'OP'ERATIONS ON CERTAIN NON-COMMUTATIVE

-OPERATDR-VALU"D RANDOM VARIABLES
Dom Vmw&ow .

An example motlvating the atudy of .the addition of free
" pairs of "non-commutative operator-valued random varisbles" is
provided by the computation of spectra of convoluiion operators
on- Iree groups.

. Let G be the (non—commutative) frau group oh iwo geherators
84:52 and 1et A denote the left regular reprasentation on 6 (G)

VTo compute spectira of convolution operators

gecG

witﬁ O O bnly for finitely many ge¢G 1t suffices to be able
to decid¢ whether such Y is invertible.This in turn is equivale

to deciding whether a certain operator

s

X= kLZ(Nk ® ’r\(s}_f)+ ﬁk@fﬂcg‘g))
&

where o<k— cﬂk,{-’l K= ﬂk are n x n matrices,is 1nvertible 1f
n—i i e. if the matrices are gcalarg,then the gpectrum of X

can be compﬁted using our éeaulté on the additlon of free pgirs
_of non-commutafive raﬁdom variables{B].Tﬁﬁé the computafion of
. the spectrum of Y is faduéed t§ é generallzatlon of the additio
-of free pairs of non-commutative random variablas té the case
‘of-"matrlx-valued non—c;mmu;afzve raﬁd;m variables™.

The éres;nt paper deéls with fhe ekfension of our previou

work ([3L,{91) en addition and multiplication of free paira of

non-comnu 1 :ative random variableﬁ-to, what might be called,
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the opsrator-valued case.This means that the Iisld of complsﬂ

'_numbers is replaced by an operator algebra tbe free products

are with amalgamation over %his algsbra and the speoified stabes '

are replaced by speeifled condltional expectations Also the natural

frame—work of operator algebras wmth dual algebraic structure (@ﬁ])

e

-for tbe considered opsratmons in the “scalar“ cage has & corraspond—

ing extenslon to the "operator-valued" cages -

Thaugh our results are maant for applications to operator

algebras and spectral theory,most of our consideratlons will be in
8 purely algebramc context since we shall be maiuly concerned

with finding the formulae for computins the operatlon on the dis-

tributions of tha random-variables.Concerning distrlbutlons of o-

kS

perator—valusd non-commutatlve random-variables,let ug only say

thal{ since ths scalars d; are replaced by an opsrator algebra B,

the moments of the variahls X are %the expactatlon valued of mono- |

5 -

mials of the form Xlebz... o 1X.It is an importast fact for the
computatlon of spectra that the addltlon of free pairs of B—va—_

lued random varmables gives an operation among ‘the symmotric

parts of the distrlbutlons i.e. among the axpectatlon values of

monomilas of tha fornm hXbX...bXb For the symmetrxc distributlons

_tha additlon formulae closely resemble those in tha gcalar cage

with fthe generatlng geries v1ewed ag germs of maps L —-é'd:

replaced by germs of mapd B—>8B",
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The éaper hasg seve& sections:

The first gectlion discusses free families of non-—
oéﬁmutative B-valued random variables ané disﬁributions'oi guch
randon variables: |

- The gecond ané third aécﬁion deal with the algéﬁraa
ey, aﬁd the canonical form of a random variabla with a given
iatributlon:Thms is the analogue for the B-valued case of the
gpecial Toeplitz operators which we uéed in the scalar case for
étudying the addition of frae palrs of noncommutative random
vafiabies:'

N . The fourth section gifea the solution to the addition
problem for the symmetrlc parts of digtrlibutions of B-valued
random varlables.It is obtained by studying the differentlal
aquatlon for sem;groups with respact_to additlon.The final.
formﬁlae clogely resemble those in the acaiar case; S

| The flfth sectlon dealg w1th the dlfferentlal aquation.

for gemigroups w1th respect to the multlplicatlve operatlon.
Thae aixth gection prasenta the applicatlon tio the
eomputatlon of spectra of convolutlon operators on free groups.
Segtion geven la a §r1e£ outline of thelnecessary
adaptations to make the operatioﬁs on B—valuéd fandom ﬁariéblee
fif.in a framework of dual algebraic gtructures as in the

gcalar cage,
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l. B=valuad noncommutative rapdon-variableg

1.1. Throughout B will denote a f:LXEd unltal algebra ovor (l,
(thia choice of the baae fleld is :Lnessenta.al) Let A e another

uoital algebra over ¢ containing B aa a subalgebra (with the same

I

. unit) and let (f’ .A ~—=>B be & oonditlonal exoecta’alon i.e., &

linear map guch that xf (b,labz\:bl ‘f(a)‘o if b,l,ba ¢ B,aG A

and \f(b):b if e B.An gelement a &€ A, will be viewed as a
! - . : . Y,
B-valued random variable. <

?

1 2.Definition. Let (A,&f) be as in 1.1 and lek BLAiCA (ic I

be subalgebras.'l‘be fanily (4. )15, I will be called fres if

N . L[? (aiaz...a )_
whenever & éAij with 1&’4 iy ees ;é i and Y)(aj)=0 ;_og

ALJ<n,A family of subgety Xy C. A (glements a; G A) whers

1 €T will be called free if the family of gubalgebrasg Al

generated by B U X. (respeotivaly B uiai }") ig free.

Free familles oi’ gubalgebras arise in the C -algebram
context (in which case the conditional expectations ara of norn
one) from reduced freae products with amalgamation (see § 5 in

CAD.

