INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

ONE SUBSPACE

by

Silviu TELEMAN

PREPRINT SERIES IN MATHEMATICS

No.38/1986

bed 23741

ONE SUBSPACE

by

Silviu TELEMAN*)

June 1986

^{*)} University of Bucharest, Faculty of Mathematics, Str. Academiei 14, 79543 Bucharest, ROMANIA.

ONE SUBSPACE

by Silviu TELEMAN

0. In [3] M.A.Rieffel and A. van Daele gave a bounded operator approach to the Tomita-Takesaki Theory, which has as a starting frame a closed real vector subspace $\mathbf X$ of the complex Hilbert space $\mathbf X$, satisfying the "non-degeneracy" conditions

and

b)
$$(\mathcal{K} + i\mathcal{K})^{\perp} = \{0\}$$
.

Conditions a) and b) are slightly less restrictive than the "general position" condition for a pair of closed vector subspaces K, X c. C. W. of the real, or complex, Hilbert space K, all over the same field scalars, studied by P.R. Halmos in [1], for which a "graph representation" was obtained (see [1], Theorem 3; [3], Theorem 2.4).

In the present Note we shall give a similar "graph representation Theorem for the case of the closed real vector subspace K of the coplex Hilbert space K, satisfying the "non-degeneracy" conditions a) and b). With its help, we hope to satisfy the desire expressed in ([p.200]) for a geometric characterization of the modular group $\mathbb{R} \ni t \mapsto \Delta^{\mathrm{i}t}$, corresponding to K.

Namely, we shall prove that any pair, consisting of a strongly continuous one-parameter unitary group

and a conjugation J: H > H, such that

$$Ju_{t} = u_{t}J$$
, $t \in \mathbb{R}$,

derives from a closed real vector subspace KcK, satisfying the non-degeneracy conditions a) and b) above, by the construction given in (see, also, [2], p. 371). Moreover, K is uniquely determined by the pai:

1.Let K be any complex Hilbert space. A <u>conjugation</u> in K is any anti-linear mapping $J: \mathcal{H} \to \mathcal{H}$, such that

$$(Jx)Jy) = (y|x), x, y \in \mathcal{X},$$

and $J^2 = 1.1t$ immediately follows that $J^* = J$ and, therefore, J is a symmetry of the real Hilbert space $\mathcal{K}_{\mathcal{R}}$, obtained from \mathcal{K} by restricting the scalars to \mathcal{R} and by endowing it with the real scalar product

i.e., J is an orthogonal self-adjoint continuous linear operator in $\mathcal{H}_{R^{\bullet}}$

LEMMA 1. Any conjugation J of % decomposes uniquely as the difference

$$(1) J = J_{+} - J_{-}$$

of two real projections J, ,J & L(H,), such that

$$(2) 1 = J_{+} + J_{-}.$$

Moreover, we have

(3)
$$J_{+}i = iJ_{-}, \quad J_{-}i = iJ_{+}.$$

Proof.Let us define

(*)
$$J_{+} = \frac{1}{2}(1+J), \quad J_{-} = \frac{1}{2}(1-J).$$

It is obvious that conditions (1) and (2) are satisfied. Moreover, we have

$$J_{+}^{*} = J_{+}$$
 and $J_{-}^{*} = J_{-}$,

(either in \mathcal{H}_{R} or in \mathcal{H}) and $J_{+}^{2} = J_{+}$, $J_{-}^{2} = J_{-}$. From the definition (*) it immediately follows that relations (3) hold too.

Conversely, conditions (1) and (2) uniquly determine the operators J_{+} and J_{-} .

Let now $P_1 \in \mathcal{L}(\mathcal{H})$ be a complex projection; then it is obvious that $P_0 = JP_1J$ is also a complex projection. We shall assume that

$$P_0P_1 = 0$$
,

and we shall denote $Q_0 = 1 - P_0 - P_1$. It is obvious that Q_0 is a complex projection, such that $JQ_0J = Q_0$.

It immediately follows that $Q_+ = Q_0 J_+$ (= $J_+ Q_0$) and $Q_- = Q_0 J_-$ (= $J_- Q_0$ are real projections, such that

$$Q_0 = Q_+ + Q_-, \quad Q_+Q_- = 0.$$

We shall denote $\mathcal{H}_0 = P_0(\mathcal{H})$, $\mathcal{H}_1 = P_1(\mathcal{H})$, $\mathcal{H}_+ = Q_+(\mathcal{H})$ and $\mathcal{H}_- = Q_-(\mathcal{H})$. Then we have the real orthogonal decomposition $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_+ \oplus \mathcal{H}_-$.

From $iQ_{+} = Q_{-}i$ and $iQ_{-} = Q_{+}i$ we immediately infer that $i\mathcal{H}_{+} = \mathcal{H}_{-}i\mathcal{H}_{-} = \mathcal{H}_{+}$; and also

$$\mathcal{H}_{+} = \left\{ \times \in \mathbb{Q}_{0}(\mathcal{K}) ; Jx = x \right\},$$

$$\mathcal{H}_{-} = \left\{ \times \in \mathbb{Q}_{0}(\mathcal{K}) ; Jx = -x \right\}.$$

It immediately follows that

$$x,y \in \mathcal{H}_{+} \Rightarrow (x|y) = \langle x|y \rangle,$$
 $x,y \in \mathcal{H}_{-} \Rightarrow (x|y) = \langle x|y \rangle,$
 $x \in \mathcal{H}_{+}, y \in \mathcal{H}_{-} \Rightarrow \langle x|y \rangle = 0.$

We shall now consider the \underline{real} Hilbert space $\mathcal{H}_1 \oplus \mathcal{H}_+$ and we shall define the \underline{real} linear isometry

$$U:\mathcal{H}\to (\mathcal{H}_1\oplus\mathcal{H}_+)\oplus (\mathcal{H}_1\oplus\mathcal{H}_+)$$

by the formula

(1) $Ux = (P_1x + \frac{1}{\sqrt{2}}Q_+x + \frac{1}{\sqrt{2}}Q_-x, JP_0x + \frac{1}{\sqrt{2}}Q_+x - \frac{1}{\sqrt{2}}Q_-x),$ for $x \in \mathcal{H}$. It is easy to see that for any pair $(x_1' + x_+', x_1' + x_+'') \in \mathcal{H}_+ \mathcal{H}_+$

which is a proof for the surjectivity of U.

