y11 :

WM rontos M i%0 then
e R

(a) xai,rj =0 o fop . ve ﬁi_i :

IR M. _a 1k
(¢) Zf.;fid.;h’fjj :Z Trend

Inivarticulary 1+t - Ffollows

tions e, gatisfies . [ei,ejx =0 ,\i~j{32(, ei@itﬂeix



(w) for every word

i
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¥2. n-sten extensions

In this section we prove the main result of the péner !

we show

that af Nﬂfﬁﬁﬁkﬂ i is the sequence of finite
factors obtained by iterating the basic construotlon as in

i8 the extension of N

' i
§1. then, for each nso , Bl n

by N . In fact we ylve an er ..... leit Iormuld for a projection

:iléﬂén+ﬂ which implements the conditional éxpectation o

M onto N and geners wit M he fa g :
= and ge tL h - @ﬂa factor Mo

fn will be & scalar multiple of the word of maximal length

where e. ¢

: Zre as im0,
on 3 dam : 4

in O,el,..,,e

e define for each’ n,k30 the element

gn : (en+k m+V«1°‘9k)( ‘n+k+1 n+k"8V+1)°'(82n+k82n+k~i'°en+k)

(there are n+l products of paranthesis and in each paran-

thesis the product of n+l consecutive projections e. in
; 5 n(n+d ) §

3 oA e ) ar, S f’”* e t ‘”'N} % & W

Qecy E";.b».‘.:l):l&‘-; rager nl ‘N'C)t DUT n o e b . gn é 21’14—1"6_

and =t M. =
. n o Bl o

To prove that the above defined fn implements the

basiec construction in the extension of Mn by N, we only

have to show that fn is an orthogonal projéctien, that
S e -4

£ sr g bl PN p 8 o 1

"né’ Nipy I S and that B (f ) T‘;.ﬂn.‘\j [ D1ty -3 .

(see proposition 1.2). Hot, tuut since {$i+1:§i} = [u:n]

by the multiplicative property of the index we do have

lo ow] = B et

tles, let us first recall some facts about the algebra ge-

o s\ . To prove the ‘other mroper-

nerated by %@i}izo Cor il Tale,



7.

A finite oroduct of e;'s is-called a word . It is

called & reduced word if it is of minimal length for the

2
y €. &=ae. and e.e. ¢=p
o . J

gramatical rules e .

e e . e .
e ey

€

'e“*ejei for 1i-jia2 . Note that any word is a scelar mul-
L.

tivle of ‘a reduced word. Jones pointed out (in {11 , 4.1.4)

that reduced words can be uniquely written in the ordered

form

phere - J. 8 K. o = L, ey .
where dy & £y dicg > dy } i+ 2 i
From this description of reduced words it follows that

if a reduced word w is written with the letters €n1Cyas

(sy»r) then e and ‘e appear at most i+l

P+

g-1
times in w .

; : i 0 :
To prove the theorem we first show that g, é&re self -

adjoint elements. This will be an easy conseguence of the

next two lemmasg.

SR . ; S L
2.1 Lemma g ' 1is the unique reduced word of maximal

length in ToZim B,

= e e i S Ge kL,
Froof: « Since by definition g, 48 of the form (%)

it is a reduced word. As noted before if w is an arbitrary

L

reducediword 11 e e, o8 then e ,e. - appear at most
_ ol 2n 0 Zn

once in w , Cq1€op 1 at most twice and more generally

: ok il ekl 5 ?

€085, 1 at most k+1 times. Thus the length of w is
re A e

at most equal to A+2+...+n+(n+l)+n+.,.+2+41 and by inspec-



ting the conditions .8 k. e i Yanng kK. it
S : REC Iy da i dil oy KD Y ()

: ] thig -
it follows that the only reduced word w with¥Ylength is

obtained when ji malbac . B = b dag. W B

2.2 Lemma If w is a reduced word in eo,ei5..,,ezn

&

n

6}

then the reduced form of w the same length.as w .

""" roof:. Indeed w”  hes length at most eoduazl to tha
it il 3 y

{2
i {2

of. W Emd ainbe - (w

= W , the statement follows.

To prove that g, are scalar multiples of projections
L4 4

0\ 2 ; e Ll e :
we have to compute (gq) . To do this we usge an induction
5 4

argument based on the formula:

g, = (e

O -
nen+1"EQn)gn~i<62n~if°'om) .