1.3. Proposition,Lek (A,y) be a3 in 1.4 and let BcAiCA (1eI)

be gubalpebrag guch that A is panerated by U A and (Ai)lc T
Lel

jg a free family.Then t{) ig ooﬁ:pletoly deternined by tha

L‘!)i:: ‘{‘lﬂi (i & 3:)-

" Proof,By linearity it is sufficient o prove that we may
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oompute p (al...an) whenever a G‘A%; (1¢ jé?n). We ahall

procaed by induction on be the least non—negative 1ntager such

that {;-(a;)=0 if k< j and ik+1'é Licp ot - L,+12 k=0 then
lf(ad_...a ) =0.Aggume our asserhlon ‘has been established up to

a certain kx.Then for k+1 iz ik£ ip,1 Ve have

?(ai...a )= ‘f(ai...gk( \fcﬂ (ak+4)ak+2) 3.:.a )+

o+ *f(a ...ak - k+2...a ) wbare a! k+1*ak+1 tfgdﬁak+1>’

b1
go that the induction hypctheais applies. _

‘If ikzik+l then we write

.tf(al...an)z ? (ai...ak_i(zxkak+1— (f%fakak+1))ak+2"'an)f

2]

f (8geeedy s ‘fiéfakak+1)ak+2"'an)
which is again a reduction to the induction’ hypothesis.
| Q.5.D.

4.4, The algébralfreely generated by B and an intedetrminaﬁa
X will be denoted by B <; X}> Let (A <f) be as in 1. 1 and a€ A
a B-valued randon varlabla.The distributhon of & ig the conditiomal
sxpectation /M.a:B <:Xj> —> B defined by M = ° T, where

TgtB { XD —> A i3 the unique homomorphism such that ‘
Eé(b):b for b € B and iaa(x)znguantitiQS guch ag

/Wg(boxbix.;.bn_1an) will be called moments,.The get of all

‘conditional expectatibns /M.:B <iX>> ——>B will be denoted

by :EB'
1.5. Let Gf denote the symmatric group and let
S (bltcob )— : ci)xbo—(g)....}{bd(n)

Sq (b)=b and g =i. Let further
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§B <x> fs,{s (h,...,b)[thn >4 =
_ga {S (b,l,.;.,b)(h CBq;'.l.n 23z ’.Lf’
5B { X>=C X+X(sB < X> )X

s

where “f.s." denotes tha vector space spanned by the givan aet,

3

Lemma.We have

B(SB < x> )B-B+B(SB X > )B.
' o
Proof The 1nclusion¢:1£ obvmous.To prove the converse

remark that if n > k+1 n > 3, we have

s (b,...,h 1,.../1) (u—k)kbxs 2(b,...h ﬂ.,...i)X-(n-k)kXS 2('0,...,0
k—=times (k—i) tlmea : (k-l)tuu

)l'. *e ',l)xb-’k(k"'i)bxsn 2(b’o .o ’b 1’.. .)Xb

(k=2)~times
(n- ﬂ)én bo-1)

S 2(b,ooo,b 1,.;.,1)X.
—y—"
k=-tines i Cr

Taking into account that
R(ReD)XS, {1y e D=5, (Lo i)
the preceding recurrence relation applied for ! a-i;;;.,n—z
can ba used to prove inductively that for n,>5 and'iéiké.u—E

we have

XSD_E(b,...,b,l,..-,ﬂ.)Xé B(SB < X> )B

k-timeg
Also

xzz”iszc-i,/l) & B(SB £ X >)B.

Q.E.D.

©
i

The aboﬁe_lemma inmplieg that if’/q e-zzi;then
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. f( ISB LX> is éompiet‘eiy d;termied by ﬂ'/ SB <’l X> and
co;lvai.'sely /t/gB < X> is completely determined by /"LISB @ ¥
We Qhall aenote ﬁy S ZB the aat

szB IL( M3 L x> ) B) | pe2y f

and we ghall wr:.te S/L ft[ B(SB X2 )B e M C_ZB.I.f
& €A is a random variable,then S /ua. w;ll be called the-
aymmatrlc distribution of & and quantltlea of the type -
/ﬁa(S(bi,...,b }) or M- (XS(bi,...,b )X) will be called s;mma;

tric moments of a.

-1 6. If .{ai,a F(f A ia a free pair of B-valued random variablag

then 1t follows from Proposition Q 3 that and
| /M q&+a2 /M
depend only‘on /Hc3i and /M .For any given ‘/fi,o..,/fEEZF

one can find a free family { ai,...,a } of random-variables

>

. in some (A,?a) such that /K _/fa.We shall not give an ad—boo proof
_for this hera gince it will follow from our rasults on the canonical

form of a random variable, Thig 1mplies that there are wall—deflned

operatious, [,-7;-7 and X/ onZ B gsuch that if {al,aef’ is a

freaq pair'thsn

/"La/l+a /{ /{2
P e,

This gives two semigroup structures on IEEB'

o
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2. The algeﬁra A(ND)

L B

2.1, Lat M be a mght B-mecule and Lot ¥ p (W)= k’(m ,B)
be the n—llnear B-—valued maps of Mx--- KM in‘ao B (tha & and
l:.nearity are over (‘C ) and 1’ (M)_:B Let fur’aher ﬁ (M)_- .

_@ 34 (M) with :Lta natural rzght B—module gtructure.If
n>0

£ éyeﬁcm) we define the e‘ndomorphism A () of the r;i:gﬁt

_B-médulé B3 (M)-b;y: | |
al 5)”2 € X s D

(n (% )?)(m{L@ cer® mn+k)

) ?(mmﬂ. i (m,l@ cee @O ) @ mn+2 @... Sn n+k) '
it dee; ’Z =k >0 where deg refers to the obvn.ous grading of x (M)

and

A5)m =

-

if deg ¥ =0 i.'.e; v e B;We aiso aefiné ﬂ'ﬁ(m) ;wheré m € M,bys
ﬂ*(m) y =0 if deg ,Z =
deg ?\ (m)? =dag % -

(4 (m) ? )(m,,l@ ces ® M _p)= 7 (m@my & see BNy {L) 3

it deg?— ..k>0.

A(M) ig %the algebra of endomorpha.ams oi’ the right B-module:

X o0 generated b;y

AW sex,a0m > 0f U LA” cm)lmeM?‘

Endowing A(M) with the natural gradlng corregponding to its action

on ?;E(M) we have deg ’\ C“§ )...deg g and deg }] (m)——-..i

L]

2.2. It is easy to check that the followmg equaln.ties hold
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A5) Als,) = A0 E,) |
%) A (s)= A« A%G) §) if dog § >0
'A(m)?\(g)-?«(mg)u deg € .