In the space ($\mathcal{H}_1\Theta\mathcal{H}_+$) Θ ($\mathcal{H}_1\Theta\mathcal{H}_+$) one can introduce the structure of a complex vector space by defining the multiplication by i ,by the formula

(3)
$$(x_1'+x_+',x_1'+x_+'') \mapsto (ix_1'-x_+'',-ix_1'+x_+').$$

With this definition we have

$$U(ix) = iU(x)$$
,

hence, U becomes C -linear.

In order to ensure that U preserve the scalar product, one has to define the complex scalar product in the complex vector space

by the formula

$$(4) \begin{array}{l} ((x_{1}^{\prime}+x_{+}^{\prime},x_{1}^{\prime\prime}+x_{+}^{\prime\prime})) & (y_{1}^{\prime}+y_{+}^{\prime},y_{1}^{\prime\prime}+y_{+}^{\prime\prime})) = \\ & = (x_{1}^{\prime}(y_{1}^{\prime})+(y_{1}^{\prime\prime}(x_{1}^{\prime\prime})+(x_{+}^{\prime\prime}(y_{+}^{\prime})+(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})-i(x_{+}^{\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime})+i(x_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{+}^{\prime\prime})+i(x_{+}^{\prime\prime})+i(x_{+}^{\prime\prime})+i(x_{+}^{\prime\prime}(y_{+}^{\prime\prime})+i(x_{$$

The corresponding real scalar product is given by the formula

$$\langle (x_1' + x_+', x_1'' + x_+'') | (y_1' + y_+', y_1'' + y_+'') \rangle =$$

= $\langle x_1' | y_1' \rangle + \langle x_1'' | y_1'' \rangle + \langle x_+' | y_+' \rangle + \langle x_+'' | y_+'' \rangle$;

hence, the real Hilbert space structure of the space

derived from its <u>complex</u> Hilbert space structure, coincides with that given by the direct Hilbert sum of its components, regarded as real Hilbert spaces.

2.Let now KCH be any closed <u>real</u> vector subspace of H , satisfying conditions a) and b), in section 0.

As in [3], we shall denote by P, respectively Q, the real projection onto $\mathbb X$, respectively onto i $\mathbb X$, and we shall define

$$R = P + Q$$

whereas JT = P-Q will stand for the polar decomposition of the difference P-Q. Then J is a conjugation of \mathcal{H} , R and T are (complex) line operators in $\mathcal{L}(\mathcal{H})$, related by the equality

$$T = (2 - R)^{1/2} R^{1/2}$$

(We recall that $0 \le R \le 2$, whereas R and 2-R are injective). Moreover, we have that

$$JP = (1-Q)J$$
, $JQ = (1-P)J$;

hence, JR = (2-R)J; and JT = TJ, Pi = iQ, Qi = iP.We refer to [3] for the proofs of these assertions.

The "modular operator" A is introduced by the formula

$$\Delta = (2 - R) R^{-1}$$

and it is defined on $\mathcal{Q}(\Delta) = \mathcal{R}(P)$. It is obvious that we also have $\Delta = R^{-1}(2-R) = 2R^{-1}-1$, and Δ is a positive injective self-adjoint operator, which can also be defined by the functional calculus

$$\Delta = f(R),$$
 $f:(0,+\infty) \ni t \mapsto t^{-1}(2-t).$

In general, Δ is an <u>unbounded</u> self-adjoint operator, for which we sha denote by $(E_{\Lambda}(\lambda))_{\lambda \in R}$ the spectral scale. We recall that we have $(\Delta x | y) = \int_{\Omega} \lambda d(E_{\Delta}(\lambda) x | y), \quad x \in \mathcal{D}(\Delta), y \in \mathcal{H},$

and

$$x \in \mathcal{Q}(\Delta) \iff \int_{\mathcal{Q}} \lambda^2 d \| E(\lambda) x \|^2 < +\infty$$
.

It is easy to prove that we have

(see [2], Lemma 8.13.4).

3. In order to obtain our graph representation Theorem for the subspace K , we shall slightly modify the proof of Theorem 2.4 from [3] The changes are necessary, due to the fact that the non-degeneracy conditions for K do not imply, in general, that K and iK are in "general position".

Let us denote $P_1 = \chi_{(1,2](R)}$ and $P_0 = \chi_{(0,1)}(R)$. It is obvious that we have

(1)
$$P_1 = \chi_{(0,1)}(\Delta),$$

and, also, that we have PoPl = o; as above, we define

$$Q_0 = 1 - P_0 - P_1$$
.

