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MULTIGRID CONVERGENCE FOR NONSYMMETRlCVVARIATIONAL

PRO&LERS

by
Dumitru ADAM

INTRODUCTION, The aim of this paper is to construct an

1Lerat¢ve multigrid proces$ for variational nonoymmotrlc pro»
blems defined by contlnuous, elliptic type, nonsymmetric bili-
near functionals, suchuthat‘the bounds obtained for the rate
of convergence be‘independeﬁt of the approximation subspaces-
i.e. of discretization parameters - and depending only of the
continuity and ellipticity constants; Using an natural frame-
work\for the discrete problems such that the Nicolaides varia-
tional zeletions (1.5 and X.17) are fullfiied‘an& using a

Hackbusch type decomposition for the two-grid iteration opera-

tor, constructed with an adequate relaxation process, we obtain

bounds of same type as in multigrid'literature@

§le Approximation on subspacesg, Let }* be a real separa-

ble hllbert space with <.;.3 inner product and el the. cores—

pondlng norm. We: consider on W the following problem:

(P Given £ a bounded linear functional onH , find uel

such that A(u,v)=f(v) for every veH,

where a is a nonsymmetric, bilinear functional on H, that satis-

fies the follewing properties: there exist. the constants « and

® such that:
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(1.2 {alw, )£ hwh-jvy _

(1.2)  (alw,wily «y wll e

for every w,vel .,

By the well knowed LEJ.X'”IVIJ.]QI'Q«PI 1emma, this problem haﬁ
a unique uolutlon uell . Now, let A be the linear operator on
N, bounded and nonglngular, defined by Riesz re:preuefntatlon,

unique determined by:
(1.3}  alw,v) =Qu,v

for every w,veH .

If Wy is an finite dimension subspace of | , then by Ty
we denote the orthogonal projection operator corresponding 11;.
The restm etion: of the bilinear functlonal a atH defines on

Wy an linear operator R by

alwy vy )= (}lwl Vi > =AR W Py vo= <<?kﬁPk)Wk*Vk:>
for every w, Vi € 'Hk, hence
(1.4) AL =P AP

As linear operator on “1 5 ftk is bounded and.nonsingular because
{1.1) and (1.2} hold en Wi e
LG*HR be the finite dimension real gpace, dim'@kxdim%k::

Dy, equipped with the Buclidean imner product (eyeyy the Corres-

. ponding norm M-fl e If J‘k:}!k —~ Ry 18 an b:i;j'ectionoperator*,' then

k

we define J Ry -7 }{}J‘: by

(1.5)  oksq’  i.e,

cd

153 e = o : : .
( t) € \k;\’k> <W,‘ J VI\} 5 Lo every wkewka": RI{'
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On R, we define now, the linear operator corv&spondingrﬁ@,Qk,by

e k
( l © 6} AKMJ}‘XREI ¥

notting that for every Wy Vi &Ryt
(1.7} <A, ¥y = (755 ) a5%
et s Ty SR W) Ty,

With this, we can constfuaﬁ the diserete problems corresbonding
to W, and R, subspaces,of the problem Ry,
Let fjéwibe»the”Riesz representation of the bounded linear

functional f:
(1.8) ffv):<fi,v>, for every veM,

and let fﬁ be the projection of £%: fﬁkafx, onfﬂk@

The discrete problem on My, corresponding of the problem -
(P) ia:

(5?4) To f£ind uﬁﬂl . such that
c};(uk,vk)=f (vy) for every vkﬁ}{k ;
o | ' o

and the two following problers.are equivalent with ( k):

: To find u,§H, such that :
(P : L
& <£{kuk;v]q>:§f*, V> for every vke}}k,
(leg) <}zkukgvk>:<ff;3vk:> for &V@PB? vlﬁ“k“

On Ry we define the discrete problem corresponding at P, :

- * s 5o - I e P
(lwlp) Given fiER, to find WER, such that

- pet 13 B
Io. -t hea A s
Ak.hk: o ke o2 woere: f ke ¥ — x

I.1l. Remark: If’ﬁg@ﬂk is solution of (1.10) then Jkﬁk is
X = A S

solution of (%),

'
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Proof. For every %kﬁﬁk? we have the following equivalent

relgtions:

<Akak = §£’§k>k‘a 0
(Jkﬁquﬁk;§k>k“m<%§$ %k)k y in‘Rk, and
(H_k(urkﬁk:) yJ}‘:&k)z{fingk o 3 in “ko

