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tions. Fields are always

not. Algebras

mutative,

tative nor cocommutative in general.

-algebra (K a field) s finitely

tely generated as a K-algebra. By-a

stand a Hopf algebra'of the form

group and KG is equipped with the

in [Sw p.54). Finally we fix throu

célly cleosed ground:field  k: of

under consideration will be assumed

1. Entteduction, Recall that the

finitely generated Hopf algebras is

of affine algebraic

finitely

groups ( d-groups, see [Hz]p.los).

that basic properties of d-qroupns ha
. | : g

commutative while

Hopf algebras have antlpoﬁe

generated we mean

chara

groups, Under this equivalen

Soeitias i

CROUP ALGEBRAS

We use standard Hopf algebra terminology

For convenience we recall some of the basic conven-

groups are generally

are associative with unit but not necessarily com-

and are neither commu-
When we say that a Hopf
it is fini-
group K—alqebra we uncer-

G= 6}9 Kg (where G is a

gei
Stdﬂf?rd Hopf structure as

ghout the paper an algebrai-

gteristic zero: all fields

to contain k.
category of commutative
equivalent to the category

ce, commutative

generated group algebras correspond to diagonalizable

general hope

ave their non-commutative
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(1.e.,.Hopf) analog in other words that they extend to properties

of group algebras. Ve will be concerned here with rigidity pro-

pertiea., A trivial example ef such a property is that the auto-

morphism group of a group algebra KG equals the automorphism

group of G itself; this is the analog of & well known (trivial)
>

property of d-groups ‘Fu]p.lOS.

The aim of this paper is to prove non-commutative analogs of
some‘deeper rigidity properties of d-groups. Rdughly speaking
the propegties we hﬁve in mind are the following: 4

(1.1) There are ne non-trivial families of degroups inside a
given affine”algebraic group.

(1 2% Therne are no non-trivial families of dwgroﬁp actions
en & given pfejective schene,

Intuitively, by a trivial family of d~groupé-(respectively of
sctions of.a d«éroup) we understand here 2 family which “"gene-
wrically” is ebtained Ey conjugating a fixed d-group (reSpectiveiy
a fixed action) by a variable element of the'given group (respécu
tively with a variablelautomorphism of khe given prejective
scheme) . Property (l.1) follows for dinstance frem the conjugacy

of maximal tori in affine algebraic groups [Hulb.lBS while pro-

o

perty (1.,2) is @8 corisequence of (1.1) applied to the automor-
phism group of our projective scheme on which & polarisation
has been fixed,

Frecise statements of our non-commutative analogs of (l.i)
and (1.2) will be given in the next ;section, Nete thiat an the
non-commutative case it isnot anymore cléar that the analog of

)

(1.1) already implies the anmldg of (i,a) (see (7.4) helow),
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3, Statement of the results, Before stating our non-comnutative
anajog"of (Lul) let's . recall ‘some facts about cocdpdiigacy in Hanf
aléebras. Let- K 'be a field and H be a Hopf K-algebra with co-
ml i nlication ZX:mwéantipode S. For any K-algebra. map ue&

: ; . :
Alg (H,K) write u”=ueS e;Ang(H,K) and define C{u) :H—>H

K

ot

{en)
to be the map C(u)=(u"®1®u)\, where ZﬁZ:H—~%>H6©<H<8VH‘ is

I
the natural comultiplication éﬁzz(l@nﬁ)[Xu([kﬁﬂjll and

e . >
u“é@lé&u:Hé@KH62)4——>H tokes a®b®c . inte u?(a)u(c)b; - C(u)
is easily seen to be a Hopf K-algebra automorphism and will be

called coinner Keautomorphism of H,

Now two Hopf ideals I =and 3 in H are said te be coconju-

4

gate owver some field extension K of K- .if there exists g coinner
Ns N v ~ g Ar avd
K-automorphism 0° of H® K such that cT(IQ@KK)m3QDVK (here
N N
“o
.we view H(@KK as a Hepf  K-slgebra in the natural way).

Here~ds our-asaleog of «(1. 10

2 L THEOREM . et 'HO be a finitely generated Hopf k-algebra

K a field extension of k, H:HOQDK and J.a Hopf ideal in H

£

such that H/J is & group algebra. Then there exists a Hopf ideal

30 in HO such that J and DOQDK are coconjugate over some

field extension of K.
Intuitively we should view H/J  as a family of group algebras
“coembedded” in My and with parameter space Spec K. Our theorem

says that any such family must be coconjugate to a “trivial” one,.