Let us denote by $(\mathbb{E}_{\mathbb{R}}(\lambda))$ the spectral scale of \mathbb{R} ; then, from the equality JRJ = 2-R, we infer that

$$JE_{R}(\lambda)J = E_{JRJ}(\lambda) = E_{2-R}(\lambda) = 1 - E_{R}(2 - \lambda - 0), \quad \lambda \in \mathbb{R}.$$

If we denote by \mathcal{H}_i the range of the projection P_i , i = 0,1, then, from the equalities

$$\mathcal{H}_1 = \{ x \in \mathcal{H} ; E_R(\lambda) x = 0, \forall \lambda \leq 1 \}$$

and

$$\mathcal{K}_{0} = \left\{x \in \mathcal{K}; E_{R}(1-0)x = x\right\},$$

we immediately infer that

$$J(\mathcal{H}_1) = \mathcal{H}_0$$
 and $J(\mathcal{H}_0) = \mathcal{H}_1$.

On the other hand, from the equality

$$Q_0 = \chi_{\{1\}}(R)$$
,

we immediately infer that

$$Q_o(\mathcal{H}) = \{x \in \mathcal{H}; Rx = x\}$$

and also that

$$Q_0(\mathcal{H}) = \{x \in \mathcal{B}(\Delta) ; \Delta x = x \}$$
.

It is obvious that $J(Q_o(\mathcal{H})) = Q_o(\mathcal{H})$.

As in section 1, we have the canonical decomposition $J = J_+ - J_-$, and we shall denote

$$Q_{+} = Q_{0}J_{+} = J_{+}Q_{0},$$

$$Q_{-} = Q_{0}J_{-} = J_{-}Q_{0},$$

$$\mathcal{H}_{+} = Q_{+}(\mathcal{H}) = \left\{ \times \in Q_{0}(\mathcal{H}) ; Jx = x \right\},$$

$$\mathcal{H}_{-} = Q_{-}(\mathcal{H}) = \left\{ \times \in Q_{0}(\mathcal{H}) ; Jx = -x \right\}.$$

Of course, the results obtained in section 1 apply in this situation.

(here the orthogonal complement is taken with respect to the real scalar product).

Proof.Indeed, for $x \in \mathcal{H}_+$ we have that Rx = x and $Q_+x = x$. It follows that Px + Qx = x; hence, Tx = x, and $J_+x = x$. This implies that Px - Qx = JTx = Jx = x and, therefore, Px = x and Qx = x. It follows that $x \in \mathcal{H}_+$. The second equality has a similar proof.

Let C_1 be the restriction of $\Delta^{1/2}$ to \mathcal{H}_1 ; in fact, it is easy to see that \mathcal{H}_1 $CD(\Delta)$ $CD(\Delta^{1/2})$ and, of course, we have that $C_1(\mathcal{H}_1)$ $C\mathcal{H}_1$. It follows that C_1 is a bounded operator in $\mathcal{L}(\mathcal{H}_1)$, such that $C \in \mathcal{L}_1$ and both C_1 and C_1 are injective.

$$\underline{\text{LEMMA}}_{\underline{3}}. \quad P(\mathcal{H}_{\underline{1}}) = (1 + JC_{\underline{1}})(\mathcal{H}_{\underline{1}}).$$

Proof. For xe H1 we have Rxe H1 and

$$2Px = (R + JT)x = (R + JR^{1/2}(2 - R)^{1/2})x =$$

$$= (1 + JC_1)Rx \in (1 + JC_1)(\mathcal{H}_1).$$

We infer that

Let now $x \in (1 + JC_1)(\mathcal{H}_1)$; then $x = (1 + JC_1)x_1$, where $x_1 \in \mathcal{H}_1$ and, therefore, since $R(\mathcal{H}_1) = \mathcal{H}_1$, there exists an $x_0 \in \mathcal{H}_1$, such that $x_1 = Rx_0$. It follows that

$$x = (1 + JC_1)Rx_0 = 2Px_0 \in P(\mathcal{K}_1).$$

We infer that

and the Lemma is proved.

$$\underline{\underline{\text{LEMMA}}}_{\underline{4}}$$
. $P(\mathcal{H}_{0}) \subset (1 + JC_{1})(\mathcal{H}_{1})$.

<u>Proof.</u> For $x_0 \in \mathcal{H}_0$ we have $x_0 = Jx_1$, where $x_1 \in \mathcal{H}_1$; therefore, $Tx_1 \in \mathcal{H}_1$. On the other hand, we have

$$\begin{split} &2Px_{0} = (R + JT)x_{0} = (R + JT)Jx_{1} = (RJ + T)x_{1} = \\ &= (J(2 - R) + T)x_{1} = (J(2 - R) + (2 - R)^{1/2}R^{1/2})x_{1} = \\ &= (J(2 - R)^{1/2}R^{-1/2} + 1)(2 - R)^{1/2}R^{1/2}x_{1} = \\ &= (1 + JC_{1})Tx_{1} \in (1 + JC_{1})(\mathcal{H}_{1}). \end{split}$$

The Lemma is proved.

From P(\mathcal{H}_+) = \mathcal{H}_+ , P(\mathcal{H}_-) = { o } and from the (real orthogonal) decomposition

we infer that .

(1)
$$K = P(K) = P(K_1) + P(K_+) + P(K_-) + P(K_0) \supset (1 + JC_1)(K_1) + H_+$$
,

where we have taken into consideration Lemma 3; and also we have that

(2)
$$K \subset (1 + JC_1)(H_1) + H_+$$

by taking into account Lemma 4.

LEMMA 5. We have the orthogonal decomposition

$$\mathcal{K} = (1 + JC_1)(\mathcal{K}_1) \oplus \mathcal{K}_+$$

with respect to the complex scalar product.

