INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

THE RELATIVE HOMOLOGY OF RUNGE PAIRS

by

Nicolae MIHALACHE

PREPRINT SERIES IN MATHEMATICS

No.3/1986

Mea 23707

THE RELATIVE HOMOLOGY OF RUNGE PAIRS

ou

by

Nicolae MIHALACHE*)

January 1986

Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

*)

THE RELATIVE HOMOLOGY OF RUNGE PAIRS

. §1. INTRODUCTION

The aim of this note is to draw attention on the following fact: the techniques developed by Hamm in order to study the homotopy type of a q-complete space ([2] and [3]) can also be used to sharpen a classical result of Andreotti-Narashimhan [1, Theorem 1] about the relative homology of Runge pairs.

Their theorem is, in turn, a generalization of previous results of Serre [7] and Ramspott-Stein [6]. Namely it will be proved:

"THEOREM 1.1. Let X be a non-degenerate n-dimensional complex space and let Y C X be an open, holomorph-convex subspace containing the degeneracy set A of X. Suppose that the pair (X,Y) is Runge. Then:

 $H_r(X,Y;Z)=0$ for r>n $H_n(X,Y;Z)$ has no torsion.

Recall that given a complex space X and an open subset Y, the pair (X,Y) is called a Runge pair if the restriction map $\mathcal{O}(X) \longrightarrow \mathcal{O}(Y)$ has dense image. A non-degenerate space is roughly speaking a proper modification of a Stein space in a discrete set of points. The precise definition will appear in Section 3. One has to keep in mind that Stein spaces and more

generally 1-convex spaces are particular cases.

Theorem 1.1 was proved in [1] under the additional assumption that the singular locus of X \ A is discrete.

The author wishes to thank dr. M.Coltoiu for several help-ful remarks and pointing out a gap in the first version of the paper.

§2. A PARTICULAR CASE

All complex spaces are supposed to be reduced and countable at infinity.

Theorem 1.1 will be a standard consequence of the techniques developed in [1] and:

"PROPOSITION 2.1. Let X be a n-dimensional Stein space and $\Psi: X \to \mathbb{R}$ a C^2 , strongly plurisubharmonic exhaustion function. For $\gamma \in \mathbb{R}$ define $\mathring{X}_{\gamma} = \left\{x \in X / \Psi(x) < \gamma\right\}$. Let $\gamma_1 < \gamma_2$ be real numbers. Then:

$$H_r(\mathring{X}_{\gamma_2},\mathring{X}_{\gamma_1};\mathbb{Z})=0$$
 for r>n

 $H_n(\mathring{X}_{\gamma_2},\mathring{X}_{\gamma_1};\mathbb{Z})$ has no torsion ."

Proof:

By the universal coefficient theorem it is enough to verify that:

(1).
$$H_r(x_{\gamma_2}, x_{\gamma_1}; G) = 0$$
 for r,n and any abelian group G.

The proof of (1) is by induction on n=dim X. The case n=0 is obvious. Let S be the singular locus of X and $\mathcal G$ a semi-analytic Whitney stratification of (X,S). By Tognoli [8, Theorem 3.4] and Pignoni [5, Theorem 1, Corollary] one may

approximate ψ as close as one wants in C^2 -topology by a real analytic, strongly plurisubharmonic exhaustion function $\widetilde{\psi}: X \to \mathbb{R}$ which is a Morse function on the stratified set (X, \mathcal{Y}) , with distinct critical values.

Using an exhaustion argument one sees that it is enough to prove:

(1')
$$H_r(X_{1}, X_{1}; G) = 0$$
 for r>n and any abelian group G

when Ψ satisfies these additional assumptions. Here $X_{\gamma} = \left\{x \in X/\Psi(x) \leqslant \gamma\right\} \quad \text{for } \gamma \in \mathbb{R}. \text{ By the same reason one may suppose that } \gamma_1 \ , \gamma_2 \text{ are regular values for } \Psi \ .$

Under these hypotheses on X and ψ , Hamm [3, Lemmas 4-11] has proved that $X_{72} \cup S$ has the homotopy type of a topological space obtained from $X_{72} \cup S$ by attaching cells of dimensions $\leq n$. The proof uses Morse theory on the singular space X modulo its singular locus S.