To state our non-commutative analog of (1.2) recall first some
facts about coactions. Let H be a Hopf K-algebre with commulti-

-

plication /N and counit-£ and let: A be a K-algebra, By & H-coac-
A

tion on A we mean a H-comodule algebra structure on A (see [ﬁa}

p.3e4) di,e.a Kealgebre map o A — = HE A



=

such that (£®1)x "‘1;& and (A®1l)xX =(1®@xX ) :A ~—== HQZ)KH @KA.

Given two coactions of:A-—> HQDKA ‘?nd <X‘:A-%-H'QDKA .we say
that o« and d/commuté iif (L&x)cX'a(t@]J(]Jxoc)a:A———~w~—sm
H”(X)K}-i@KA where :HCX) HY e W ®l’H isiiithe twist.map.

Put Tﬂ<%ﬁﬂ<[ﬁ,tf JzHopf algebra of the l-dimensional torus,
A T-coaction on A, LA ~—§§‘TQ§KAmA[},t“¥] is called positive
if - cclih)e A[}] and the image of «(A) in A=A[t]/(t) equals K,
A H-coaction on A will be called projective if it cemmutes -
with some positive Tacoactién on A,

Fipally let ;\—q»rux ﬁ\ and /5:8-9—H(EKB be two coac-

tions as abeove; we say they are equivalent over some field exten-

As
sion K of K if there . is @ K-isomorphism of algebras

f oA z;’-\<X>,<i/i/~——>— B =B ®$’\ sychthat. (1 @f /éf where
¥
A o e
o(:A~«~>E4§DKA and /3:B>—v%-Ha©KK are the naturally in-

duced maps. Here is our analog of (1.2):

(2.2) THEOREM. Let H_  be a group k-algebra, A a finitely
generated k-algebra, K a field extension ofi k and H:HogaK,
A-mo K. Then ‘foir. any projectiye H-coaction o<:A—~>-HQDKA there
is a finitely generated k-algebra BO and a Houcoaction /@b:59—4~

HO$DBO such that if we put Bagog)K then o and /3: @Oé01:6~a§

FH@KB are equivalent over some field extension of K,

Intuitively the above theorem says that any family of pro-
jective coactions of a group algebra is equivalent with a "con-

stant” family.

The proofs of Theerems (2.1) and (2.2) are similar in spirit
but independent of eachother., First step will be to prove some
“infinitesimal” versions of our statements; this will be done

©

by certain tricks. with derivations. The second step will be
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to "integrate”; this will be done by applying a version of Kolchin's

existence theorem for Picard-Vessiot extensions E<ol]pp.420~421,

The use of Kolchin's theorem is a somewhat unexpected feature of
our proofs but on the other hand our method is quite general and

can be applied in various other situations (see LBQ]). -

The plan of the paper is the following. Sections 3 and 4 are
devoted to the proof of Theorem (2.1); sections 5 and 6 are de-
voted to the proof of Theorem (2.,2); in section 7 we make further

1

comments and discuss some open questions.

3, Infinitesimal rigidity of Hopf ideals, First some more ter-
: : e X
minology and conventions, For any K-linear space V we put V =

; . e * : :
zHOmK(V,K) the lipear dusl of V, For ugeV' and xeV we write

£

<u,x > instead of u(x). For any K-linear map f:V-—=W we denote

by Y YL

. ' x
its usual transpose so <{f u,x>= <u,fx> for all
Y : : : L P e ;
x eV, ueW . 1f (u,)  dis a family of elements sn VM amd if for all
x €V there are at most finitely many indices i such that <hi,x > -

o =1 . ! . i a . ’}( .
#0 then giui is a well defined element in V ; we shall consi-

.der several times such infinite sums,

1f f:A—=>B is a K-algebra map and L is 8 subfield of K then

o

a map d:A—>8 is called an L-f-derivation from A to B ifit is
Lalinear and dixy)=dlx)fly)+F(x)d(y) for all x.yiep; if £ is

the identity we say that d is an L~derivation.on A. Yhenever

d:A—=>B is an L-f-derivation as above with d{(K)c K, the L-linear
map d(@f+fé©d:AQ©L!—w§ B&, B sends ker(ﬁuﬁ%f;~%>ﬁé@yﬁ)‘into

N
ker(ﬁQ@LB ~%>BQDKS) hence it induces an L-f&f-derivation from

N

AR A to Gé@KB_which we still denote by d®f+f&d (note that

neither d®f nor f&d are well defined maps from A® A to 3Q.8
| : <

while their sum is).