4

2.3. Wa define a linear nap

(B F,we @ utH — a0

: %20 & zo0

vy
¥ (Jome - @ mk))— 2(5) A@p... Vi

Lemma ‘3’19 8, leGC‘[‘iiOD.

Proof Clearly the range o:E LA contalns the A(5)t's ana
“the '?\* (m) tg and using the relat10n3'2.c we aaglily wfer‘that
the rangs of 'a" is an algebra,so that 9 is onto;

For the 111,ject1v1t;y let |

a
, Lé (<l g @ v bk # 0
k ' ‘ )

wia.u;o. § Q('bx (M) and V f’q M@DeL fér L& Ik_.S:;ﬁ‘ca
oA £ 0 we may assum;-z the ¥, s '3 are lJ'.n;aar—lv 1ndepcr;dant and

fhe ft{l&'s are non—-zero.'l‘he flx:mg L, € Il% there is

7 € 'lf&o(m) such that ¥ (V%’pz) L eBana  f (Y, 4 )=0 for
Le Ik NN
Let %/ef () be datined by
7 l LN A - /} ;-o® )0
T (my @ ® oy )= Y (ng ® Iy
We havae

~ / S |

P, = N

| (v\)?{ T(LCI}{ ilt,,k@) 7 b,ko)"i'“
o]
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=%, L, E O
Q.E.D.

2.4, B jdentifies v:.a A s ?:’ (an = B—> AQM) wibh

a st;balxgabra of A(M) and there is a linear map & 1AQM) — B
‘ defined by (f ( g @)9&)) =0 if n+k > 0 whare

e X, V&em ok g £, (¥ (E,87,)=

-r(g ®? )-g)ﬂ,,CBif {6 zfm)_sand

Y, é-]ﬁ@ *’ﬁ: It ig easlly seen that €4 is a condltlonal

expectatlon i.e, that %H( :\(bd)a A (v ))Tb& %4(a)b2 and
£, (b)) <b. |

2. 5. ﬁ_g_r_n_{:\_r_lg. 12 B =C ahd 6= C" 1“:hen ACT™ ié iéomérphic

with a certain dense subalgebra of an extensmon of the

C*Lalgebra 0, of Cuntz (2] realized on the Fook Fpace for

Boltzmann gtatiatics ([KI 5], [9]).

»

2.60 It will be useful to con51der a larger algebra

A(M) > AQM) aotmng on 3t (M) = .TT- ?f (M) such that there is

MZo

& biaectlon

¥ c'lT“f @ o D weby 5 2an

G : )

\

extending 7~ and the multlpllcatlon of the formal sums which
copsitute A(M) is also determined by the formulae 2. 2 The
obvioug exten91on of EM to A(M) will be denoted also by é},‘

We have for T € A(N) -



£M(T) = (T "l)o

- wheré 1 € B= 2; (M) < ?5 (M) and (.)c; denotes the component‘. of

degree zero.Note algo that along the game lines as in the proof

of Lenna 2, 3 it is aasy to ghow that the represantatlon of AQW)
on X (M) is i'althful. .

2,7, ~1f N=My @ M, there are inaactlons M @ L)

X, (TX(M»@(@ M“‘)——%ﬂ‘%f“” @, "

given by

x, ((5.) @m:(g w@"')@(c v, )
4 Mminzo

where ij:Mch&a;'M are the natural inclusiong and prj:M -—;>Mj

the projecfionsonto the two summands and §ot>prj®é means

just ¥ .Since the relations 2.2 determine the multiplication
in the algebras A(.) it is easy %o check that the naps

J
over we have hj( A (b))= A (®) for

h :IIMJ)-—~9 A(M) such thathj°'§F ==§F°;Xﬁ' are homomorphismg.More~

® € B= XO(Mj) = X () ana €, o hj-.-L 5MJ'

Proposition.If M=M, & M, then with“hl,h ag_above, the -

palr of qubalpebras (h (A(M )))j—i o is B-freg in (A(M) E )
Proof Write |
%l(M):Fﬂ_@FE @ B
where

5= T (Mj o u @ ®-1) \B)

'hM

® (n-1)

with if (M_j @ M +B) identlfled with & subapace of

L% ,B) via 7, > o (pry@tdy 8- ® od, ).

12T € h, (M, )) and €, (D=0 then ( [ enc [} <Also the
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analogue of this with 1 and 2 interchanged holds. This easily
1mplles our assartlon For ipstance if T & h,l(A(I& )) and
- A(M. ¢ £ )= =

gg € hy( gxuza)) dnd‘l M (TJ) 6:\1(5;)) 0 ?ilen RS A
SlTl'l 6{; and continuing in this way we getl
8T ... 8,11 € so what

Q.E.D.

2.8, If M=B® we shall dsnote

A(M) by A(m) and & " by ém p
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5. The canonical form

3.1, Elemants a ¢ A(1) of the form

©oas MW+ 205

>0

where § € 35 (B),will be called canonical.

