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‘e‘ELY MODULAR AND STRONGLY

" LATTIGIAL CLASSES OF OPERATORS

Dan %’mdar Vza

0, Introduction

The work on the theory of prinsipal modules waﬂ'inﬁtiazed by the author
iﬂ 1980 By a paper civeulated as an LNCREST prepring (Proprint Series Math,
IﬁﬂRuaL 02‘(19a@). gu&lished'aﬁ.(}ﬁj,lﬁgl). One of izs.purpsﬁas was %évpraviée
&I &nified framework for the proof of the results in the eircle of ideas which
arouse with the Dodds - Fromlin thearem : recall that in 1979, P. Dodds and D.A.
Premlin published in [5] their famém&rzesule aésertimg that if B,¥ are Banach lge
ttices such that B* an& T have order continuous norms and £ U V°E'«m; P arve lie
near operators such that 94214? then the ca"apaci‘t of V implies the compacity
of U, Siﬂce then, many results of this Yype have been givan for various elas;e
of operators; their common purpose was to Qrave that, um&er eertain assugyﬁioug,
& :iven.olaﬁs of linear operators has an order ideal u«kyp@ prayerty {1,@, 0:£U<;V

and ¥ in the alans iaplg'ﬁ in tn@ clasa), &s examples, the following elasses bew

8ide compact operators have been ﬁﬁvestig@t@&Aﬁrqm-this poin% of vze@‘: kernel

“operators {A.R, Senep Efﬁ]) the closed algsbrajc ideal genersted by = r»gula,

operatoy (n. Toimfelﬂar’[9j C.D, ﬁliyrqntis and O, Furkin n&w~[5] 3, de Pagter
[12], .  Vuza (23], L?f]). operators defined by M - temsor products (. Vuza(20],
;l}. Dunford = Yettis operators (B J. Xalton and P, Saeb {ﬁ])

The ﬁh@cry of principal modules ([}flmt_-l, [éf]) offers ax nnified.mea
thod for the proof eé all above mentioned resulis, the main tbcl being pruviﬂéd
bty the following j }ermageﬁeé theoren vhich was proved for the first time im 1989
in [17] ¢ see a1so [20] - [25))

: THECREM 0¢1, Let B be a priﬁciéal A-nodule and let ¥ be sn order conpleote
principal Bemodule such that its topology is exder continuouns, Then the space

L2{B,F) of all order bounded lincar operators from E to P with continuous modulus
&



al classes of operators,

@ & o

i8 a principal £é§ﬁamaﬁule for the solid strong topology.
{See §>1 for the notations and definitioans used in this statement),.
A& conmon feature of theorenm 0,1 and of most of the above msn%icn@& Ple

sults is that order coantinuity of the topology of the Riesz space ¥ is neededy

.when‘tnis assumption is dropped, theorem 6,1 fai %o be true and so happeuns with

most of the tneorems of B@dés »»Freélim type, as it was shown by examples DY vaw
Tious authors, ﬁaverthela&é, a varisnt of theorem 0,1 holds even in such a aiima»
tion provided ifnw% replace the large spéee L}(E,?) by certain smaller classes

of eperatorsy enexsuch example is offeved by the class of éru»comyaet operators,

as it was pointed out by the author in'[2§1. ilowever, there are many other exame

‘ples of sueh classesy it is tbé purpose of the present paper t0 give a systenge

tic apprséch of them by develuping the theory of ihe so-called strongly latticie-

There is another edvantage which can be taken from the imtroduction of
strongly latticial classes, In general (i.e., when ¥ is not order complete), the

gpage Ly(Es?) of 2ll regular operators from E to P is not a Riesz space; never=

theless, eny strongly latticial class is a Riesz space and therefore, our theory

provides scme methods for producing Rlesz spaces of‘ep@?ators acting between
Biesz spaces which are not n@éessarilgzﬂrdaf'ccmélstea Invfact (saah§#?,,a et
bep of classical Banach lattices of operators acting between Banach lattices
which arenot recessarily order complete, ave strongly latticial clésﬁes,