©

n

Finally for any Hopf algebra H we dénote by Z§4, EH'bH (or
simply by [N, E8) the comultiplication, counit amd antipode cn:

st wAOAH we write Zﬁx:‘f?x,.cbxﬁ,. Recall from rﬁpr.Q tiharsfor



: ; : X v
a Hopf K~algebra as ahove the dual H has & natural Kealgebra
' X
. o . : o X X x A x
structure with multiplication given by H @ M c:(HQOKH) — = H
“
and unit element given by Epye
From now on, throughout the present section as well asathe next
one ,we keep notations from Theorem (2.1) and denote by rsH —= H/J=KG
the natural projection (where G is some group) .
Start with any k-derivation § on K and cefine k~derivations
d amd d on H=H @K and KG=kG®K by d (x@a)::x@cya. and
H 2 KG : % : H
ﬁ,e(y@>b)xy@)§b respectively, The following obvious formulase hold:
- i ;
& EMMA, d, . +d N ] and
(3.1) LEMM (1® dyotdeg® 1D o= Byl and
®d +d Lo i
(TR ety @ L) = Dy
(B.2) LEMMA, Thermw)Q:ZdKGr»rdH is a K-r-derivation from H
to KG and the following formula holds:
(d®r+r@d )[& e \9 i
H KG
Proof, Use (3.,1) and the equality (r@-r)[ﬁHx Aypr:H-—%-KGQDVKG,
A2 oy
- X e ; s L K X
(3.3) LEMMA, The map @ is a K-r'-derivation from (KE&)™ to H -,
o 5 > %‘: 1
Proef ., Foraall. w Vi€ (KG) and x&H we have:

¥ (uv) x> = <uv,9><>a(u@\/;AKng> by (3.1)

= <u<g)v,(a® rer®d )AHX>“~

@

= (I *uy(r*V)+ (FRuy(FRvy x> ED,

B : . =
be defined by the projection

Now for any g€ G let ugeg(KG)
map uq:KGm P Kh —=Kg=K onto the g-component and let wge;Hx
= h

. *
be defined bysiw er U =i o,
g G =i
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(3.4) LEMMA, The following relations hold in the algebra (KG)%:

- : Wtk =y for all g€ G
gtg g all ge G
U =00 for g he, go#h
=
- uqu
R
e : : A e ' ; cok
hence the corresponding relations will hold for whe - w "5 45 8.

.

Proof. It is a trivial explicit computation.

i 7 : E e :
(3.5) LEMMA. The sum @:= EE wg(éQ uq)v is a well defined
: 8} ® )
, - X = R .
element in the aslgebra H and, viewed as a map from H to K

i1t is g K-giderivetion,

Proof . For -xe&H _sand ge G we have -:

!

- X 3 s B ‘
» (wg(a .ug) s <wg®8xug, AMX>'-~ Z <wg 'Xli> < ug ,3x2i>

i
which vanishes for all but finitely many g's’ so € is well de-
fined, To prove that it is a K- £ -derivation remark - first that:

for all - »x,veH  and  obhel: we have
9 ; i b 3

<fug,xy>>~ if ‘ <f»vf,x\7<fufm] e o mnq .

S Wesa b o L W A ,x:>: WoW, XD =
Z_\< ! 11>< h"\?:;,.> <g® h'AH (-g ! ~
35 .
(w_,<‘> if - geh
gere
0 if g#h
Using the above formulae we get.:

(Q;)(_y>a > - \/xf-vg,xlliylj ‘>.(Ug:a(xpi‘)’23)>x

e\
1:3.9



= Z_w <wf RIS <wf'"'}'g ,yl3><uh ,ax2§h><wh_l 'y23\>+

g

s
*
G

s
"