Proof! The equality follows by pushing e to the

2n

left as much as possible.

Q6 atn

some other two ejualities that can be ob-

tained in & similsr fashion and seem to be of interest are

9 ; -
Sy Z:‘_‘M‘]_ ( (%:gn o6 e @’.;[1 ‘}-ﬂ_ ) ( QO PR @ﬂ) e < G}j’l@n ‘_?'L e GO )ghpg’*()qez 3 ‘@r})



AR o ' S
To show that gn . projects on a scalar in Mr wWe prove:?
! o N ‘ ‘

v PN N TN Y : 5 . 0] e AT T T .’- - X
2.2 Temma ﬁﬁ (g.) = [Mm:nN] (U41)gimi . llore generally

By (gg) = [m:n] (“*“>g;f¢ :

froofs It is enough %o prove that B, (QO) = An+1;1 )
o iy ¥ - L, ,’l.nm
: 21 2y

i
where Y= [WeH] T, becauge the rest of the statement follows

,,,,,,

by starting the sequence of factors from mk~1¢ i, , instead

of N = M Moo= N
gl ..,__‘1@ iy Mo

We first show that for j$pu»k+l we have ':

®E e B e ) .-> 3 o« 8 . = : .
(%) (e € ek,(cpepal ey 1) by <ep»25°“ek)<ej"’ek+i>°

" Indeed we have grghs . Lsane e = 8.6 . "3
(8505 qro8p0pn=-oyley =Aleseny ove. )
(e,

g~29@—3"ek):: A(Qb~2°°‘@k)<@jej;l"ep) , which easily

implies (%%). Apovlying recursively (s=x) we get ¢

il

e e

i
e
s
e A
©D
L
@
S—r
e
PN
@D
)
H
»
€]
Y
i
N
—
—~
@D
JJ
-
_(D
=
i
i
~—
—
@D
N
i
i
N
®
£
=
Sl

TR o
Joo.(e 1«2"8n~1)(82n~1“en) -

o

03 n+i _ : : R ; : n+41 4
== A (E}(lc oci")(e‘['lql-ﬁ_. “ij.'-;;",/"'(ezn«»ia o()n) .m (\ - :Q;n...ﬁ

d.e.d.
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We can now prove the theorem.

2.6 Theorem Let NC¥ Dbe a pair of finite factors

with  TMiNI < oos .o Tat ‘}\Ic’z“z’z’C?QQQ ..+« be the seduence

of finite factors obtained by iterating the. basic construc-

tion and e, € B,

147 the projection implementing the condi-

tional expectation of Hi onto mimi at each step of the

basic construction as in §1. for iyo (M q = N, M, o= ¥).

n9n~1°°eo.<en+1?n°'ei)°'(eznegnm1-=€n)

s N The il i is the extensic i) Tie
= ﬁq1+i . Then Woppqg 18 the extension of M by N and

e M . 18 the projection that imnlements the conditional
2n+4: : :

o

e 4 4 4 - ol T i .
expectation of M_ onto N , i.e. fne N'n Wopen 9

fosf =
non

Bola)f

>
&
=
~
i)
Lo

S "{." o Ny -9 5 3 1 = b X :
0ol : n k il (f ) = Ltgn‘ IJ] &nd -iugﬂ“:’ﬂ. = (;hn\.} { fns ).? :

Proof: We.will prove the theorem by induction over

nyo, If m = o then f5 = e, @and we have nothing to prove.

241

]~1

=

Asgume the statement is true up to 'n-4 . Tet A o= Disxn
-n{n+l) e

By e e e Since f = ¢ g2 a0d o i

NG n = e 330806 i n T flc"'ﬂ i1l bfl G

word in e €900 8ol s which all commute with N , it
O IS 2

follows that fne N'ny M2n+i . Note also that»ﬁince ~e2ﬂ

M, Yoy I e, commutes with g i e
SEEEe e el R

.S.::S
P
a
d
¥

that g has the same length as g, and thus by lemn

Ffurther lemma 2.3 imnlies that (gn
) O

= (e Fos 8, _ChH R e e . e 8 e, g
( wn«i( 2n Past el n el 2n-4 Zn)“nwi

e g
n n+l 2n-1

o

g : SR ne : .
<@2n~1"’en) 2 L8 (Onen+ﬂ“°62n~1>“n~1ﬁ2ngn~1(02nmﬂ'"On) =

T . 0 o B
o (dnan+i°'ﬁ2n)(ﬁn*i) (QEnmﬁ”'en) &



JER

0 W e @ L oAl O

. A - < 0 e? )8 uui( 20— 1“@n) = A anign Byt

¢ . ; 0] y - e : ; 5 i %
Mapai -t o i is a selfadjoint projection in N'a M

n e ?n+1

Next we apply recursively lemma 2.5 to get

(n+1)+n., o ;
A Biyg (gnwg) =

b e : ge)