The papewr is divided into fiﬁe sections, After a preliminaries seetiaa;
§;2 provides the module theorstic background for #he whole studyy the notions

of A=priancipal elenment and i-principal subspace in au A-ucdule are introduced

there, Thedw study is motivated by the fact that there is a tizat connection (as

shown im.éﬁ} petwsen A-principality and operators with strong modully consequens
tly, the theory of modules over f-algebras turns to be a useful instrument for
the investigaticn of strongly modular and strongly latticial classes whieh is

undertalken in§":’2, After introducing the notion of aotrong modulus of an Opce

rator, strongly modular classes are defined as vector spaces of operators having

8trong moduliy strongly letticial classes are strongly modulse classes ¢losed

. o T T T Nt g & [ r 8. Tt R a - i = Py gt -t
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aﬂ& ﬁ‘armg}.y 1at %mial elaswa is mzm ady in pmgculm*, it is broved that

maxinal sﬁrangly'madular'elaeﬁﬁa-afe latticial, The extension of thaore: 0.9

t6 the case of sirengly latiicial classes s well 2s a monotone approzimation

theoren are proved,
Xﬁlfig & iist of concrete examples of ?t“@ﬁél? modulayr and w*rnvgly
latticial classes 48 presented and a pariial ansver %o the following gm&%ﬁia&
s given: when the whole SURee - L (ﬁg&} is @ strongly lsttieinl elass? It'ig SR
wn that ard@r»éaﬂtimﬁity of the topology of P io &.ﬁeeessary-and ﬂszici@at 0w
di%iaﬂ shen B is ar%iﬁrary, but there are some special E for which Lriﬁa?} is
a%raﬁﬂiy latticial even if F does not satisfy the sbove condition,
?inallyﬁéﬁieff@ra a group of applications of %h@»g@n@ral éhaaryﬂb§
proving thaoreoms of Dodds u Frem1in type for some classes of oporators al?eadw,
maﬂtianﬁd at the beginming of the introduction ie the situation whea we drop
the order continuity hypothesis on F but instead we confine ourselves to ﬁwurﬁu
tors contained in a given strongly 1a%tic*al clags, The section eloses with o

permangncs of prmcﬁ.palityf thsovaen for B "-."t@mszor products,

fe Preliminaries

e) Hotations.
" & the closure of the 3&hgut H nf a8 topolegical syua@.
%‘& ¢ the restriction of & map g'”'“ﬁ% to & subset & of E,
¥ 3 The idontidy map on a set B,
Bg $ the unit ball of the ngr@aé vee%a# space B,
Be ’,th@ ﬁqml of the tﬁpalﬁg&eal vector space B,
The notations <ﬂ}h>’“n& fix) will ald &rﬁ$tﬁvelv be used for<uaa élh@
of a lineor form f on E at XER,,

b) Rinsy snaces,

Let E be a Riesgz space. For any X EE we shall dencte by h the principal
order ideal generated by ¥, The seminora || || x o0 B, is defined by
vl = it %ﬂldé Re o Jrldet|xl § 5

1% is a norm fn case B 33 Archidedoan, It induces & norm on the guotient Riesz

RS A O s Y
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§s sn Al-space with strong order unit which will be denoted by ﬁ.xg— we shall ol

sidor gx as topologized by the norm || H » B being tlhe canoaical insge of | xﬁ.

E is enlled mlf@wmw mzii’amly waz;g,sla te if it is Arshinmedesn m@ & Ve
ery principal order jdeal h i3 complete far N ” pe

Let £ be a positive linear fex*:i o B, A,kms SOnINOTE K fammp ﬂ!xl) bt T
a*eé & norm on the quotient Riesz space E,’?ﬁf, where H £ .ﬁ:’a the mall spage _@f ghis .
seminormes the nor compietion of E/E%f ie gn Alespacs which will be d@ﬁcﬁ:a& ‘Ezy
(E,2), ' _ , =

To every z €E , Ve ettach the set D, (:&) {or &iﬁp}.y M=) %f ne é@ﬁf%ssiem‘
can arise) formed by all syetems (xg,.“,x ) (m is varyisg ev&r{N}’ with the

properties <that z;iéE{_ for 14£44n and 5_ b4 i = X, The folleowing mw@ué*_&w .
; o e

relation 18 defined om bix) ¢ (x‘i"'"’*“ )zi{:;f@,..”? } if there zw & partition

{» )fész of %?pco-pﬂ3 suech that xﬁ = i; 33 for 1< 44 m, m“@ Riess ﬁ900ﬁ9ﬁ$$@
iy .