< zy]j><wh.x?i> <U o '(éy?j>:
B ol - h g )

l*h]l};j,f,h 3 g
belink :

o A B Sy
Z—."' f"*lg l:j _f;"'l KNJ 'f

KER Y

e T e e

3.6 LEI”. The map E:=(E®1@f-.0@i®@s )/ is a K-deriva-

tion o H “and fer all W&l we have E u=uf-0u,

Proof, To see that E  is & Kederivation on H 45t is suffi-
cient to check that I+zB:H® K[z]-> H® K[z] is a K[z|-algebra
K “K g
f) %
map, where !([Z{:[:':KE_QKK f2 =0, But l+zBE=((E£-20)018(£+26))/\,
and (3.,5) easily implies that £+28 , £-280 are E-([z_]«-a}.gebra maps
from Hd@kﬁ[z] to K[z]; consequently lvzE is also an algebra

map., To compute E*u note that (E®1®PH-B@lws ) u= E®LDE -

: 3% L% H , X S
~-0®ouwEe H ® H (X)K%'i hence E u=uf-0u, QED,
" ™~

Ny

Finally our infinitesimal rigidity is expressed by the following

(3.7) LEMMA, IF¥ D::dH+E then D is a k-derivation on H which’

agrees with S.om Koo sandasuch that - DI 3,

g1

Proof. Everything is clear except  D(3J)c 3. First note that by

(3.4) we have 2 .uauq::i hence by . applying 0 Wwe ger by (3.3)
& P

that E (o ug?mg-x— qu(a ug).«Cl. Conseguently for all ge&G we

have :



e

Now take any x&€J and let's prove that Dxed. It is sufficient

to check that .<<wo,Dx)>mO for all gEEG. But
. e} 3 ] :
,-<w9 ,Ox > = (r% ,d X SR -<Wg JEXD = <Wg VO <E-’Xwg',x>_x
<h0 CHK>~ <§ x>> <ﬁ1 rdHX>+ﬂ<ﬂgfax
= <@ e x:>~0 GED,

i

4. Actual rigidity of Hapf ideals. We shall keep notations from
Theerven- £2.17.
: alg :
(4.1) Consider the functor 3%’ {(ﬁfmut ative k»algehras}-m4>
alg
qroums% defined by 5%7 Al@ (H ,Bi=Alg (H RB,BY; here
2 ; TR *Byp
G.{H - ,BY is a group with multiplication induced by the multi-
=kt g v v .
plication in the convolution algebra Hom (H_,B), see {Swlp.82. ,
i g Ay :
Regall-also that 4f ue;Algp(HO,B) then its group inverse is gi-
7 N 2 1 g
ven by u”:i=ueS. On the other hand Jﬁ} is obviously represen-
! e findite] : ated by alg i
table by some finitely generated k-algehra Ho’ which becomes an

affine algebraic group over k. Now bylﬁ@]p,47 there is & finite’

dimensional sub-coalgebra \/O of Ho such that H, 1is genera-
ted by V, @s a k-algebra, Fix a knhzofs XpseaesX  in V and
_consider the standard functor %ﬂ? { ommutative k-algebras j’»a>

{Qroups% . Vviewing f%ﬂ(ﬂ) as identified with Ayt (V OB) . wia.

our fixed basis in Vae Ot course 5%6 is representable by

:

the standard algehraic group GLn (considered as a scheme over k).
’ ﬂﬂrﬂ]g
There is a functorial homomorphism %?:L - '~?E%i defined as fol-

alg - _ :
lows: for any ue;J?O (B), look at u.  as a map from HOQQB o
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B -and let %603)(u) € Auty (v &@B) be the re%trictign of

(uS@l@u)AQ:HO@B~~—~>( BBI®,(H BB)® 5(H @B) —=H ©8  to

VO€>B ( which takes voéam into itself because v is @ sub-

coalgebra). We won't check here that %?(R) is a group homomor-

phism but only note that the most convenient way of doing it is

to use the fact that the B~-module trenspose (i.e. the image via
S ; S lﬂ ; :

Homq(u,ﬁ)) of (v ®1LPu) ik QDW-~1 GOR is the map from

Homk(Ho,B) to dtself defineo by wh-Su vui in Gther words toe

£

B-mocule transpose of & coinner automorphism is a "genuine” inner

automorphism 6f the convolution algebra. On the ptner hand the maps

-1
Vil W clearly hehdve nicely with respect to group gperation,

> o, ; X al
Representability yelds a morphism of algebraic groups HO‘ g

_.%GLH ;
let [ be its image and let 7 be the Lie algebra of [ viewed as
a Lie subalgebra of gf;.