Proof. From inclusions (1) and (2) above we infer that we have

On the other hand, for $x_{+} \in \mathcal{H}_{+}$ and $x_{1} \in \mathcal{H}_{1}$, we have

(1)
$$\frac{((1 + JC_1)x_1 x_+) = ((1 + JC_1)x_1 Rx_+) = ((R + RJC_1)x_1 x_+) =}{((R + J(2 - R)C_1x_1 x_+).}$$

Since $(2-R)C_1x_1\in\mathcal{H}_1$, we have $J(2-R)C_1x_1\in\mathcal{H}_0$ and, therefore, we have that

From

and from (1) we infer that

$$((1 + JC_1)x_1 x_+) = 0$$
, $\forall x_1 \in \mathcal{H}_1$, $x_+ \in \mathcal{H}_+$,

and the Lemma is proved.

Remark. Since we have that $P_1 = \chi_{(0,1)}(\Lambda)$, $Q_0(\mathcal{H}) = \{\chi \in \mathcal{D}(\Lambda); \Lambda = \chi \}$ and $Q_+ = Q_0 J_+$, from the preceding Lemma and from the definition of C_1 we immediately infer that the conjugation J and the modular operator Λ uniquely determines the (real) Hilbert subspace $\mathcal{H} \in \mathcal{H}$

Below we shall prove that for any pair (Δ,J) , consisting of an injective positive self-adjoint operator $\Delta:\mathfrak{D}(\Delta)\to\mathcal{K}$ and a conjugation $J:\mathcal{K}\to\mathcal{K}$, such that $J\Delta J=\Delta^{-1}$, there exists a (real) Hilbert subspace $Kc\mathcal{K}$, satisfying the non-degeneracy conditions a) and b), such that Δ and J be the modular operator, and the conjugation, corresponding to K by the Rieffel-van Daele construction. The preceding Lemma then shows that such a subspace K is uniquely determined by the pair (Δ,J) .

4. We shall now use the constructions given in section 1 for the projections $P_1 = \chi_{(1,2]}(R)$, $P_2 = \chi_{(2,1)}(R)$, $Q_3 = (1 - P_3 - P_3)J_3$, $Q_4 = (1 - P_3 - P_3)J_4$, $Q_5 = (1 - P_3 - P_3)J_4$, $Q_5 = (1 - P_3 - P_3)J_4$, $Q_5 = (1 - P_3 - P_3)J_5$, $Q_5 = (1 - P_3)J_5$, $Q_5 = ($

- P_0 - $P_1)J_-$.We shall consider the real Hilbert space \mathcal{H}_1 $\oplus\mathcal{H}_+$ and the complex linear isometry

defined, as in section 1, by the formula

(1) $Ux = (P_1x + \frac{1}{\sqrt{2}}Q_+x + \frac{1}{\sqrt{2}}Q_-x, JP_0x + \frac{1}{\sqrt{2}}Q_+x - \frac{1}{\sqrt{2}}Q_-x),$ for any $x \in \mathcal{H}$. Of course, the results obtained in section 1 apply to this particular case.

Easy computations give the following formulae, by which the operators on $\mathcal U$, introduced above, are transferred to ($\mathcal U_1\mathcal G\mathcal U_+$) $\mathcal G$ ($\mathcal U_1\mathcal G\mathcal U_+$)

(1) $(UPU^{-1})(x_1'+x_1',x_1'+x_1') =$ $= (\frac{1}{2}(Rx_1'+Tx_1')+\frac{1}{2}(x_1'+x_1'),\frac{1}{2}(Tx_1'+(2-R)x_1'+\frac{1}{2}(x_1'+x_1'))$ $(UQU^{-1})(x_1'+x_1',x_1'+x_1') =$

 $= \left(\frac{1}{2} (Rx_{1}' - Tx_{1}') + \frac{1}{2} (x_{+}' - x_{+}'), \frac{1}{2} ((2-R)x_{1}' - Tx_{1}') + \frac{1}{2} (x_{+}' - x_{+}') \right)$

(3) $(URU^{-1})(x'_1+x'_+,x'_1'+x'_+') = (Rx'_1+x'_+,(2-R)x'_1'+x'_+'),$

(4) $(U\Delta U^{-1})(x_1'+x_+',x_1''+x_+'') = (\Delta x_1'+x_+',\Delta^{-1}x_1''+x_+''),$

(5) $(U \Delta^{it}U^{-1})(x_1'+x_+',x_1''+x_+'') = (\Delta^{it}x_1'+x_1',\Delta^{it}x_1''+x_+''), t \in \mathbb{R}.$

The conjugation J in $\mathcal K$ is transferred to the space ($\mathcal H_1$ $\oplus \mathcal H_+$) \oplus ($\mathcal H_1$ $\oplus \mathcal H_+$) by the formula

(6) $(UJU^{-1})(x'_1+x'_+,x'_1'+x'_+') = (x'_1'+x'_+,x'_1+x'_+);$

i.e., $S = UJU^{-1}$ is the <u>natural symmetry</u> in the space $(\mathcal{H}_1 \oplus \mathcal{H}_+) \oplus (\mathcal{H}_1 \oplus \mathcal{H}_+)$.

We shall now define the operator $C_1 \in \mathcal{L}(\mathcal{H}_1 \oplus \mathcal{H}_+)$ by the formula $C_1(x_1+x_+) = C_1x_1 + x_+$, $x_1 \in \mathcal{H}_1$, $x_+ \in \mathcal{H}_+$.

It is obvious that we have $0 \le C_1 \le 1$.

Remark. Since $\Delta x = x$, for any $x \in \mathcal{H}_+$, we can also define C_1 to be t restriction and corestriction of $\Delta^{1/2}$ to $\mathcal{H}_1 \oplus \mathcal{H}_+$.