ticn y*a,;cz'ﬁj gnsures %hﬁ%ﬂ(}:} i8 upwards db‘rqe‘ted for the preorder relation
8o defined, o
The Riesz space of &il order bounded lin@gw foras on B will bs denoted
by B,

Whenever E is Archimedean, 23\ will be i’tss Dedekind extension,

A majoriuzing Riesz subspace of B is a Ricss subgpace ¥ wim the property
that for every xgB there is ¥y €T such that EIPS R

: L : .
e} Topolasieal Riear 259088,

The phrase “topological Riess space® will be @ﬁmmym to desisn @ Risos
space endoved with a locally s014d tapme:xmy.,

Let ¥ be a Riesz space and let F bhe o mvjorizing Riosz subspace of B

endowed with 2 loeally solid topolozy T. By the canonical extension of 2 to B

we moan the topology on B havi he Solid hd}; of the Teneighborhoods of. O
28 2 aa:,}.z% for 0. In particular, whenever E is ant Archimedean {opologiecal Riesg
: N
sgaea,, we shall always consider op ¥ the topclogy obtained by canonical extens ek eTi

A subset H in a topological Riesz spoce E is called order precoupact :’iff
for any neighboricod W of Q in E there is YEE, such that {|x|le ¥) » &V vhenever
Xﬁmo

THEOREM %. T, ['}’1 A subset of an Al-tpace 'i,u relatively weakly compgsct
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i£f? $% ¥s order precompact,

A posivive, element v in the topolog ical Riessz Spmm ; $5 ealled quaal
interior if Ezrs is dense in E,

For every Riesz smh&pacea G fa E“ A ls’{h,{é} will be %he t@mlaw on 3;
defined by the somfnoruns X py g{{xi) for g€G, o

A looally sclfd %opology or m Riesz space is tnlled order mnﬁmw 5
ii’ avery net decressing %o O c@n‘mz@&m to Og a Banach lottice is mi&f %0 have
order continuous nomn 1f 3% norm topelogy is order cont s inuous, &i@ snsll make
use of the ftﬂ‘i@mf ag characterization of Banach lﬁ.ﬁ%i&ﬁ with order con *%;imzmm
DO

THEORTY, 1,2, [5) For every Banaen lattice § the following ave trues

) B nas order contimous norm 1ff EN is order precompact for |p?|(me,n),

ii) E® has order continuous novm 1ff B, ﬁﬁz order py conpact for ]0"2(&5&5030

é) Spaces of linear onerntars,

For any norued vector spaces B ang P, ‘};G{ B,P) will be the space af’ all.
continuous linear operators from B o T @qamp@{i with ‘bha usual operator norsm,
I GCL(WF}, then U'¢ L{F*,B°) will be its ¢ranspose,

Let B,F be Rissz spaces, & linsar ap@r&wr T.f:}:‘:maal“ isa called wepular
I7 it can be written as a difference of tuwo pa&i‘ziva linsar opevators, The orite
red vector space of all regular operators from X to F will be dmmﬁe& by L i Fhe
the order relation on i‘é; is as igsu:ﬁg V0 meening that "?{M }Qfe e

In case E and ¥ ars topolegical Riesz spaces, Lj‘(}é‘,ﬁ {respectively

}'3;{%?}&5‘)) w11l be the subspace of L ij,?)' gensrated by nll positive econtinuouns

lineay operators (res;_aee’i;iv@lg all positive lineay Q;gs@mw?ﬂ which are continve
ous en every ovder bounded subset of B),

Let B be a Riess space, let F be o topological Riesz space, 1ot (,Zé be
a coliection of ssgbszetaa of E i and let L be a directed subspace of T i?&é,?) such
that E(& is topologically bounded whenevey UEL and mf:ué( The solid o@«a‘&cﬂ Wi

oAl =
logy on L has %_’?/’ o l éc/wé. W neighborhood of O ﬁ_}a i’:’*} as a basts for e,
t‘.’»a o
J q
T being the set of those UEL for which there is V&L such that UE( ¥,V
¥y Y G 2

and Vi) C ¥, In particular, takin Vﬂé %{ 3\ Mé o % we obiain the solid strong

topology on L (B,F)s tn deing Lo %0 be the eollection of all order precompscet Sube
SN xt “
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3