Proposit:.on, Given & distrlbution /«(GZ there iz a

unlque canonical element

a= AW Z-a(% £ )
nzQ0

guch that /{a: /1

Proof.We havg /{a(x)= 5,1(&):' §O a0 that we must put
§o=/4 (X).If n > 0 we.h:‘a.ve
&(a Afyla A (b)e..a A (b)a)=

= 54(?\".'(4) p) (b,l)a*(a) A(by)ers A7) 7 (b)) A (5 )+
+E, ( 3 o,..;,gn_i)(biﬁ) ces ®b.) v_vhere En(fo""’fn-fl) &

€ cf (B'@”,B) depends only on fc, - Sy .Roemark that

(M Ay YA @ ) 2 (5,0= ¢ ©,8 ..o,

" We.infer that §,h gatiafies f (b @ ...@b,l)-
= M (Xbang....Xb X)~E, (§ ,...._f )(b ® ... &) which
determines § n inductively.
| QUE.D,
The canonical element @& in the above propogition will

e called the canonical form of a randor variable with digiri-

bution/l and we ghall write $ nzﬂm_,l(/ ).
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3.,2. Propogition.Let

e e 20305, 0

—

f - . i
_1 2, 5 bs canonlcal elements Then /Q 33“/”a153/ 2, if

_ahd'only.if

[

0,375kt * Sn,2

for all n?> 0
. Proof.In view of %the uniqueness of the canonical form it

will be sufficient to prove that if § . 3_ gn df ,fn’a

21l n> 0 then /“ /V dE/q .Passing to A(2) we have

in view of 2 7 that qi(a1)+h2(a2) hag digtribution /V
Let . |
* ——— ) .
Y=h1(%a)+h1(a2)= /1 (4.@94)+£%;6 A 95,1 o pry +

+ o BT, )
a2’ P2

Expanding

(T A (5 TeunX A (301 and

&jl(a5 A (b,l)ay...a3 A (bn)a3)

our agsertion is obtained from the following remark.Lat
where each Sj is an element of one. of the following forms
" o o
201D, AP © pr,{g’ dor AC B, e pr2® )
Thenreplacing Sj by S‘d whaere S'j la obtained from Sj

by replacing A A@D by AW, A (foeerS”) =1,2)



33
bfy .,ﬂfﬁ«) it ig easy o gee that
£ (si A ()8 2....3 3 b DSt )=
= £(5 2 (b,_]_)se..l..sn A (bn)s'mi); |
| Q5D
Thus we h@%e pfo&ed that
R (/*/.LE’Q/”.Q)“R Gt +By(H o)

for all n > 1 and /u p éZB,;r-i 2.



4,The differential squation for EH

4 l Lemma.Let T€>A(1) and lat 2 L)+ Zi_ﬂ(f Y e A be

u 20

a canonlcal element Then 1if Y( )_‘1(3 (1)+<x42fn( ? )).s we have
- Mz

o
—

.i.:(. £, 02 ()X« by (1)) 2 ()™ =

. .k |
ZA S e,lczcwmcbnﬁ;a<§n<cb(e,lccmzcb>>g’;y@

T p=0 k 5ﬁ+kn +1_m-n-l

K 20400k

. = k - l .
-,-«@(Lfg(ﬂ-?*@ﬁ)(b)@ A ) ") where <€ C and bEB.

n+l ~ Z0

LA

Proof The expregsion the derivative of whlch must be compulcd

is a polynomia1 in < € C w1th coefflcients in B,which shows
algo the gense in whlch thls derivative should be unterstood

We have

Y(L )= A‘*(ﬂ.@-oh oL Z_h( g/ where gl =§opr1®“ .Lsi;
Mo = Y ) b,S=hy (T2 (9)) and Xt )= A d@ O «Zﬁ@/ ) .
)
We have

£, ) ((T( J+hy(T)) 2 OME

= €.(7 () (8+X(x ))™) and hence

|

L £,00 X+, A ON® |

-2 £, (7 (o) (5 oo 0)){% A (g, )G A*(b ® 0))21-dy

Por the computatlon whlch follows one should keep in mind

thﬁt é}l(R)z(Ri) and the proof of Proposition 2 7. We have
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£ (A8 A* (@) 227 (s Ao @on™ e
j:O x n>0 n

-4 "} k k .
% -1 l:«n e
- 2 2 Z— b€, (S PN IO N 2 oS r’\f?...‘smj

j=0 l’l=0 n+ko+o¢o+kn=j
20,000yl 7 0

.am-1
. k . - kn““;l k a‘l— |
=L ? — b £ (S 02 (b @0)usas A (G O)S n‘?('?/a,)g ")

kO? 0,:. ,kn{ 0

M3
\}1

' l k v
=320 Kt o o1k, g =0-0-1 e (8 ° 2 (7, (@ OEET @

2 o el
ei @ ®0) £ (5 )N8 )=

wot -
2 Z——\ £ cn(bycmub)) °2(§ (b & ({27 (v)) ”>®

kn+1

.. ¥ ‘
s @O E ((TA @) DINAmE 2 ®) ).
Qu.E.D.

. 4,2,1% ig easy %to gee that the same computation ylelds

Ca

the more general formula

-3—;— £ e (X I4hy(1)) (o) A (b ) (T ) ahy (1)) ]| -
. =0

med ' .. . . :
=n§=_ Z/—-—~ 54(?(bo)’l‘}}(bi)...Tﬂ(bk(’))

: <
K7 0veky 0 70



-

a( f (g A (Ty, ot ot 1+n)T“' A (bk ot +k o= 1)T A(bk +..+k +n))(87

'A__l:

."" . ® £, (2 (bko+1)T“ . A (bk6+k,1+1)T A (t.’k;+k,1+2))')

(b

(b, YT P A (b, . )
2 Kt o ootk 4041 k°+...+kn+1+n Kghorotly o404l

where bo"" ,hmé B.

»

4,%, Before pagsing to the differential egquations we have to

digscuse certain formal geries which are the analof_’ue of formal power

‘geries when maps C —-C are replaced by maps B >B.

Let S X, (B) C 'f (B) be the subspace of symmetric n-—ll— :

hear maps :L:e; 7 (b ® ...@b )= 5 (b -.; &P o ny)

rra)

for all &°¢ gn.@lf 12 € ;_,:_jiB) we denote by S*Z & an(B) the
elament such that S? (b@' )= ? (b‘m‘).Elements of 8 X (B)=

=T s%, (B) will be written

Z.3

n‘>0n

§ X (B) is a r:mg with multmpllcatlon auch that .
(£, F )(@(m V)= 507§, (b‘”“) 5 X (B) has a natural
m

filterlng given by the powera of the ideal formed by elements of

the form Z §41 I F o= me and ‘V:«Z;/—f «» then the compo-

m2q nze

aition pey " is eagily geen to be well defined.