In particular (2) $H_r(X_{\gamma_0}US, X_{\gamma_1}US;G)=0$ for r>n and any abelian group G. For $\gamma \in R$ denote $S_{\gamma}=X_{\gamma} \cap S$.

"LEMMA 2.2. $H_r(X_{\gamma_2}, X_{\gamma_1} \cup S_{\gamma_2}; G) = 0$ for r>n and any abelian group G."

Proof:

By excision one has (3) $H_r(X_{\gamma_2} \circ Y_2 + \varepsilon, X_{\gamma_1} \circ Y_2 + \varepsilon; G) = 0$. for $\varepsilon > 0$. Take $\varepsilon > 0$ small enough so that $[\gamma_2, \gamma_2 + \varepsilon]$ contains no critical values for ψ . There is a controlled vector field v on a neighborhood of $\psi^{-1}([\gamma_2, \gamma_2 + \varepsilon])$ such that $(d\psi)(v) = -\frac{2}{2t}$. Using the trajectories of v, one may construct, like in [3, 1]. Lemma 4 a retraction $R: X_{\gamma_2} \circ Y_2 + \varepsilon \to X_{\gamma_2}$ for the inclusion

 $X_{\gamma_2} \xrightarrow{X_{\gamma_2} \times Y_2} Y_{2+\epsilon}$ (namely if σ is the 1-parameter group generated by v, one may take R(x) = x for $x \in X_{\gamma_2}$ and $R(x) = \sigma(x, \psi(x) - \gamma_2)$ for $x \in S_{\gamma_2+\epsilon} \times Y_{\gamma_2}$. From the very definition of R it follows that $R(S_{\gamma_2+\epsilon}) \in S_{\gamma_2}$; this shows that $H_r(X_{\gamma_2}, X_{\gamma_1} \cup S_{\gamma_2}; G)$ injects into $H_r(X_{\gamma_2} \cup S_{\gamma_2+\epsilon}, X_{\gamma_1} \cup S_{\gamma_2+\epsilon}; G)$ which vanishes by (3). Q.E.D.

The exact sequence of the triple $(X_{\gamma_2}, X_{\gamma_1} \cup S_{\gamma_2}, X_{\gamma_1})$ gives $\cdots \rightarrow H_{r+1}(X_{\gamma_2}, X_{\gamma_1} \cup S_{\gamma_2}; G) \rightarrow H_r(X_{\gamma_1} \cup S_{\gamma_2}, X_{\gamma_1}; G) \rightarrow H_r(X_{\gamma_2}, X_{\gamma_1}$

Therefore (4) $H_r(X_{\gamma_2}, X_{\gamma_1}; G) \cong H_r(X_{\gamma_1} \cup S_{\gamma_2}, X_{\gamma_1}; G)$ for r,n and any abelian group G, by Lemma 2.2.

"LEMMA 2.3.
$$H_r(X_{\gamma_1} \cup S_{\gamma_2}, X_{\gamma_1}; G) \cong H_r(S_{\gamma_2}, S_{\gamma_1}; G)$$
 for any r. "

Proof:

The pair of semi-analytic sets $(X_{\gamma_1}, S_{\gamma_1})$ can be triangulated in such a way that it becomes a polyhedral pair. Therefore there exists a neighborhood T of S_{γ_1} in X_{γ_1} together with a strong deformation retraction $\widetilde{R}: TxI \to T$ for the inclusion $S_{\gamma_1} \to T$. By excision with $V=X_{\gamma_1}$ T one has:

(5)
$$H_{r}(X_{1} \cup S_{2}, X_{1}; G) \cong H_{r}(T \cup S_{2}, T; G)$$

But obviously \tilde{R} extends to a strong deformation retraction $\hat{R}: (T \cup S_1) \times I \to T \cup S_2$ for the inclusion $S_1 \to T \cup S_2$. Consequently $H_r(T \cup S_1, T; G) \cong H_r(S_1, S_1; G)$. By (5) this concludes the proof of Lemma 2.