. Bets @f‘ Ev& L being alse a topologies) Riesw space) we obtain the solid order

precompact topology on L}; {2, F),

v " let B be a Riesz space sud T he an Amhiz*aec‘iemﬁiemz Bpace, FYor any
’fiéz;rﬁ B, F) and any =& E?% we have ﬁiéﬁK? @§_€}§ g’ consequently, U induces a weguiny
sperator from ifi:{,!;?%’x into P, As ? is relatively uniforely coaplete, this ég}gm-»
%or cun be uniguely extended to & regulay operator from E’S‘TK into %“\,fwhiah ﬁfi},} be
denoted by U_ , ' '

Reeall that for any Bsnach iam:‘;.c.z-:-s E,F we have _X'r( EF) = 3‘4?;{ E,?), The

regulae norm on E:?{' 3,7} 1s given by

i tgnr = inf g_i\vl] iii € Jﬁ]& '
whore | || denctes the operator norm, ,

o

- ; . ¥ e ‘ =
For uay Banach lattice B, B (r@ﬁgaetimiy H) will be the order idesl

generated by Lk in B® {reape&ﬁ}.w&ly the nera closure of :‘E‘% ia B*}, I F is another
Bas inttice and 49 B R DT T _ it h s 4L X :
Aanach lattice and 4% géﬁrém,x}, then ééiar{}:;,x3 {respactively Ve L?{E,» 1}
will be the aperators defined by the corresponding restrictions of §*,

e) f-aliobras.

Recall that an fealgebra is Riosz space A endowed with a structure

of algebra such that %‘&.;.Cﬁ.a, and ao Ab = canb = § whenever 8,D,CC A , 208 2 AL =

= G, In this paper, bovever, the word fe=zlgebra will bs ém}.wsively employed to

design an Archinedesn fealpobrs & aduitting an element e &L + 29 an algebrage

- unit as well as a strong order unit; such an f-algebra will always be considered

a3 nermed hy || "@ s the mhaéripﬁ e being therefore onfitted,
- By an fecubalgebrs of 4 we shall moan a Hiess subspace of A closed Uiber
dew md.mg:&im‘*mz: and containing @.‘ ‘
A8 examples of fenlgebrns which will be used in the i‘ﬂlswmg e :"ﬂmu

tion

0

ﬂ"{X} : the cw'é:immm roal furm’sims on the compact epace X,

B(X} 2 the bounded real Baire functions cam the compact space X,

Z{Z) : the center @f The Archimedean Rieoz opaece B (that ig, the set
|

Throughout the paper, the letiers 4 and B will denote f=algebras,

v 2 v o W am : %, R < S )
¢f all operators U €L _{5,5) such that ¥ (—;L el f,, o9 ‘?v,:,] for some de [K .
S L A

s I 7 P s L e e D T
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defimd"hy ('%@h‘:)’{&@%} W&&W@E ), The tensor }:smdue’e: &@R in the se m*a
of DH, Frenlin ’(:al is a Riesz Gpace containing ﬁ@t@ &3 a vectoy Subspase, Dy
using the wniversslity mopez’ty of AQS {throren 4.3 4n B}l) one can see that
there is a unique structure of fenlgobra ou A@B such that A®B becomes a &utm
algebra, iIf Gy {:“:ay ctively @,,} denotes the uniﬁ of A (m&;}ec%iﬁf@lgg B}s ﬁmsz,
?@)a .iu the unit of AQE, -
For the theory of f“«*—;alg&bx‘as we yefer to [31.
£) a»..mmm o . "

”-vaa‘:: 4 te an &o'%lé,fﬂ? a. .ﬁy & Riesgz A-module {or simply, &;ﬁiéiiﬁlﬁ it no
c@zzfusién can arise} we shall mesn an Archimedean Riesz Bpace E endowed wiﬁ?:h a
gtructure of algebraie module over & such that A C,E e An mgaﬁam fact o
;i?-aufi; A-modules is that the relation laxz| = [a] l=]| holds for every a €A and z€ ¥
{see (23]}, ' . |

For any HCh and any X in the A-module 1;, x W11l be the set € ax | é*“} .