The following Theorem exhibits the subspaces K and iK as graph of bounded operators and is, therefore, an extension of Theorem 3 from [1] (see, also, [3], Theorem 2.4).

THEOREM 1. a) $U(\mathbf{X}) = \Gamma(\widetilde{\mathbf{C}}_1)$; b) $U(i\mathbf{X}) = \Gamma(-\widetilde{\mathbf{C}}_1)$.

Proof. a) By Lemma 5, any $x \in \mathcal{K}$ is of the form

$$x = (1 + JC_1)x_1 + x_4$$

where $x_1 \in \mathcal{H}_1$ and $x_+ \in \mathcal{H}_+$. We then have

$$\begin{array}{c} \text{Ux} = (P(1+JC_1)x_1 + P_1x_+ + \frac{1}{\sqrt{2}}Q_+(1+JC_1)x_1 + \frac{1}{\sqrt{2}}Q_+x_+ + \frac{i}{\sqrt{2}}Q_-(1+JC_1)x_1 + \\ + \frac{i}{\sqrt{2}}Q_-x_+, JP_0(1+JC_1)x_1 + JP_0x_+ + \frac{1}{\sqrt{2}}Q_+(1+JC_1)x_1 + \frac{1}{\sqrt{2}}Q_+x_+ - \frac{i}{\sqrt{2}}Q_-(1+JC_1)x_1 \\ - \frac{i}{\sqrt{2}}Q_-x_+) = (x_1^2 + \frac{1}{\sqrt{2}}x_+, C_1x_1 + \frac{1}{\sqrt{2}}x_+) = (x_1^2 + \frac{1}{\sqrt{2}}x_+, C_1(x_1^2 + \frac{1}{\sqrt{2}}x_+)) \in \\ & \in \Gamma(\widetilde{C}_1), \qquad \forall \ x \in \mathcal{K}. \end{array}$$

Conversely, it is easy to see that any $\widetilde{x} \in \Gamma(\widetilde{C}_1)$ is the image of an $x \in \mathcal{K}$; hence, $U(\mathcal{K}) = \Gamma(\widetilde{C}_1)$.

b) For any x ϵ K, by taking into account the complex vector space structure of ($K_1\Theta K_+$) Θ ($K_1\Theta K_+$), introduced in section 1, we get that

$$\begin{split} U(\mathrm{i} x) &= \mathrm{i} U x = \mathrm{i} (x_1 + \frac{1}{\sqrt{2}} x_+, C_1 x_1 + \frac{1}{\sqrt{2}} x_+) = \\ &= (\mathrm{i} x_1 - \frac{1}{\sqrt{2}} x_+, -\mathrm{i} C_1 x_1 + \frac{1}{\sqrt{2}} x_+) = \\ &= (x_1' + x_+', -C_1 x_1' - x_+') \in \Gamma(-\widetilde{C}_1), \quad \forall \ x \in \mathcal{K}. \end{split}$$

As above, we infer that $U(i\mathcal{K}) = \Gamma(-\widetilde{C}_i)$.

5. As in the paper of Rieffel and van Daele, one can consider the operators $S:\mathcal{D}(S)\to\mathcal{H}$ and $F:\mathcal{D}(F)\to\mathcal{H}$, given by

- (1) $\mathfrak{D}(S) = \mathbb{K} + i\mathbb{K}$, S(x+iy) = x-iy; $x,y \in \mathbb{K}$, and
- (2) $\mathcal{D}(F) = K' + i K'$, F(x+iy) = -x+iy; $x, x \in K'$. (it is clear that (iK)' = iK', and that the pair (iK', K') also satisfies the non-degeneracy conditions a) and b)). As remarked in [3] it is obvious that S and F are closed, densely defined operators; of course, they are also antilinear due to the fact that here we work wit the particular case of a complex Hilbert space.

It is easy to see that the real projections, corresponding to the pair (i K, K), are given by

$$P' = 1 - Q$$
, $Q' = 1 - P$.

(P'is the real projection operator onto iK, whereas Q' is the real projection operator onto K). The corresponding operators R,T,J are then given by the formulae

$$R' = 2 - R,$$
 $J' = J, T' = T,$

whereas $\Delta' = \Delta^{-1}$. It is easy to see that the corresponding closed coplex vector subspaces of $\mathcal H$ are $\mathcal H_1 = \mathcal H_0$, $\mathcal H_0 = \mathcal H_1$, $\mathcal H_+ = \mathcal H_+$ $\mathcal H_-$, and, therefore, we have

with an obvious notation.

6.Let us now remark that we have the inclusion $\mathcal{H}_1 \subset \mathcal{O}(\Delta)$ and that $\Delta_1 = \Delta \setminus \mathcal{H}_1$ is an injective positive operator in $\mathcal{L}(\mathcal{H}_1)$, such that $0 \leq \Delta_1 \leq 1$. This remark, together with the preceding calculations, will enable us to give a better presentation for the K.M.S. phenomeno

Remark. It is obvious that $1-\Delta_1$ is also injective in \mathcal{H}_1 .

Indeed, since Δ is injective and positive, we can define the self-adjoint densely defined operator $h=\ln \Delta$.Of course, we have that Δ = e^h , and we can also consider the <u>normal</u> densely defined operator

$$\Delta^{iz} = e^{izh}$$
, $z \in C$.