(n+a) +nt. .42
n A i

C
n

D

~

sinmed that m s E=owe .

Moreover by [171 -, [y2n+izmn]

o T [1"ﬂ. R i ‘15 e [
N1 S e L :N] .

04ign

il
7y
i
2 j
-
?:~
"3
it

By proposition 1.2 the rest of the properties of £ follow

_Mﬂt01 treally.

Bhsie wd,

‘

0) @ =

2.7 Remark We could includeithe proof of g = g
in the induction argument. Indeed by Temme 2.3 and us JH”
e _ v i ’

g = and Eegn,@ﬁﬂﬂl = 0o we get
¥ o £
g e e ol . e, e. P e
(“q) n n+ld ?n<-n~ﬂ) “2n-1"2n-2 n
2 dpile o e e e
Skl 2 R 7

-
.
A

Ve pnrefered however the deductive argument of lemmas 2.1
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o
Some
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me properti of

In this section we derive some consecuences on the in-

clusion sz?ﬂﬁ :

entropy H(MIN)

iniM

e |
Whnelnl

-

Pal=t (ef. 13

entropy. from 1 5o 1

3.l Theorvemw 1

£ H(¥IN

7pwﬁx , for, every

first prove

Proof:

4.4 in 137 and theorem 2.6

] 4] l,l*“'-ﬁ é
U"’,’f{ !s\’hw ( ‘ﬁ n ) o ?\ ‘L.i“w'
Eooraes R e ABE
o ' u we hav
¢ D Tonsd o
Sty
L= S W 8711 el
“nwfﬁ
“o 2 O 4 ] {iEL)
e and = B,
Al 3

We consider the
considered in 37

:N1 . An important case wh

)

e

'when the relative
H(WIN) =i

this eguality occurs

aan

satiafies

& 3 ey
L S

1

first we compute the relative

e

H(Hn+k\%k«§>

then

s lgsparbiculiae

W VWieg) = Infm 3,1 , for

N)

R -

I
o

() = 1w :N7 .

it is enough to prove that

Ty oy
g

e e o r‘ﬁ SOt ¢ i 20+ «
B oo = e s
TRt Ol n““2m+&'

Since e appears only once

follows

it
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7 by o o, | U :
e i ] ?\:5 0 e oo \ N (e Ldg v~, 2 2
i n"2n%ﬁ. < - 20+ > o+l

v (egnegﬁﬂﬁ.aén) « Using now the same computations as in

: eam s s : ; O n+l 1
the proof ot 2.6 1% fallows that B, W (g,) =4 Cain

By dinduction it follows thet

n+f.. - A Wb - 1 2
=4 o Mt <gn~ﬁ> = A A 'QW‘ all <gr@%> iz
2n+ﬂ L 9n+ﬁ e : 2net T
Hkd ) 4n+ . o+ 5 : o 5 N4
e k(u&€)4lT Y- T end thus Byt it (L3 =& ir
' ‘n’ 2ned
Pron o cafunlitias e o e R e . ;'
From the edualities H(Hﬂia) = 1ntﬂn.m1 =y hngg H &

WﬁEA by 83,7 #nd 4.1 in [3 we deduce
047 en e :
141 ; :

S ln[%izﬁi“ﬂ] = H(HAN) & 3 HH,

0% iﬁiﬁl : 0&"&'1

< g; 1ﬁt“izﬁi-41 . Thus all these inequalities 8re egus-—.
O%l&n : Lol

lities and from H(H, x it follows that

Toofact HIM N = Inil i ' _for o o,

The eeneral foraula HM -\ ) = 1af

‘follows now easily by

it
&
(= 7

3ee Corollary let NCW be a8 it theorem 3.0 .

Jn be the canonics

on L“(Knyﬁ) . Suppose
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