For any Archimedean xiwsz, spese B, the mep (9,2) &3 S{z) from
Z{BIYLE into E definse a structure of Riesz Z{R)-module on X,

Lm E be an Archimedean Riess gpace smmkz is an A»*m’hﬂ.@ and slgo s

3

&r@gcﬁulm wsing again theorem 4,2 in [6] one can see shat there is a unique strue
eture of AQUenodule on E such that {(a®blx = &{hx) for a€h, DEB and xE€E,

Whenever ¥ 18 & Riesz femo c:%'v le and F is a Riecs B-module, L E,F) will
be cousidersd ag an A@Beumodule by definirg (a®@b)U to be the ayarm‘t{}r b
b‘“”? wi@i}e

55) Apnwaximat jon lenmas,

LEMMA T,%. Let F he a dense Riesz subspace of *lm.‘m rologicnl Riesp
Bpace E, let “z(:A and let <X‘E“‘“”‘“ }e,J”..,@:}, Then for every neighborhood ¥ of
8 3 l E thers is {‘3‘ aoap,y{,}Cim@,(”:& guch that dai o yié ‘i’r for ?éﬁd

1°
FROCE, Let {z:,gg } C ¥ ve such that that Bgg =P % » Define inductie

Yo = (x 15 /WRQ;SM j }, 1cicn,

4

Flen

=
"‘!}ZIX’ 3-3‘&«4_____. s y~tv
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Them (?@gsaoevl{ugjé Dplx) pod gog =2z, o

2o Lot CECAES be ?-*W’h that el @ @an. Then for every €50

iy
%}

£) {2 000002 )€ e )
1 b4}
1)\l 2e, for td2cn,
B ® “
s ; 2
it} le az,__a,@%@” L&,
& e & E
i=1 ;
if in additien e20 we nay assume Ghat E‘;,‘z/& for 1< 1< n,
PROUF, ?’“*w“ well keown representation *?*iware;ts W may aswm mq? A
{respectively B) $2 2 dense fesubalgebra in C(X) (respectively €(¥)) for soms

compact spaces ¥X,¥, Thea A®D can be identified with the Riesz suBspace of c{}zx ¥}

genorated by AQE (sse [6] ), Lot o€ A®B ve such that (elée, ®e e,e By compacie
ty wo can find an open covering i)‘iéi of X suca that sup \c(s,ﬁ)-—e{s',t)l <

ey
& E/2 vhenaver s8,8'¢ *:"5* and $<€8<n, Let (.}, be a partition of unit
= i i Ts:ié—.%.‘i

subordonated %o the covering (G} {that is, { ‘»Fwe"p CPX,)é %{ Yok {e } and eupp (f’ &

Ky

i
C {?}i}’ Choose & point s 6" and leg <{ €LY} ve defined by '\}f'i{ﬁ}‘m e{,&iaﬁ,

2 el

Ye have

QS

i
sup. |eloet) =5 ¢ (o >4ig‘a>[< E/2 .

BEX, $EY j=
For any M> 0 we can find by lemma 1.1 (e seoos )& D (e.) such that sup <€: Il £
: i ¢ - % i3 A % @(‘&"I’ﬁ
éwl } ve can also find b, éﬂ verifying \?:ki\ ﬁi‘*’&«: and %3:%77 Cifez0) r,.,n}

»\%9'_: ué"iz o Choosing 'Il to be small QW’&@% we may achieve that 3fi) helds,

2e Principal subspaces in A-modules

Inroughout the section, the letser E will denote w topological Hieesm
fpate which 18 also & Riesz A-module, The wnit of & will be denoted by o,
The notion of Awdlajody tmem will be fnkroduced tarough a set of equivae

lent conditions 3

P

PROPOSITION 2,1, For evere E?,,Ei?é}’ﬂ @:m following are eouivalent s

£} For every migh‘mr’ws“ ¥olf O inE there is ach such that xi“‘»‘m‘ié Y

§3i} For 6’9’@? i&&if« orhoed ¥ of © in B émr@ are ©,,2, €| 0 @ sueh thoat
'g . ki "ﬁ 1



A

&

o, &, -vzfj and x
@A 2 T

i} ==p i1} Lot ¥'CV ke m solid neighb M**lamd of @i By hyvu 0sis theve

is s¢ck such that HywEX, € Wt and &'32 EWY, Let b = lgl/\@@ fhe relatiens
!