The dlfferential of p€ S¥(B) is an elament of 1 sf(,s

h2e

f (B, B)) where § & (B@", E) denoles the symmetric n-—llnear E-

valued maps,If ({0 Z f then the differential is

myo



D (= > D%,
n>a
wara DY ¢ Z@°"7, ro, BY) 1o such that (Dgcw“‘“))(/z )=

a1 +
yy V@ ...ODBR® b A ...
=0 ;. ‘m f )

We shall write i’ormally also ﬂlo (b)= Z § (b ) (D}o)(b) [/QJ
mnzp
or (D, ¢ )(®) LBl ana ¢ (¥ (b)).

It ¢ 2_ f and the f ‘g depend on a parameter then

Mzo

the derivatlve of (f’ with respecﬁ to this parameter is meanf

H

component wige.

4;4. It h¢ SZB we congider the formal series
e ()= 2 GEmHYH.
a4 (b)= ., (b(X0)™)

"I% ‘will be algso ugeful to congidaer

f’ (vy= 2 MG

n 2o
so that

G, (b :b-;-b[7 b)b.
u (b)) ' (b)
It /-1 GZ we ghall write algo G/,( for GS/H and f/.i . for

[.15!“ .Alao 1f/u ig a dlstmbutlon/u e shal.I write Gri and

instead of G and F

i
4.5. Propogiti on.L__ D e A(l) and le: le‘r. Y(oc) h,i(’) (L)+.

v ol 20 g ) € By (RC).Let o) =X( ot Dahy(T) Mhen we have

mze

%c T(A )(b) =(Dy, @ T(nfi))(b) [b (GT(%)(b))b —,_( , where

M LSy, B
-~ (b)= 2
o (v) nZ—ZO'“



. M:If % =0 fhc"a equali;ty.c;f fhé ‘t;s'z:ms wﬁich are (;f_
- dagree m+l in b in the differeﬁ;ial eéuation_ ﬁ.s pren;'isely ii‘he‘
géu'alify egtablished in Lemma 4:1:Th§ geﬁ‘eral casé can be redﬁéed’
to‘*;:he cas'e- < =0 gince in vie;: of 2:'7 a;d 3.2 we ha\.re

Prea = 7B Py T AT H My o)

QQEoDo

4,6, Gcnollarx Let ﬁfﬁz and a -2 “J’ZL Rff ) be%%énonical ala—~

hzp

; | ment with dlstributlon/{ .Then the (S,i )44;0 ‘ depend only on S./Lr
“‘ and convergely S/q dapends only on %he (Ejjh)nﬁ o*dn particular if
1S ’ : 2

f | /,{“/(1. & Z,& then ,S (/‘t;&-xl /12 .) ig-completely determined by

: S/Wi‘lq-sﬂa'

Proof.Let a(« )= H (1).;. o & ;‘(541) ‘

hZ0 -

[RARE A

We have

§_ g (A@al=) A EIHDE S, (b @ oeogbIbs

4R 5, & (A N2 ENY b0 < j€n-2/)
where F is a "polynomial" of %he unantities" on which it depends:
These differential equatiﬁns w.ith initiél condi ¥l on
---- , (2 () (a(0) A (0))™)=0 if m > 1 can be solvad_recur'rentlyvand
we obtain that | |
, cacbxaw) 2 (6=

zo'(.bs.i] (b® uoceb)b"'
4 T

+P(o< bS§ ,05353}—-2)

vhaere P ias "polynoma.als".‘.l?akwgd =1 we sae that 0/1 oomplotely




P

_determines the (¥ ) . ¢ and also that conversely the (57 ), .4

=

R

N e ™
b e 5 A R, o B

coﬁpletely determine S # .The agsertion concerning S(u & )
e / /u4 2

e

follows now from 3%.2.

>

Qe E-D.

-
)

4,7, The differentlal equation in 4 5 immeditely 1mplles the
following fact: if /A,,,/fz < SZ and M ('>< ) C ‘.S ZB .:Ls

| auoh that SR,Cp (% D)=SRL(f )% % SR, (1) hon

ad f{(

where ih =SRD+1(/Q’).Intarpreting this equation as a gygliem of

NOEeX: ey ) @) [v 12 COON UL -2 %,

ordinary differential equations as ih 4.6 we gee that with the

initial condition G }*G wa_have

/m 7 ) T ﬂ 9]/11 which is
completely determined by the differential equation.
4.8. We ghall now assume ‘B is a Banach algaebra and C” and
hence G/“ ig an analytic function in some neighborhoocd of 0 € B,
This implies that the gymmetric moments of M viewed asg n-linear
mapd B" —» B are continuous and the formal gories dafining‘G/,
is absolutely convergent in some peighborhood of O.For instance
if T is a B-valued random~varisble T € A where A igs also a Banach
algebra,A O B with & continuous conditiodd%xpectatxon P A *—PB
— 1y —_ i\ "1
then G (b) = Y(b(lb) )= ¢ (p(1-Tb)77) satisfies these
.m0

agaunptiong.

For the lemma which follows we shall denote by M the

N get of germs at O € B of analytic B-valued maps and we shall usa
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the notation F")l only for multiplicative inx;erses,not for inversas

wilth respect to compogition.

Lemma,Let ',G6 € M be such that G(b)=bsb [ (b)b pear O.

(1) 1L ¥ € M is such that K(G  ())=G(K(b))=b nesr O,

t‘hen there 1s Q e M guch that K(b)=b+bQ(b)b.