The following Lemma will end the proof of Proposition 2.1. "LEMMA 2.4. $H_r(S_{\chi_2},S_{\chi_1};G)\cong H_r(S_{\chi_2},S_{\chi_1};G)$ for r>1 and any abelian group G."

Above $s_{\gamma} = x_{\gamma} \cap s$ for $\gamma \in \mathbb{R}$.

Indeed, by the induction hypothesis one obtains $^{H}r^{\,(S}\gamma_{2}\,,^{S}\gamma_{1}\,;G)=0 \text{ for } r\rangle n\,; \text{ this combined with (4) and Lemma 2.3}$ proves (1').

PROOF OF LEMMA 2.4. Denote $\varphi=\psi|_S$. Then φ is a real analytic strongly plurisubharmonic exhaustion function on the Stein space S. Moreover φ is a Morse function (with respect to the induced Whitney stratification on S), it has distinct critical values and γ_1 , γ_2 are also regular values for φ .

Let $\gamma \in \mathbb{R}$ a regular value for γ . Then, there exists $\xi > 0$ small enough and a homeomorphism $\gamma^{-1}((\gamma - \xi, \gamma)) \simeq \gamma^{-1}(\gamma) \times (-\xi, 0]$ This can be seen from the proof of Thom's first Isotopy Lemma. By excision one obtains:

(6)
$$H_r(S_{\gamma}, \mathring{S}_{\gamma}; G) = 0$$
 for $r>0$

From the exact sequence of the triple $(S_{\chi_2}, S_{\chi_1}, \mathring{S}_{\chi_1})$ and (6) one has: (7) $H_r(S_{\chi_2}, \mathring{S}_{\chi_1}; G) \cong H_r(S_{\chi_2}, S_{\chi_1}; G)$ for r>1.

Finally, from the exact sequence of the triple $(s_{\gamma_2}, s_{\gamma_2}, s_{\gamma_1}, s_{\gamma_2})$ and (6) one has: (8) $s_r(s_{\gamma_2}, s_{\gamma_1}, s_{\gamma_2}, s_{\gamma_1}, s_{\gamma_2}, s_{\gamma_1}, s_{\gamma_2})$ for r>0.

Now (7) together with (8) give the desired isomorphism.

"COROLLARY 2.5. Under the assumptions of 1.2.:

$$H_r(X, X_{\gamma}; Z) = 0$$
 for $r > n$ and

 $H_{n}(X, \overset{\circ}{X}_{7}; Z)$ has not torsion, for any real number γ ".

This follows from the fact that (X, \hat{X}_{γ}) can be exhausted with pairs of type $(\hat{X}_{\gamma}, \hat{X}_{\gamma})$ and the proof of Theorem 1.2.

REMARK. Proposition 2.1 and Corollary 2.5 can be generalized to the case of q-complete spaces with the same proof. The reason is that given X a q-complete space and $\psi: X \to \mathbb{R}$ a real analytic strongly pseudoconvex exhaustion function (satisfying the additional assumptions stated in the proof of Theorem 1.2) then actually Hamm [3] proves that $X_{\chi} \cup S$ has the homotopy type of a topological space obtained from $X_{\chi} \cup S$ by attaching cells of dimensions n+q. The statements are left to the reader.

§3. PROOF OF THEOREM 1.1

A complex space X is called non-degenerate if there is an analytic set AcX (the degeneracy set of X), a Stein space X and a proper holomorphic map $p: X \to \widetilde{X}$ such that: i) $\dim_X A > 0$ for any $\mathfrak{X} \in A$; ii) p induces a biholomorphism $X : A \to \widetilde{X} : \widetilde{A}$ (where $\widetilde{A} = p(A)$) and $p_* \circ \widetilde{X} = \circ \widetilde{X}$; iii) \widetilde{A} is discrete. In particular such a space is holomorph-convex. If \widetilde{A} is finite (equivalently A is

compact) X is called 1-convex and A is its exceptional set. This notation will be kept through out this Section.