Now if . D is as in (3.7) then we have D(V0®N<)c:VO@7K (once

again because V, is a sub=coalgebra). Let aijéi< be such that
iy

b P = ¢ A e 2 4 ~ ) oy e » § a3 J 4 ) P

Dxim 2 aijxj' We claim that u-(aij)es 2{YK). Indeec since Dx, =

aixi it is-sufficient to prove that the restrictienm of.  lazE
; : : > ; ' ;
to VOQQK[Z~{(wnere z.=0). belongs to rﬂ K[z]). But as already
= alg :
noted in the proof of (3.6) we have EW~/Q€J¥ (k[zj) and l+zE=
K[z])(E+26 )¢ f1(K[z]) so our claim is- proved,

So far we worked with a single k-derivation 51 on K and cons=-
tructed a k-derivation [ and a matrix a:(ai.)é B&U<), Now choose
a family (5;)0 of k-derivations on K such that if x&K is

3 g r ;

such that 5%x=0 for all p then x€k (such a family exists be-

./

cause. k is algebraically closed of characteristic zero) and de-
note by "D and a =(a .. )€ J(K) the corresponding derivations

P, 8] nij
and matrices. At this point we need the following version of Kol-
f G

chin's theorem mentioned iff section 2 (notations are not necesse-

rily the canes used abeve 1):
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(4,83 THEGRE W. et [ be a closed subgroup of GLh (viewed as
en algebraic group over k), let K . be a field extension of Kk,
(5 ). a family of k-derivations on K such thet if xekK  is such

p'p

that égX&U for all p then xek and let (ab)p be a family of
{h v

matrices in ¥(K) where ¥ is the Lie algebra of fﬂ(viewed as -5 Lie

!

subalgebra of gen). Then there exist & finitely generated field
~s : ; : ot >
extension K of K and derivations ((jqp)p on.. K ‘extending

[4%d 7 B
the derivations 5! and there exists a matrix G“efjﬁ<) such that:
) i A

3} x€ K is such tha ngmD for all p then x& k and

1
N
5%6-m »Eap for . all p.

A proof eof (4.2) is given in |Bu (note that there is a weaker

version of (4.2} in DS” which is not suited for our. purpose).

For convenience we briefly sketch an argument for (4.2), Put Bs=

=T , where i, jorun from 1 to.-n and define kaderivations dn
Big - :
B, extending the derivations é; and still denoted by é; by put-
5 e - 3 .
ting g,TJ‘:« Ef b, & - .. One checks that -the defining primeiideal
= S ~ teps] 4

3 pw ]
2 - s " =l - % . s
Ic B 6f the identity component of [ is 51m1nvar1ant for all p. Then
¥ } D p

one picks a prime ideal O in B which is meximal among the ideals
, _ g

‘.

containing I and which are gpwinvarimﬂt for all p. Finally one

A

e

checks that (4.2) follows with K=B and O =(0, . 0. .=image
8] A -

ij
P

0 Tij i, SP R

4,3) Let us apply Theorem (4.2) to the situation describe
- ! \ 7

X

d

10

. » o~ ) 1 <
(4.1) namely to our specific rﬁJﬁmpb S e S and 0 be as in

P
4 . L : L
Theorem (4.2); note that after replacing K by some finite e

xtension

of it we-may assume that G’m%f(K){u) for some wu &} ( )
lad 3 % N
D be the unique k-derivation on H=H® K which agrees with

o ~r 20 : 5

D on H®&l and with é‘ on K, Moreover let d be the k-

p Y o p

: X = joaEme O é" e
derivation on H defined by Gp(x« =X @ for xe!ﬁo, aek
1 = ’:\J -~ 1N '* zq]‘:’
and put J=3@ K, Jom(f ’J)K\HO.



]

e -1~ . : : e
"(4.4) LEMMA, dpx a Dpc“ for all p. In particular dp(c' o b

o R

ew o ter ekl on.