Because J% is an bijection operator, the last relation ig equiva-

lent with (?ﬁ}o

Let the following increasing sequence of finite dimension

approximation subspaces of Y

f)'{ac’}{l cuec‘{k._ ;gc’HKC @ ¢ a < 1‘
By the level or &rid k, we understand one o beth of the subspg-
ces Nk and Ry and we point out this dependence by the dependence
of the k. For the ulterior estimations we need the following equi-

valence relations of the'HL and Ry - norms:

ke ! o
(L. Tl & ¥l & €, U5,

for every %ﬁiﬁk,vwherercl,cg not depend of k.

i : ; = . k
le2. Remark. Choasing convenable the linear operator J
we obtain a such equivalence relation as (1,11), For example, let
j P L P ‘\‘, NN : : A5y £y AT \... j S S |
ﬁek(dmlgnkg be the hatural basis of Ry ano'ﬂkwspan.&¢k J=l,m. %,
where the above family is orthonormal in¥. Then, defining J by:

kegx¢§ » J=Ll,ny, we obtain (1.12). by H%khk mﬂJk§kﬂg for every

J
V1&Ry» Hence, always holds an relation of the type (1.11), provea

by this particular form.
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lele Lemma, If (1.11) holds, then -

('10.12')" “ Ak\\ g% GD fllz

o]
2
(1.1%) ﬁ \s éAfL ; where W“sfdensteﬁ the spectral norm.

Proof. Because for every W, &Ry we have (1.4), (1.5),

(1.6),
a (Jk{rk.’Jki}jk); = <Akr{?k 3 ﬁ’IC)k:,

we obtaln for the first estimations:

KAK.{rk ”{f}k%} :::-l a (JKVM J V )[4 RlT vkl] ”JL—X;} ”4% v “

For the second estimation we observe that:

Ko2

KA xyhk{&HJ A vk la(J Awl" Y

VL}J Av Vi
2

R e
4[<vk;Ak Vit & uvknka WAVl
This estimations proves (1.12) and@ (1.13).

Now, for every kyl we define the diagram (3 33

(Le14)

where:?k?}“a are the projections operators on1* dnd\*k“l,
J.-

Es JKM} are bijection operators and 1% -1 is the trqngpo e of
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, el :
CIE ' A Y e - T e
an injection operator Lyt kala;’ﬁk’ 1.0

Sy
(1,350 CIEMe, W oy n =G, I8, Ve 17k

for every %ﬁiﬁk? ﬁkwfrﬁkwlo By "id™ we denote the identity on‘}\e

l¢l. Theorem o If the diagramA(wk) is commutative, and

(1.11) holds, then:

& - k-1
(.16 T 1P e =T JKPL

b =1, -k
(1.27) Ay 1 lk ATy 1

- e e | ‘6'{:... i > : ;
ST T e 1“s§63(m%gi)2’ﬂbk~l“s; Gumfd0s

for every linear operator D

Proof: The first relation is equivalent with the comutati-

vity of the diagram. Using (1.4}, (1.6),(1.16), we obtain:

e ey : EeY el n e
AkmlnymxﬁszJ P g AR T ST BRI -
- | k-1, -k
S Ik’ Akikﬁlw
Now, by (1.11), we have:
e 1Dk 1 k e e-10r-11% Yk ¥ 1 Pro -1t Pl
c . @ ,
o m’((;"‘\a_~ I;x. 1 , ol w»g_ 2 k"’“l
e Fr ‘(Pk 1Y Dk 195 7~k~1“"((k) 1o "Dy 3Ty 4
?\
i
2 ce T2 o :
B (?g ) “Dk s
iy ‘

Particulerly, we obtain by the theorme 1.1,that



-

&

I{ k-1 }’»1 2
Lere | 050 N

1.%s Remark: If we restrict the diagram ((j } at f,, then

the commtamw ty is equivalent withe

-1
r 9

>

(L261) Jy 4k =T

k-1
end this relation holds iff holds

2 ! i B
(1¢16f} T B oy e

For to prove the equivalence relation (1.16%) with (1.16™), Ist

: Trk”f Ry_q, Tirstly; then for every wfM,, by (1_,5'}3, (10.11?5} -

(L hEr e

k =1

Yo - =
P BRI PRESR R ST

Ve WY=LV 1”dk\l.h 1?k>k 17

=¢S5k

Lp 3

Jom1 Ve 1*uv>

what proves that (1.16%) im,.p;.«lm; (x. 16")0 Converue}'iv, 3@%; ukf}“ikﬁ

. then for every VZE T P‘k 1 We have:

= G : N b k. k = :
1P e Vi P ey, TP T TV g T, I T 5T S
o
=0 Ty Ve gy gy :

le4. Remark. The Galerkin method conducts to a commutative

dia grame

USSR,

Proof. Let H "qpanié,» jxl,nri s L=k~1;k, where both families
are linear independent :m}'% . Be-causez'}[kmlc}}k, there exists the

matrix Tzftijl y 151, my 4 gtzlvﬁky unique determined by
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Iy
. k
& é i = = t'“¢k“ Now,the “stifnesgs" Galerkln nmatrix AI ~1? A* are
eEta el 1 ; ’
defined by the entries ag«3@¢&§ﬁ3> » 133“1,3{9 f =k~1, k. We define
n
b :
k ol
1%:; 13.4\»& l"""? }"?‘}f‘i‘ b:&r I},, -F@}g -% J% ti:@kx

J R, N by gte m¢§ » i51,m, ; f=k-1,k.

b3
Then, is a simpla verification that for every Vk ii ~1» We have
}" 1-— .