(11) There is R € M guch that for some neighborhood

K 9f 0 € B ye have (K(b))"1=b"1+R(b) ifb € v n GL(B); R is unigu;;
| Proof.(i) If [ b is small enough we havae
b=6(b) (1+ [ (b)b)~ _G<b>(d+F(K(G(bmr(e(b))rl
50 that there is H € A for which
K(b)=bH(b) |
éimiiarly theve i3 7 € M g0 that
K(b)=3(b)b
We have |
b= G(b)=b ' (b)b=G(b)-G(L)H(G(®)) M (x(G (b)))J(G(b))G(b) g0
QL) =—H(®) [ (K(b))JI(b) will do:
(11) Choosing V amall enough,if b & V) GL(B) we have
k(o) *o~L(1r0q(n)) 1=
~Lq(v) (1rva)) ™,

The uniqueness of R is eagily seen from the fact that

R[(Vﬁ GL(B)) dotermines the germ of R at O,

Q;E.D.

L] >

4,9, Theorem. Agsumg B is a Banach algebra and /4 < SZ.?! ig

analytic. in sone nei,r.ghborhood: of 0€B.,Let K and R be rmorma of B-

valued apalytic functiong at 0 ¢ B guch that




CK(G, (0))=G , (K(D))=b

,4

K(b) " teb 4R (D)

or b¢ GL(B) in some naighborhood of 0.Then wa have

= > 'b@M
R(b) 21 ,1(/4 MG

where the SJR 19r<) ara given by the canonlcal glement with

distribution/q .
Pgoof Let
R 2= 1, o(R(b))"i..(b"l(’.H qbn(b)))"’l-«im bR(E)) ™Mb
which for 0 < aL £ 4 makes gense in -some fixed nelghborhbod of
0,the last equalzty making the 1nvert1b111ty of b superflous.
Phere -ig a neighborhood of O independent of 0 < « = ‘L for which
K( «,b) hag an inverse (with reséect.to compogition)
K, GO ,B))=G(o¢,K( K 4b))=b.

Ve have

46« ,K(K b)) =0
o <

which with bl-K(o< ,b) gives

6= 2 GC ok by (B0 (4 yby) ERS
>
= 2 Gl )= (DB ( ;by) [b,jR(G(of— b,i))bl’g.
Moreover G(0,b)=b.Thus defining /4 (X )€ SZB by

)(b) =G(¢,b) we have that é?— /u(«}(b)=

/bl("a(

“(Db ) ,(b) [bﬂ(ﬁﬂ ®) b:( and /M (0) is the distridution

of the O randomnvarlabla In view of 4 7 thls 1mplles that G

is the gencrating SGPlGS for a symmetrlc dlgstribution for which
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the corraspondlng symmetrlc parts of tha components of the

correapondlnﬂ canonical element yleld the sarieg R(b) Thus we

: have '
S RM= SRk AN e ).
. On the other hand wa) -G go that /u(i) /w
Q E D.
4;10. Ve have chosen in 4. 8 and 4 g to work in the Banach

IE S .

algebra context where we work wmth @enulne functions since this

ig the amtu;tion fof ;he aopl;cations to computati;ns of spectra:

On the othe# hand the reader will not find it difflcult to transpés;
Leﬁma 4.8 and Theorem'4.9 in the framework of formal geries and
general B wh;re gimilar staéémanﬁs h;ld:

4:11; Thua it the B;valued cage the compufation of‘/H4 5%7/“2')
'/Qa‘e S ;ZB ig done as in the sca}ar cage: one forms G/%{ , then
the inverse %ﬂé then the nultlpllcatlve inverses b 1+R/%7;Then

and from R}ufﬁjk ong goes back to K/”4&7% and

R/{{H:-',/12 ZRﬁ4 +R
‘ - G/“{‘—?ﬁl '

LhE e e e . A
R L O L Bt S R T S L e .
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51(1‘110 dlfi’erential equatlon for X{

T

i -
i ‘-
BTN

3t
£ o e
Tt

“E&L 'Tfi;' . i

Sl.. Ternma. Let T,l,...,T € A(1),let a(w )= 2 (+ ’A(’i)-;-

Py
£

3
[

L,

+ T _Z A (‘S' ) € A(’.L) be a canonical ¢lement and let Y(% )=

iﬁ -_-h,l(a( z )).Then we_hava
B . . :
{ -;-g Ez‘_ (Y(e )112(2[‘1)3’.’(;.' )hE('_J?z)....Y( Iy )hE(Tm)) . =
: . - Z————/— £ (T eosT.s 2(; (E (T & + ’ .!:‘iATI- t )@
: P?a- jq+...+jp+'1=m J | J Jp_a_ Ja gp
Jo7 ©
: 7 Ayeerripy 22
1:: L eoa . - : ;;:T. o c
P , vee & 2 (T +’l Ta +31)))TJ +...Jp+’l ?’o"'"""qu&)
Proof For the compu.tatlon it wn.ll be convenment to put
/ ® p . _
- g = j'p o Pry so that & (Sf’ )==,h,l( A (51> )) and S}C—hg(Tk)c
We have '
4 ) .
dz 2. /l m z:o
wy . .
. B 2. 2l Y(0)S Ve T(O)S )=
=jZ__i &?-(Y(O)S'J..O‘Y(O)Sm—j 971 §E> rﬂ J+1 = J+2 m
M —--—-— (
- 2 6T @a0 or 2S5, (D O)s D AN,y Zy a4y
3= ’
3 c-cS )= 4
m-J+1 mo
{ =2 Z 2 £ (5g0ee8, ATAD O3y 1...5 g ee)-
J=L p2l  dgteetdp=m-d Jo Jotdn
307/0 .
7 hseeerdy 7
* s ‘ " . -
raoe O)Sjo+..+g__l+'1'"Sjo-i-..-l-jp 7 (31_., )Sjg-r.. a'll S )



AR R

=kZ; ."Z—\ f(S es e ’(](5 ( 5(5- ) s oo:S . A

P?,"l jO+.'+jp+1=m 2 >4 Jo P 2 q0+o .+JP--‘1+1 JCL{JF)CK
3670
j'l?i’.t,jp“:_;lZ'/l

bs» @'&:32:(Sjo+1.‘.Sj'o"‘ji))>sjo+‘"""jP'i',l...Sm): |

L

—; L__’* 6 (T o;-T- 2( (€ (T. . .;..T' !
p> j+o-+jp+a=1ﬂ 1 ’-L JO 513 4 aoﬂ'ao'f'.jp_l'i'l Jf-"L“rJf')@