: o sl o B :
Proof. Since dp and @ ”Dpo‘ agree on 1&K, tney will agree

Aor
everywhere provided Dpc‘ vanishes on XyooaosX o Mow

n
"')p(O_ (xi))::bp(%“‘ ‘Tij)‘j)”' Zm ( pcim)xm + ZJ_J (rijopxj
. Z;:J<§pq;m)xm i ;5134 Gajapjmxh x4

so the first statement of the lemma is checked., To check the sew

. Cad Ao N
cond statement note that by (3.,7) Dp(ﬂ)c J hence: D 1y 0 “hence

P
: = -15'

(o B/pd' e Ne & BED,

Cur Theorem (2.,1) will be proved if we prove the following:

. - N‘ v
(4.5) LEMmA, 1)’ 0730 @K,
Z) a is a Hopf ideal in H_.
] 0

Proof. Statement 1) follows in a way similar te [Sﬁlp&SS orbﬂ@]‘
I

x4

b oy
Appendix., For convenience recall the argument, Suppose (g J)\{JOQDK)#§

(Fke

3 Favd . s
element f:jichfq & (0"13)\(306bg),cqe§K, for which NuCﬂPdiq;COﬁLU}

6]

choose a basi of the k-linear space Ho and choose an

is minimel, We may assume that at least one of the c, s equals I

. a3 2%
There are indices P and 9, such that c:;é‘ c. 0. By minima~

: _}]'\/ ~s pomqa As
lity of N we have fmcqcc “dpof & JO$>K anél dp fé&30®7K hence

o
NS
Fé:30@)K, contradiction., '

Statement 2) follows from 1) in the following way: first, Jﬁ'ie

S

of course an ideal in He ang 8(J )C'UO, To prove that it is a

coideal note that 30 gogs to. zero under the map
i

C A “r r‘\, L e :\1 mli‘f’ - = s
H, 'H — Heo H— (H/e™"0)® (H/e""3)=(H /3 )&(H /3 oK

K e



i
Jenod
i

§

)
=3
&

hence zﬁJ (JO)C°HO¢OSO+UOQDH we are done,

& 0

H

5, Infinitesimal rigidity of coactions, Thig-sectiom and the
next one are devo{ed to the proof-of Theorem (2,2),

(5.1) Start by recalling. thet there is dictionary allowing
to translate statements about coactions of groups algebras KG
into statements about G&gradationa-and convarseiy. Recall that

by a G-gradation on a K-algebra A we mean a family (A of

| g'ge 6
K-linear subspaces in A such that AxGBAG - and quAhérA

i

gh for

all g,hge G. If we are given a G-gradation as above one can con-

struct a H=KG-coaction 0(:A~—9-H60VA by putting a((a):zzgébaq
. N s

he

=% e N ~ . e . 3
where a:Zqurfﬁjéﬁ%ﬂ conversely for any H=KG-coaction e¢:A—> H@ A
; o w! B

define a G-gradation on A by putting qu @b(A) where o : is

< e

the composed nap. A 7 H@ Ax Ah —> Ag=A., The two construc=

™ h

tions above are inverse to eachother,

IR oA

\-Q)(1 is a G-gradation on A the elements of L/AQ are
A put =

called G-homogenous and we write g=deg(x) whenever xe;Aq,

It is trivial te checkthat:

(5.1.1) A T-coaction on A is positive if and enly if the core
-responding /4 mgrad#ti@n A= 89%m is pmsitive.ih the sense thét
Aele and s A0 forf mg Dy

o m :

(5.1.2) A H-coaction e :A—> HE@A Ccmmutesiwirh a H'-coac-
tianakwhere H=KG, H'mKG’) if .and only'if (Xq(x‘g'm(x'a'tx for
gll g€G, g'&€G'; otherwise stated,if and only if the family of

Pt

o)

linear subspaces A _ .,
o

s

SE N defines 2 Gx<G'~-gradation on A
¢ ]

{here we denoted by gg the element (g,g')e G><G'; we have then

S : ~r

o
(5.1.3) A H-coaction <x:ﬂ-4a»HQbVA is equivalent over K . to

i P = e Gt N m S SRR D e o e U 3
{30®l,i5.w50@i\ \"{@)K" for some iqmmw coaction F)a‘“so 7!.0(@?»

(9]
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if and only if the corresponding gradation descends to k over

.