By taking into account formulae (4) and (5) from section 5, we infe that, by defining $W_z = U \Delta^{iz} U^{-1}$, for $z = u + iv \in C$, we have

$$\begin{split} \mathbb{W}_{\mathbf{Z}}(\mathbf{x}_{1}^{\prime}+\mathbf{x}_{+}^{\prime},\mathbf{x}_{1}^{\prime}'+\mathbf{x}_{+}^{\prime}') &= (\boldsymbol{\Delta}_{1}^{\mathrm{i}\mathbf{u}-\mathbf{v}}\mathbf{x}_{1}^{\prime}+\mathbf{x}_{+}^{\prime},\boldsymbol{\Delta}_{1}^{\mathrm{i}\mathbf{u}+\mathbf{v}}\mathbf{x}_{1}^{\prime}'+\mathbf{x}_{+}^{\prime}')\;,\\ \text{for any } \mathbf{x}_{1}^{\prime},\mathbf{x}_{1}^{\prime}\in\mathcal{U}_{1}\;,\mathbf{x}_{+}^{\prime},\mathbf{x}_{+}^{\prime}\in\mathcal{H}_{+}\;,\text{if } \mathbf{x}_{1}^{\prime}\in\mathcal{D}\;(\boldsymbol{\Delta}_{1}^{\mathrm{v}})\;,\;\mathbf{x}_{1}^{\prime}\in\mathcal{D}\;(\boldsymbol{\Delta}_{1}^{\mathrm{v}})\;.\\ \text{With formula (2) from section 4, we infer that we have} \end{split}$$

for any $x_1' \in \mathcal{D}(\Delta_1^{-v})$, $x_1' \in \mathcal{D}(\Delta_1^v)$, y_1' , y_1' , $y_1' \in \mathcal{U}_1$, x_1'

$$(W_{z}(x_{1}'+x_{+}',x_{1}''+x_{+}''))((y_{1}'+y_{+}',y_{1}''+y_{+}'')) =$$

$$= (\Delta_{1}^{iz}x_{1}'(y_{1}') + (\Delta_{1}^{-iz+1}y_{1}'(x_{1}') + 2(x_{+}''y_{+}'),$$

and this formula immediately yields another proof of Proposition 3.7 from [3].

7.In this section we shall prove that for any one-parameter stron ly continuous unitary group Rot \mapsto u_t \in $\mathcal{L}(\mathcal{H})$, on the complex Hilber space \mathcal{H} , and any conjugation $J_{o}:\mathcal{H}\to\mathcal{H}$, such that

$$u_t J_0 = J_0 u_t , \quad t \in \mathbb{R} ,$$

there exists a closed real Hilbert subspace \mathcal{K}_{o} , such that

a) $K_0 \wedge (iK_0) = \{o\}$ and b) $(K_0 + iK_0)^{\frac{1}{2}} = \{o\}$, and such that $(u_t)_{t \in \mathbb{R}}$ be the modular group $(\Delta^{it})_{t \in \mathbb{R}}$, corresponding to K_0 , whereas J_0 be the corresponding conjugation. By the Remark following Lemma 5, the subspace K_0 is uniquely determined by the pair $((u_t)_{t \in \mathbb{R}}, J_0)$.

Indeed, by the Stone Representation Theorem, there exists a self-adjoint densely defined operator $h:\mathcal{D}(h)\to\mathcal{H}$, such that

$$u_t = e^{ith}$$
, $t \in \mathbb{R}$, $(\mathfrak{D}(h) \subset \mathcal{H})$.

From the commutation condition (1) we immediately infer that

$$J_0hJ_0 = -h;$$

if we denote by $\mathbf{E}_{\mathbf{h}}$ the spectral scale of \mathbf{h} , from (2) we obtain that

$$J_o E_h(\lambda) J_o = 1 - E_h(-\lambda - 0)$$
, $\lambda \in \mathbb{R}$

Let $P_1 = E_h(-o)$, $P_0 = J_0 P_1 J_0 = 1 - E_h(o)$, and $Q_0 = 1 - P_0 - P_1$. We can now apply the constructions described in section 1. We, moreover, remark that we have

and

 $(x \in \mathcal{Q}(h) \text{ and } h(x) = 0) \iff x \in \mathcal{H}_{\bullet} \oplus \mathcal{H}_{\bullet}.$

Since the mapping $U_0:\mathcal{H}\to (\mathcal{H}_1\oplus\mathcal{H}_+)\oplus (\mathcal{H}_1\oplus\mathcal{H}_+)$ is given by

(3) $U_0 x = (P_1 x + \frac{1}{\sqrt{2}}Q_+ x + \frac{i}{\sqrt{2}}Q_- x, J_0 P_0 x + \frac{1}{\sqrt{2}}Q_+ x - \frac{i}{\sqrt{2}}Q_- x),$ the inverse mapping U_0^{-1} is given by the formula

 $U_0^{-1}(x_1'+x_1',x_1''+x_1'') = x_1'+J_0x_1''+\frac{1}{\sqrt{2}}(x_1'+x_1'')-\frac{i}{\sqrt{2}}(x_1'-x_1'').$ Of course, $S_0=U_0J_0U_0^{-1}$ is the natural symmetry, given by

(4)
$$S_0(x_1'+x_+',x_1''+x_+'') = (x_1''+x_+'',x_1'+x_+'),$$

for any xi, xi'e H1, xi, xi'e H4.

Let us now remark that we have

$$o \leq P_1 e^h \in P_1$$
;

whereas P_1e^h and $P_1-P_1e^h$ are injective in \mathcal{H}_1 .