5520
31 2'1,00’,,jp+.1 .>/ 1
e

®€(T ool )RR eoels
ol Jotdy J+...+J +1 J+"‘JN~1 ’
| Q.E.D,

5.2 Cofollary.L@t T ¢ A(L),letk

atx )= AW+ AW B, )€ FA)

be a canbnical elenent and let Y(%& ):hi(a(?: )) . Then wie havg

A (BYT( % by (D™, =

J o
Z Z_—“ e %()(b)(m A (b)) .° 3(§1p (&5 (T2 @) DHe...

ezl J +..+ap
3oz 0
G PLreeadpn?h
| IS s
@ £, ((1 2 () NAAED )
where b&B and ce'C .
Propogibion.Let T€ A(l) and let

543
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. Let oy )=Y( ¥ )hz(T);Then we_have

4
(b [ (b))}zgoz(Db(b I‘,;1 )) (1) [ b( @ ( Ir’IL (b)®)

Terl

whore () (= 2. % (5

n>/’l b

Proof.The proposition is obtained from Corollary 5.2 by

looking at the terms which are degres m. in b,

Q‘.E.D.
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Note: Section 5 is incomplete in this preliminary version
of our article. In the complete version it will be shown that the

differential equations provide a way for studylng the operation ,ﬁ

"In partlcular we will show the ex15tence of a map, called free

exponentlal

fexé:TWr;En(B)"%Z?} B
nz1 '

whereZ,l B={u€23’u(x)=1F’ . This map is the éxp_onential map for
r
the infinite dimensional Lie group (251 B’ B ). It will be shown
L)
that fexp is bijective. This map will appear as a solution atz =1

to the system of differential equatioﬁs

d

—i_(Xb,...Xn )=§£ . B, (Xb,...Xb.
d "z 1 m . _ . &' J
. p21 jo+...+jp+1—m o x
j1}1,...fjp+%>? ”///
{/,,(
L (Xb. . .. Xb. . )&
jp z jo*l'_...+jp_,l+'f 3O+._.+Jp
cer B P Kb, ..uXb, L )))Xb, . qee XD )
) jo+‘] 30—1-31 ; Jo+, . .+3p+'| jo+. . .+jp+1

derived from Lemma'S.i.

It will be also shown that the symmetric part of fexp((§ n21
depends only on the symmetric parts of the fn s.and also conversely
the symmetric part of the §n}s is uniﬁuely determined by the éymmetric

parts of fexp((fn)n21). The connecting equation for the symmetric

-parts is obtained from Corollary 5.3. This equation with initial

condition a gi .h]7u ’ ué;2§1 B will give for % =1)fex3§5§ Lo,



p.Lomputatlofl ol gpecura

Ag we meﬁtionad in the introductién the reéulta concerning
the éperatlén ﬂg provxde a method for computing gpectra of
left convolution operators in @ (G) whers G= Z *Z ia the
free group on two gaﬁﬁraté;g gi,gg.Actually the ganme ideas
provmde a method for dealing with more complicated groups obtaiﬁad
by taking free products with amalgamatlon.We ghall however stick
here to the case of Z *Z since we think this particular
éxample will guffice to exélain our approacﬁ.

6.0 Let Y= ;21 ¢. A (g) where c

o g € ¢ jog# O only for finitely
ge G .

many ge G and wherae A is the left regular representation of G
on EECG) To compute %the spectrum of Y we have %o provide a method
for deciding whether Y-zl 1s invertlble for a glven 2 eéj .Slnce
Y-zl is of the game fofm as Y wo may atate our problenm aé
deciding whether Y is invertibla.

6:2: We fecall one of the standard algebralc trické with
natrices:

Let A be a ring and let co,;;.,cn and ui,..;,u be alements

in A.Le% further y=c ot ;Z; €y k"‘uﬂ and yp_ci=2 z uk..up+1.
k=p+

Then in the ring )] n+1(A) of (n+1)X(n+l) matrices over A we

havet
A Y ;.; y 3 . 1
| - e o\
1. , . * '-'u_l\ \ ; =
"1 | (j I 1 0 w4



This ldentity shows that y is invertible if and only if

- the matrix
co cﬂ' | I - cn
—‘U.,l\ 1 . @)
\ '
—un 1

ls invertible,

o : N . ,
6.3. Lot € (G) be the reduced C*~algebra of G.An application
of 532 to the element Y in 6'4 with A—C‘*(G) =Y,c.€¢ @
. . - T ﬁ)"* 3 J ¥
uye M, AUex)s ey ™, At )b shows that given ¥
h) 8,1 s 52 ) 8,1 s 7 32 F ghowg 182G glven
thore 13 g € N and there are °<:j’ (EJ.C—W?q((]f Yy (j=% 1) ana
m =1 ’ b3 13 = | 4

’?’6 ifa) with a&V ﬁj and q depending on {gc‘G,cgkOI
and ¥ a firgt order polynomial function of %he cg,such that:

(T invertivle) {=2 (% _, ® A(gzh)+ oL, ® ) (gp)+ Py &7 (63" )+

+ &@ g (85)+ 7@ invertible).

6.4, I% will be convenient to make one further natrix

t#ansfofmation go a3 %o be in the self-adjoint cage.Withh the no-
tations of 6.3 put
a=%_ @ D (g3 )r 4, B A (g)+ IO 1

b=P © A(Hs feA,).
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Then we have

' 0 a+b -
(a+d invertible) LD (( . ) invertible).
\ . a +b 0
0 4 0 b
So defining Xi= - and X2 = . we have
a-\ﬂ 0 : b O

(Y invertible) l=> (X,+%, invertible).