Ar . -
K in the following sense: there exists a k-algebra B, 8 G-gra-

& N 3 - 5
Bog)g on B = and a K-isomorphism of algebras

As s ~s s
f_:A@KK e Bo®_l‘_ such that f(Ag@KK)=BOg®i\ for all geG.

dation (

Now it is easy to see that in order to prove Theorem (2.2) it

is sufficient to prove the folklowing statement:

- (5.2) THEOREM. Let K be a field extension.of k, A 8 fini-
tely generated k-algebra, Al @K, W6~ @ group homomorphism
and (Ag)g a G-gradafion on A such that the induced Z -gréda—

= f . A : e : e
tion (A )_ o A A 4W(§%Zm )vls»p031t1ve Then (Ag)g
descends to k over some field extension of K,

Indeed to the H-coaction in our Theorem (2,2) there corres-

ponds =a C-gradation (Ac)ce(Z (where H=KC). By the above dic-

tionary there is a /Z -gradation (A "~ on A such that the
linear subspaces Acm=ACr\Am define a Cx7Z -gradation, Put G=
" C=7Z and let T:6 — 7 be the second projection. By Theorem (5.4)

the gradation descends to k over some field extension

2
(Mcm)cm

& : ; g 3 X = i 1
of K, hence so doss (Ag)c' :

So.we concentrate ourselves on proving (5.2). Once for all

choose G-homogenous generators XpreeorXy of the K-algebra A

such that if Geg(xi)=g then 47(91);>O. Let RzK{xl""'Xn}

i
be the free K-algebra on variables xl,...,xn (so R=tensor K-
algebra on KXIGB...GDKXH) and denote the product of any two ele-
ments a,béR by a®b rather than by ab. There is a unique

G-gradation on R such that deg(xi)=g and clearly dimKR is

i g

finite for all gé&G. Moreover put 3=ker(R—~?A ; X1F~ﬁ xi);

clearly J  is generated by G-homogenous elements, We will keep

these notations throughout this section and the next one,



So far we just translated our coaction problem into a gradation
problem. Now we go into our "infinitesimal rigidity”, Let éq_be
any k-derivation on K, define a.k-derivation d on A:AOX>K by
d(a@b):a@rgb and let o(g:A—-——>A be the K-linear maps defined

by the coaction corresponding to our G-gradation.,

(5.3) LEMMA. The sum V= Z o{gdug is a2 well cdefined k-de-
.. g

rivation on A,

Proof. For a2ll x,yeA we have

VZo(gdo(g(xy) = 7 _ d( th (X)X (y)) =
, g =g

g .
e |

. Sl (x)) e (v)) » Zh f'. (S, (X)X (y))) =

il

Vixy)

i

= (¢, d¢ ) (x) e (y) + 7 ;Q/(X)((of dece)(y)) =
T v Bt

(Vx)y » x(Vy), e,
" Our infinitesimal rigidity is expressed by the following:

(5.4) LEMMA, There is a k-derivation ‘D on R which agrees

with §‘ arc-cK o and such-that - D(J)e'3  and D(Rg)c:Rg for.all g.

Proof. Note that Y in (5.3) agrees with CS on K: and sends
Ag into itself for all g€ G. Since R is free V. 1lifts to some

D enjoying the desired properties.

6, Actual rigidity of coactions. Let Rozk{xl,.,,,xn} and con-
sider on Ro the natural G-gradation induced by 9yreessg, @8

in section 5. Rut r:max{%(gl),...,ﬁ(gn)} and let 7, be the set

"of monomials M in RO for which M(deg(M))g r (where by a mono-

mial we mean of course an element of R, of the form X @ ..®X,
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q21). Clearly M, is finite. Let Vo .be the k-linear subspace of

R, spaned by M, and let v its dimension. Now consider the func-

tors 91 5%;: {Commutative k-algebras}:7{groups},where EF(Bj:
=group of B-algebra automorphisms of B{Xl,...,xn} preserving the

B-modules Rog®B for all g and 5€V(5)=GLV(8)=Aut (V®3)

B
where tne laét identification is made by choosing M as a basis
for -VO. There is én obviqus ingective restriétioh map m: ?LQS?L.
On the other hand % is easily seen to be representable by some
affine algebraic group over k, cailvit F. So there is a closed
immersion F -—>GL = whose image will be denoted b; [M; the Lie
algebra of [Twill be denoted by 3. In particular for any field
L and any L-derivation E on L{Xl,...,xhg pfeserving the G-gra-
dation ,the. image ef E in géL(L)belongs toBiL);for iif ;2=O then
l+2E € gf(L[ij) hence m(L[z]5(l+zE)§ Felkeln