Ve 3™ I I,L 1s What proves that (3@16“} is verified, and,
by 1.3. Remurk, the diagram (3.) is commitative. lioreover, betweer
the Qa]erktn matrix there exist the following relation A

¥

k=1"

§2. Two-grid convergence, For to solve numerically the

equation (1.10) by multigria method, such thaﬁ the bound of

the rate of convergence be independent of approximation SUHS§30@39

we suppos@ that are satisfied the following wraperile», for kol
 I) the dlagr 1 (1.24) is - commutative '
.II)'the norms e@uivalenoe relation (1.11) holds, where

i

‘clfandicz are:indepe d ent of k.

%

k be fixed.By stationary iterative process for the equa

ct

Let
ction (1.10) we understand the iterations S@Qﬁaﬁce:
(2.1) @d'q “%a it 0, , wher
o) U =G WD £ §51,2,...  , Where
(2 @ 2 ) Gk *ANI\. l’h’A‘]}. 5
L. is the indentity on Ry, and Dy is an linear operator on By o
A G e
The spectral radius of the 7turat¢an.03 rator Gy, §(G,) gives the
L AN 5
rate of convergence if g(Gy}Q 1. If D, is constructed only by help
i FATS

of the k level, then we name a such process as relaxation process

&2 KD

on k level,

the two-grid iterative process. is defined as follows:
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: ' JM -
in the (j+1) step we determine the (j+1) iteration u3 by u J bj.

"

1) Y-sweeps of relaxation on k level are efecﬁuateﬁt

‘L+, !. B "‘ﬁ‘ 1 i "‘-: f«
&ﬁ "’“Ck 1},? },)kfk $ k:“O?;@ ﬂ'c’ﬁlaml. }t}i’ ‘«l}%g

¢V . :
Let uk be after relaxation;.

ii} The k~level defect, A‘A«Akgg’ » 18 representated on
= N
oarse rel k-l: =
coarse level k-1 dk 155 d
1ii) Exact solution on k~1 level is efectuated: A 1§P 1 dl
T Mgrs Bt

iv) the coarse correctlon Vl l& Ivi -1 is added at j-itera-

tion £6r to obtain the (Ixt)=iteration:

‘;jﬂm'f j “+ ?j
h.k uk ke

6 v

The two-grid iterative process defines an iterative stationary

process on R, with the iteration operator M, _:

;"};{,‘
oy

: Qj) Ml; (I};”’Bk"«‘k) Gk’ where

(24) g =7k 4=t (k-1

ke~ 1.2¢ Ik

and we use the following decomposition (1%1) of it:

(2.5) w46

2¢1l. Lemma. In the hypothesis I)- Xi)y_we have the follo=-

- wing estimations for every kyl:

e
Y 4 - £ {‘*3
(2.6) \iA ~ Byl Sgc'”i}k . Cp = "é;(je{}f)'
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has the form:

where the relaxation eperator G 1

and g is a monotone decreasing function of ¥ 3

(2.9) g0 = J5

Proof : From (1.1%), (1.18), we obtains

= : 3 kel en @

l[ﬂ -“-US ‘ Q“A n ¥ ‘. ki 1 *7 ”,«‘5: {A 1 +C”“A ‘ "i’:‘.)
‘Cz, \""’ 2

‘.':’a (C'X*‘&} ‘““"““' ?,nra.

Now, for the second estimafion, we observe that 4 A, being
his eLgenvaluesiﬁg)Jml 1

arr symmetric, positive linear operator,
are positives. Then,

P e Y % - T
e lg=lagey” a5 **S’Cfig%ﬁfk gm A, G )=
mmgﬂﬁA?) )= max [ lj(l“éﬁ}j)ggj

e
=g (aa, (1,
Lé;émk

Ly sup [ x(1-0)2"

& =
> Wi 04Xl
% : e 5 ;
because A m1<3 V;ﬁ b gé 1o In 3] ie given the following estima-
5/L8(s+1/2)] Hence, with g of the iswm (2.3

sup (:ACL”A R1g
OgXel

we obtain (2.7).
(2.,6) and (2.7) the approxims

tion:

Hackbusch ([%]) names the relation

tion and smoothing propertieses
®
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2.2. Theorem of convergence, If the approximation and

smoothing properties (2.6) and (2.7) holds, then in the hypothe-

sis 1), 11}, for every £e(0,1) there exists Qo.depending only
5‘3 h‘mmt
(2.10) | M lleCra(3)ad <1 oo
Sl hlg gl s <1, Sl o
1

Proof: From (2.6) and (2,7) we have:

| ""1 ,:,' ) . g "'2 .;3;‘-’,* :
Ml « A Byt ka6l & e580%, 4g(3).

k

Because by (1.12) l/mk:4~§%3
. Cq
lity in (2.10). Now, let ¥, the smalest ¥ such that Cee(¥)4s .,

2 ) ~ K ‘0
’yk’ we obtain the first inequa-

where ¥ is fixed in (0.1) interval., This % there exists by the

decreasing monotony of g. Hence

LYy < W 1| <8<

g(l\‘j{} & umkus\.% L

for every':lzao, i.e, the two—~grid iteratiwve prdoesa converges,
and the bound for the rate of convergence is independent of the

level k.

8% Multigrid convergence., If in the step iii) of the two-

grid algorithm Jnu ead of exact solver we use an two-grid algoriths
(kml, k~2), we obtain an three-grid algorithm, and so on, Let
172 be fixed. The multigrid iterétive process corresﬁomding at
tne levels Yo a¥ ,aemwl is caracterized by the following recur-

sion ([101):

.....

(?’) & ,1 ) : -~ : ‘ e 6“
. : A v 7T skl %
Mie13= Ty =T (T W bt

) |
k10 0ey 5 Aokl
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where 374 is theznumbervﬁf‘ﬁhe multigrid‘iterationé on interme-
diary grid k, same for every kzl. Let I‘;ﬁfﬂ ‘be the two-grid itera=-
tion operator correc sponding at levels (1:4’1 k} as in second para=

graph. Then,

‘ S L 1:;{»-1 ”A‘ -, Ic ‘) |

Jele Remark. In the I), II)} hypothesis, we obtain the foll.

- wing estimation for the norm of multigrid iteration operator:

S 0) l <G 5 f #: :
(3.3} | Myyql) &5 %&-pl(l‘uk\is s where
6y =Ce V0L SN, , by (2.10)

B.4r o 3=C78(Y), with c7-c.-,c /agb

oomaly k+1 1% S ,
o lndedd “II\, Dy I PH‘ & Co {y1 o “DF[;“ . I‘_--MI,A.}: by commuta

tivity of the diagrem Vs and by (2.6) o T3,
-l 3
“I Ek}“k"&l‘l‘ k+1 1;«;«1“ “{“C*’”S(?) HM}\;

Hence hold the estimations Q%'ﬁ), (e

5s1l. Theorem of conversence. In the hypothesis I) L),

_l'f‘G"%-dv <1, then for every {* 31 there exists 3, depending only g~

such that for every 3 ?,QO}
(35 1 S,

iees the multigrid algorithm converges, where v is the solution

of the equation

(3.6}  £(=in~n +6,=0,

solution  which lies in (0,1) interval,
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‘Proof. Let {73 be the sequence defined by ([3]):

y ‘
(?) «7..}; Z’L G\“;) % "'Zk‘.vf_,“;:qi)“}"g?'}zk:g 'T ‘.” 1

P

Because QQ%J; <4, the sequence i%¥3 is inecreasing monotone
and bounded by the solution of (3.6). Moreover, £(0): £(4)40, hence
the solution lies in (0,1) interval., From (3.4}, there exists

suech thaﬁﬁﬁf-§9<i and it is the smalest with this property..

5.2, Remark, For'fml (V#eycic cas e) and ¢! = Z(chycle case)

o

we obtain the following e tlmatlonu.

3.8 M Vabr 5y g il >'.-:<1_,/1;.4«S)/3£,
where G_ZGQ, g‘xgg ; of same type as i nultigrid literature ([10{’@

Comments, By the remarks 1.2 and l.4, for any varjational
problem defined by a conti rnuous, elliptic type bilinear fudcfxcnal
on a real separable Hilbert space, we 'can construct an maltigrid

iterative process such that the bound of the rate of convergence

' be independent of approximation subopaces, depending only of the

“continuity and ellipticity constants and of the number of relaxation

In the svmmetric case the relaxation process is changed by

Gk Ly kal’ le€e by an Richardeon bProcess, obﬁaiming_same type esti~

(4

mations. We note that we no use the Giscvetmzatzon properties for

the continuous solution of problem () on approximation subspaces.
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