Moreover

. e X = S

XyEFE M@ 7 (A (6)) € Mp (€ & ¢ (&)
(321:?)

and if {g 5 Glcg £ Oi’is~a fixed finite sef then ¥, ig constant.

and Xy is a first order polynomial in bg and c (gC‘G) Algo only

’) (gjii' ) appear in the expr3381on of XJ.

6.5.Let B =", (ﬂ:) A= My (€) © 0, (@ ,4=T, (Cwc” (2 (54 ))CA
and ‘f tA — 7W2q((f ) the conditional expectation T =1d @¢
where T 1g the canonical trace on C*ﬂ;(G);Then {Ai,Ag} is a free
galr of subalgebras in (A,f ) and hence {’i,X % is a ffee pair

éf 'ﬂ? Of) ~valued random varlables It ig egpecially easy to

a4

compute Gy saince A 7ﬁ ((f Yy & c('W ).Ualng the results of
3 _
gection 4 we have a method for computing Gy e ()= qv(b(l-

~(X4X,)D)” )i’or b€m2 (C e IC A.Noto that Tro, °f  ds fdlthf‘ul

on A go that taking b;ézgggl,z e Q? and; ilgq(GX1+X2(grgq@ 1))

glives ug the generating gerles for the momentg of X1+X2 with reg-

peét to a faithful trace on A.Solving this menent problem one eets
the 3pectrum of X1+X2 and hence the pOSulblllty of deciding

whether X,+X, is 1nvert1ble.
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7. Dual algebraic structures

This section deals with the necessary adaptations that have
to be performed in our considerations iu in order to fit the

B-valued case.

7.1. The basic idea is to replace the category of unital
pro—C*walgebras in BU] bg;some other category. Correspondlng to
the two cases: the pure%g algebralc one when B is just a unital
algebra over € and the C*—algebraic once when B i5 a unital C*-al-
gebra, we will consider the categories 4

B

EB is the category of unital algebras A over ® containing

and respectively 8%

»

B as a subalgebra B<,; A, the inclusion being unital and the mor-

phisms are homomorphisms for which the diagrams

A > By
’\B

K;ﬁ is the category of B-pro-C*-algebras, i.e. unital

are commutative.

C*-algebras (a, | H ) with 1€B(A and endowed with a family of

C*-seminorms (A “,) «¢I indexed by some directed set I so that
b bl if bfB and =% X X P xi| =sup ||x|

Ik = (o0 F 2l el o sl -sup I,

if xeA and moreover

A,=lim A
1410(,]

where the subscript 1 is for the unit ball and A is the quotient
of A by the ideal annihilated by | ”d . Morphisms inﬁjg are mor-
phisms of unital pro—-C*-algebras (see 1.4 in U{I) A—?A' making

the diagram /

A\-—i/
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commutative.

7.2. A dual algebraic structure is an algebraic structure

"in a category as defined in Ch. IV §t of[?].'We examined in Eﬂﬂ

what a dual group structure means in the category of unital

pro-C*-algebras. In ., and Eg we have a similar situation.

B
Let u,j,ﬂf be the binary, unary and nullary operations

defining the dual group structure on A, Here

A -Eé—b B
B ; .

Also the free products with amalgamation over € have to be

is commutative.

replated by free products with amalgamation over B. Thus u:A-+2A , A,
B

If Aqug , this free product is defined as follows: it is thé

inverse limit of the C*-algebraic free product with amalgamation
AoL_st‘Aoc‘

7.3. If Aéigg the state space of A denoted by &(A) is -
the set, of conditional expectaéions f tA — B, If,Aég’E then S({A)
is the set of conditional expectations ?:A—wa»B such that
”T’(éﬂ]éfﬂ aff, for eme: of the seminorms of A.
1f ?jeS(Aj) (j=1f2) then there is an unique

?(?SﬁA1 * A2) such that‘f(aT...an)=0 whenever aﬁ?Aj(k)) j(k)6{1,2f;

B
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ﬁoj (k) (a)=0, 3(k)#J (k+1) (1€k€n~1) and vlgjz if,j'

‘Uniqueness of ¢ fbllows from 1.3 both in the %?é and g’g

-cases. Existence of ¢ in the}jE case is obtained from §5 of [#1 .

The existence of ¢ in the 2fé—case is seen as follows. Let
o' 1] 1] [ » 1] 13
;}jzxer(\oj and Dn,==((11,...,1n)|1je{1,2}, 1k#lk+1_' 1£4¢n, 1£k_<n—1}’.
Then we have '

=] =] Q
A *Az’.‘:B@.@é ; A, B A B5...® A

L w0 (i5r...,di)ep, “T - 2 n

and we define T as the projection onto the B-summand.

We shall denote = by ¥, , TZ’

7.4 1F (A,p,3,X) is a dual group in EE or § ¥ (actually

dual semigroup would suffice} and if %91'FEGS(A) then

(q:P5) “”“9‘f1c> %2=(f1’*‘f2) °© i defines a semigroup

structure on S(A) with unit X .

7.5. In EB there is a dual group structure on B<:X>> defined

by
CBxY M B wy BOXD BQ{1 (X2
BX)=X +X,,  J{X)=-XK
and 7 (b_Xb,...b__,Xb )=0 if ny1 and X (b)=b. Then S(BLX>)=2,

and (W) is el oen :
similarly in g% a corresponding Yis A=R %, B {(with the

C,nc "¢
notations of 5.1 [I€]} and since Re no *¢ B *p B e *cB):

)

B we define p from the dual operation of

=ﬁR(Sl,,nc ¢ R@,nc *¢

1R(E,nc ’
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It is easy to construct similar examples for other dual

groups considered inEMl by taking free products with B.

~7.6. There are also examples of a somewhat different
nature involving tensor products. For instance let B{Xl be the
polynomials in X with coefficients in B (X and b&B commute)

and let

. u(X}=X1+X2

where Xj are the two images of- X in BLx] 1 B[x], 3{X)=-X and

X (bx™)=0 if n>0, X (b)=b.
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