For the basic properties of Runge pairs we refer to [1, Preliminaries].

To prove the theorem it is enough to show that $H_r(X,Y;G)=0$ for r>n and any abelian group G.

The first step is the reduction to the case when X is Stein and Y is a relatively compact open Stein subset such that the pair (X,Y) is Runge.

Since \widetilde{A} is discrete one can choose a sequence $\{X_v\}$ of open Stein and Runge subsets of X such that $\widetilde{X}_v < c \ \widetilde{X}_{v+1}$, $\bigvee_v \widetilde{X}_v = \widetilde{X}_v$ and $\emptyset \ \widetilde{X}_v \cap \widetilde{A} = \emptyset$. Let $X_v = p^{-1}(\widetilde{X}_v)$ and $Y_v = Y \cap X_v$. Then X_v is 1-convex (with exceptional set $A \cap X_v$), Y_v is an open holomorph-convex space, the pair (X_v, Y_v) is Runge and moreover $\{(X_v, Y_v)\}_v$ exhaust (X,Y). So X may be supposed 1-convex. Now one can choose an increasing sequence $\{\widetilde{Y}_v\}$ of open, relatively compact Stein and Runge subsets of \widetilde{X} containing \widetilde{A} (which is now finite) and such that $\bigcup_v \widetilde{Y}_v = p(Y)$. Consequently Y may be supposed relatively compact. Finally, by excision and the fact p induces a biholomorphism $X \setminus A \cong \widetilde{X} \setminus \widetilde{A}$ one has $H_r(X,Y;G) \cong H_r(\widetilde{X},p(Y);G)$. This concludes the first step.

When X is Stein and (X,Y) is a Runge pair, given a compact subset K of Y one can produce a real analytic strongly plurisubharmonic function $\psi: X \to \mathbb{R}$ such that, say, $K \subset \{x \in X / \psi(x) < 1/2\} \subset Y$. This can be done by slightly modifying the proof that any Stein space carries a real analytic strongly plurisubharmonic exhaustion function (see e.g. [4]). It is clear now that the pair (X,Y) can be exhausted with pairs of the form (X,Y) corresty.

ponding to triples $(\psi_v, \gamma_v^1, \gamma_v^2)$ where $\psi_v: X \to \mathbb{R}$ are (possibly different) real analytic, strongly plurisubharmonic exhaustion functions for X and $\gamma_v^1 < \gamma_v^2$ are real numbers.

Using Proposition 2.1 this concludes at once the proof of Theorem 1.1.

REMARK. The corollaries of Theorem 1 in [1] can be strenghtened using Theorem 1.1 instead. (However some of these corollaries follow directly from Hamm's results). Again the statements are left to the reader.

REFERENCES

- 1. Andreotti, A.; Narashimhan, R.: A topological property of Runge pairs, Ann. of Math., 76, 3, 499-509 (1962).
- 2. Hamm, H.: Zum Homotopietyp Steinscher Räume, J.Reine Angev. Math., 338, 121-135 (1983).
- 3. Hamm, H.: Zum Homotopietyp q-vollständiger Räume (to appear).
- 4. Narasimhan, R.: The Levi problem for complex spaces I. Math.
 Ann. 142, 355-365 (1961).
- Pignioni, R.: Density and Stability of Morse Functions on a Stratified Space, Ann. Scuola Norm. Sup. Pisa (4) 4, 592-608 (1979).
- 6. Ramspott, K.J.; Stein, K.: Über Rungesche Paare komplexes Mannigfaltigkeiten. Math. Ann. 145, 444-463 (1962).
- 7. Serre, J.-P.: Une propriété topologique des domaines de Ruge. Proc. Amer. Math. Soc. 6, 133-134 (1955).
- 8. Tognoli, A.: Proprieta globali degli spazi analitici reali,
 Ann. Math. Pura Appl. (4) 75, 143-218 (1967).