Now choose a family (J;)p of k-derivations on K as in sec-
tion 4 and denote by (Dp)p the corresponding family of derivations

constructed in Lemma (5.4), Since Dp(VOQXK)c:VOdDK we may write
=
DpM: E =

apHF)’ belongs to KKK). Indeed let dp be the unique k-de-

N, apNNei<,‘for all MeM.ve claim that the matrix
av=
P ( G
_rivation on R which agrees with é; on K andvanishes on all
monomials. Then Dp—dp is a K-derivation on R preserving the G-
gracdation hence its image in géL (which is precisely the matrix ap)
belongs to KXK) and our claim is proved. Now apply the same ma-
chinery as in section 4, namely use Kolchin's theorem to find some.

ne ~s
finitely generated field extension K of K and some matrix o e[Y(K)

; e s AR : -] g A
such that if Cl:J(X)KK and if CJO=(0" D)r\RO then o C}:JO@K.
Putting BozRO/JO we see that B has & natural G-gradation in-
ducing our original gradation on A@K

and hence of Theorem (2.2) too.

K; this closes the proof - of {(5.,2)
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7. Complements and open questions,

(7.1) Our proofs show that coconjugacy in Theorem (2,1) and
equivaience in Theorem (2.2) hold over a finitely generated‘(rau
ther than arbitrary) field extension of K. It would be interesting
td knowwhether they hold over a finite (rather than finitely ge-
nerated) extension of K. We can prove this is the case fof Theorem
(2;2)by using some standard specialisation érguménts. On the other
hahd, for Theorem (2.1) specialisation arguments do not seem to

"work without some additional finitness assumptions,

>

(Z.2) Along the lines of Theorem (2.1) it would be interesting
for instance to dispose of a non-commutative analog for "conjugacy
of maximel tori in an affine algebraic group”. The analog of maexi-
mal fori énould be perhaps the minimal prime Hopf ideals for which

the corresponding quotient is a group algébra.

(7.3) One is tempted to conjecture -that Theorem (2,2) holds
without the projectivity assumption. Indeed, we used this assump-
tion essentially in order to force the automorphisms we were look-
ing for to form a nice algebraic group. This still holds if one
_replaces “"projectivity" by some other fiﬁitness conditions, That

no conditions at all are needed is suggested by what happens in

there
the commutative case where“is some evidence for our conjecture.

Indeed in this case a d-group action on A means roughly speak—
-ing a group homomorphism (witH some algebraic features) from our
d-group to Aut(SpecA); but now, as remarked by Bialynicki-Birula-
the latter automorphism group hés a "universal" structure of di-
rect liﬁit of affine algebraic groups, so again we should be led

*in this case to "nice algebraic groups” as in our proof.

e
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(7.4) An interesting question is to decide representability of
the functors JZA: %finitely generated Hopf K—algebras}~o §sets}
defined by JZA(H)zset of all H-coactions on a given finitely
‘generated K-algebra A(possibly with some additional properties

e.g. commuting with some given positive T-coaction).
4

(7.5) We close by noting that antipodes are not at all essen-
tial to our work. Indeed both Theorems (2.1) and (é.2) étill hold
(with identical proofs) if oneireplaces Hopf algebras by bialge-
bras, Hopf ideals by bi-ideals and group algebras by cancellative
monoid algebras (where a monoid M is called cancellative if x=y
whenever x,y,z€M. and either xz=yz or zx=zy). In this more ge-
neral context the concept of coconjugacy must be defined as follows,.
‘Let H be a K-bialgebra, let H* be the dual algebra, H?lg the
set of all elements of HX which are K—aigebra haps (Halg is then
a monoid with respect to the multiplication inducec from H*) and

H*™ the group of invertible elements of the monoid paly Eim the

i a ; .
SON lg). Ry a coimer automorphism of H we mean

-1
u

Hopf case H
: : : LRy
a map H—>H of the form ( @l@u)Az with ‘e ls ", Now co=
conjugacy is defined exactly as in section 2, using the above con-
cept of coirmer =~ automorphism.

We should emphasize that cancellativity is necessary to go through

the computations from {3.,5) and (5.3).
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