We shall define a bounded IR-linear operator

$$\widetilde{D}_1$$
 $\mathcal{H}_1 \otimes \mathcal{H}_+ \rightarrow \mathcal{H}_1 \otimes \mathcal{H}_+$

by the formula

 $\widetilde{D}_1(x_1+x_+)=e^{(1/2)h}x_1+x_+\,,\qquad x_1\in\mathcal{H}_1\,,\ x_+\in\mathcal{H}_+.$ Of course, we have that $0\leq\widetilde{D}_1\leq 1$ in $\mathcal{H}_1\mathcal{OH}_+$, and the graph $\Gamma(\widetilde{D}_1)$ of \widetilde{D}_1 is a closed real subspace of $(\mathcal{H}_1\mathcal{OH}_+)\mathcal{O}(\mathcal{H}_1\mathcal{OH}_+)$, which we shall denote by \mathcal{K}_0 . By taking into account the definition of the corplex vector space structure of $(\mathcal{H}_1\mathcal{OH}_+)\mathcal{O}(\mathcal{H}_1\mathcal{OH}_+)$, we can easily prove that i $\mathcal{K}_0=\Gamma(-\widetilde{D}_1)$.

We shall prove that the pair ($K_{\rm o}$, i $K_{\rm o}$) satisfies the non-degeneracy conditions

and

Indeed, for $(x_1+x_+,e^{(1/2)h}x_1+x_+)\in iK_0$, we infer that there exists an $x_1\in \mathcal{H}_1$, and an $x_1\in \mathcal{H}_+$, such that

 $(x_1+x_+, e^{(1/2)h}x_1+x_+) = (y_1+y_+, -e^{(1/2)h}y_1-y_+),$

whence we infer that $x_1 = 0$ and $e^{(1/2)h}x_1 = 0$. It follows that $x_1 = 0$, and so relation a) is proved.

In order to prove relation b'), we shall prove that $K_0+i\,K_0$ is densin $(\mathcal{H}_1\mathcal{O}\mathcal{H}_+)\mathcal{O}(\mathcal{H}_1\mathcal{O}\mathcal{H}_+)$, by showing that the <u>complex</u> orthogonal complement of $K_0+i\,K_0$ in $(\mathcal{H}_1\mathcal{O}\mathcal{H}_+)\mathcal{O}(\mathcal{H}_1\mathcal{O}\mathcal{H}_+)$ is equal to $\{o\}$. Indeed, this is an immediate consequence of the equalities

$$\mathcal{K}_{o} = \Gamma(\widetilde{D}_{1})$$
, $i\mathcal{K}_{o} = \Gamma(-\widetilde{D}_{1})$,

and of the fact that $e^{(1/2)h}$ is injective in \mathcal{K}_1 .

If we denote $\mathcal{K}=\mathrm{U}_0^{-1}(\mathcal{K}_0)$, then \mathcal{K} is a closed real vector subspace of \mathcal{H} , satisfying the non-degeneracy conditions a) and b) in \mathcal{H} .

We shall prove that $J=J_0$ and $u_t=\Delta^{it}$, $t\in\mathbb{R}$, where J and Δ are, respectively, the conjugation and the modular operator associated the pair (K, iK), as in [3].

Indeed, let P_o' be the real projection onto $\mathcal{K}_o = \Gamma(\tilde{D}_o)$. From $P_o'(x_1'+x_+',x_1'+x_+') = (y_1'+y_+',e^{(1/2)h}y_1'+y_+')$

and

$$\langle (x_1'-y_1'+x_+'-y_+',x_1''-e^{(1/2)h}y_1'+x_+''-y_+') | (z_1'+z_+',e^{(1/2)h}z_1'+z_+') \rangle = 0,$$

 $\forall z_1' \in \mathcal{H}_1, z_+' \in \mathcal{H}_+,$

it is easy to infer that

$$y_1' = (1+e^h)^{-1}(x_1'+e^{(1/2)h}x_1'),$$

and

$$y'_{+} = (1/2)(x'_{+}+x'_{+}).$$

If we denote by Q_0' the <u>real</u> projection onto $\Gamma(-D_1)$, from $Q_0'(x_1'+x_1',x_1'+x_1') = (y_1''+y_1',-e^{(1/2)h}y_1''-y_1'')$

and

$$<(x'_1-y'_1'+x'_+-y'_+',x'_1'+e^{(1/2)h}y'_1'+x'_+'+y'_+') \cdot (z'_1+z'_+,-e^{(1/2)h}z'_1-z'_+) > = 0,$$

$$\forall z'_1 \in \mathcal{H}_1, z'_+ \in \mathcal{H}_+,$$

we easily infer that

$$y_1'' = (i+e^h)^{-1}(x_1'-e^{(1/2)h}x_1''),$$

and

$$y''_{+} = (1/2)(x'_{+}-x''_{+}).$$

If we denote $R'_0 = P'_0 + Q'_0$, we obtain that

(4)
$$R'_{0}(x'_{1}+x'_{+},x'_{1}'+x'_{+}') = (2(1+e^{h})^{-1}x'_{1}+x'_{+},2e^{h}(1+e^{h})^{-1}x'_{1}'+x'_{1}'),$$

for any $x_1', x_1' \in \mathcal{H}_1$, $x_+', x_+' \in \mathcal{H}_+$; similarly, we obtain that

(5)
$$(P'_{0}-Q'_{0})(x'_{1}+x'_{+},x'_{1}'+x'_{+}') =$$

= $(2(1+e^{h})^{-1}e^{(1/2)h}x'_{1}'+x'_{+}',2(1+e^{h})^{-1}e^{(1/2)h}x'_{1}+x'_{+}).$

For
$$T_0' = R_0^{1/2} (2-R_0')^{1/2}$$
 we get that

(6)
$$T'_{0}(x'_{1}+x'_{+},x'_{1}'+x'_{+}') =$$

$$= (2(1+e^{h})^{-1}e^{(1/2)h}x'_{1}+x'_{+},2(1+e^{h})^{-1}e^{(1/2)h}x'_{1}'+x'_{+}').$$

From formulae (3),(5) and (6) we immediately infer that

$$P_0' - Q_0' = S_0'T_0'$$

is the polar decomposition of $P_0'-Q_0'$. If we denote $\Delta_0'=(2-R_0')(R_0')^{-1}$, then from formula (4) we get that

$$(R_0')^{-1}(x_1'+x_+',x_1''+x_+'') = (\frac{1}{2}(1+e^h)x_1'+x_+',\frac{1}{2}e^{-h}(1+e^h)x_1''+x_+''),$$

and this immediately implies that

(8)
$$\Delta_{o}(x_{1}+x_{1},x_{1}'+x_{1}') = (e^{h}x_{1}+x_{1}',e^{-h}x_{1}'+x_{1}');$$
of course, $\mathcal{D}(\Delta_{o}') = \{(x_{1}+x_{1}',x_{1}'+x_{1}'); x_{1}'\in\mathcal{R}(e^{h})\cap\mathcal{H}_{1}\}.$

From relations (7) and (8) it is now easy to infer that $J_o = J$, where $J = U_o^{-1} S_o U_o$ is the conjugation in $\mathcal K$, corresponding to $\mathcal K$, whereas $\Delta = U_o^{-1} \Delta_o U_o$ is the modular operator corresponding to the same subspace. From (8) we now immediately infer that

$$u_t = \Delta^{it}$$
, $t \in \mathbb{R}$;

i.e., $(u_t)_{t \in \mathbb{R}}$ is the modular group which corresponds to the pair (K, i, K), according to the construction given in [3].

In this manner, we have proved the following

THEOREM 2.Let H be any complex Hilbert space and let ((ut) ter, J) be any pair consisting of a strongly continuous one-parameter unitary group, and a conjugation J, in K, such that

$$u_t J = J u_t$$
, $t \in \mathbb{R}$.

Then there exists a unique closed real Hilbert subspace KcK, satisfying the non-degeneracy conditions a) and b), such that $(u_t)_{t\in \mathbb{R}}$ be the modular group, and J be the conjugation in K, corresponding to K by the Rieffel-van Daele construction.

Remark.Let $M \subset \mathcal{L}(\mathcal{H})$ be a von Neumann algebra, having a cyclic separating vector $\mathbf{x}_0 \in \mathcal{H}$, $\|\mathbf{x}_0\| = 1$.Let $\mathbf{M}_{\mathrm{Sa}} \subset \mathbf{M}$ be the real vector sub-

space of the self-adjoint elements in M and define $\mathcal{K} = \mathbb{N}_{\text{sa}^{\times}}$. Then $\mathcal{K} \subset \mathcal{H}$, satisfies the non-degeneracy conditions a) and b) (see [3] §4), but from $\Delta x_0 = x_0$ and $Jx_0 = x_0$, we infer that $\mathcal{H}_+ \neq \{0\}$. This fact shows that, in this case, Halmos' Theorem can never be applied; i. the pair $(\mathcal{K}, i\mathcal{K})$ is not in "general position".

8. Let now $J:\mathcal{H}\to\mathcal{H}$ be a conjugation and $\Delta:\mathcal{D}(\Delta)\to\mathcal{H}$ be a positive injective self-adjoint densely defined operator in \mathcal{H} , such that

$$J\Delta J = \Delta^{-1}.$$

For the unitary one-parameter group

$$u_t = \Delta^{it} = e^{it \ln \Delta}$$
, $t \in \mathbb{R}$,

we then have that $Ju_t = u_t J$, $t \in \mathbb{R}$, and, therefore, according to Theorem 2, there exists a uniquely determined closed real vector subspace KC satisfying the non-degeneracy conditions a) and b), such that J be the conjugation, and $(u_t)_{t \in \mathbb{R}}$ be the unitary one-parameter group, corresponding to K by the Rieffel-van Daele construction. It is then obvious that Δ is the modular operator corresponding to K by the same construction. Hence, we have the following

THEOREM 3. For any conjugation $J:\mathcal{H}\to\mathcal{H}$, and any positive, injective self-adjoint, densely defined linear operator $\Delta:\mathcal{B}(\Delta)\to\mathcal{H}$, such that $J\Delta J=\Delta^{-1}$,

there exists a uniquely determined closed real vector subspace KC satisfying the non-degeneracy conditions a) and b), such that J be the conjugation and Δ be the modular operator corresponding to K by the Rieffel-van Daele construction.

Remark.One could consider the problem to characterize the closed real vector subspaces KCK, which arise from a standard von Neuman algebra MCL(H), by the formula $K=\frac{1}{3}$, where $x_0\in H$ is a separating cyclic vector for M.

REFERENCLS

- 1.P.R.Halmos.Two subspaces.Trans.Amer.Math.Soc.,v.144,1969,p.381-389.
- 2.G.K.Pedersen.C -algebras and their automorphism groups.Academic Press,London,New York,San Francisco,1979.
- 3.M.A.Rieffel, A.van Daele. A bounded operator approach to Tomita-Takesaki Theory. Pacific Journ. of Math., vol. 69, no. 1, 1977, p. 187-221.
- 4.S.Strătilă.Modular Theory in operator algabras.Ed.Academiei (Romnia) and Abacus Press (England),1981.
- 5.S.Strătilă, L.Zsido.Lectures on von Neumann algebras. Ed. Academiei (Romania) and Abacus Press (England), 1979.

ped23741