‘ngf’%%‘ % i‘B““%‘I;X@\ﬁ ‘@ 93-”?;@1 m\ﬁ?ﬁé‘""'. \ U
jp,| = bz ) ¢ fafl=| = |ox,|
show tha$ % ~bx (& Hand v,

i1) = 111) Tet Y'C ¥ Yo & sclid meighborbood of ¢, By is }mthemﬁ there

g5 aaé;[&,e] such that x -ax € 2~ ama zmqéf”%w, Put a, = {(22-6) , a. =
= & : { : i
= (%..e} ¢ Ye have. a*g,ﬁﬁzé[“@*@.]” a.t/\ By = O and

- e

| ¥ a2, | = {eA2{ewa))] x4 {2lews)z,] = élx?m@mfh
|2pma5%,| = (eA28)lx] & 2alx)] = 2lax

~

&

A

consaguendly, £ e %, E ¥ (£ =1,2),
& % 5

451} = 1) Loz ¥ ‘zm & seﬁ:&,f& neig ﬁmr&wai of 0, By hypothesis there ars

2

Beel, éf:”a,] such thet a,Ae, =0 and Bewds X, €W (1 = 9,2)¢ The relation

2

e e e P e = -

?zzgé Wy as &13@ Bty xﬁé;%w %,fm conciusion followw,

Yo say b nat two element 2) EesTy iIn B ave A=disjoint if they mat tisfy the
& : )

impliss that a

..»

- conditions £} - if%) in propositiom 2.1, It follows from the above rrojosition

that ’x@,zc,; are Ledisioint IfL l:%] and (x?l ara.
‘n\}ﬁ“{énl TOR 2.2,
» £) The set of all eouples €§;,1 ,xg} such that K?; &5 i‘;mﬁiiﬁjfﬁﬁ% fr#m gy
g8 elosed in BXE, ‘ .

if) The set of all FE L which are A=disjoind from a é’;iwﬁ ZCE iz g elosed

grder fdenl m B

i} Let i::z-:,:,:’?} belong o the closure of the set under consideration,
= 460

wi?:mwmaa of O such

that W'sW® C VW.There are A-disjoint elewants y,,y. such that x?wv% v €= 1,2),
. i ¥



A

From the relations ’ .

Z2gmamy] < |24 Ty * | 9y=ayy]
foxa] & |= .,-‘“’3?'2\ *ley,|
iz :s’fr'i‘io*} that ¥, -ax ‘i‘é ¥ and mzzé‘éi % éequtmn%lm Ty mad B, are he=disjoint.,
ii) Tet ¥ be the set under ﬁenﬁsﬁé@ﬁm‘msm By 1), 3% 33 elosedy o ses
$hat £t is om order fdeal, it @uffﬁfew to prove t’m’% ]y?] 4+ } 3?2{6 B mww@}*
Fye¥, EX, Thers are nets {g’g)@ {%3 yc o, e] such thal X0 X ety Oy a‘vgg% wd (g

: 3&«2&82‘. m% 0. «}5: P 0, Tf ey .= ms/\%»g then @5{_\(3? | + l?’gl') - O and

e jgm«&gz,i = {t=g ?[z_]\{(@-éas}[x} —p

which fmplies the desired eoBelusion,
FROPOSIZION 2.5, If 2he tepoleogy of E 43 separated then &wﬁsﬁe’#%,
gloments in B are order disjoin

PRO ‘”‘;, Let Zeo¥, be A-disjoint and let x = }A?V\[ w}lﬁ For any solid

| ‘meighborhond ¥ of 0 in B there ia ae[ﬁ,wl such thad {x mffm?i |ax,; Eé&a‘ m

i
follows then from the velation :

z =exg(e=a)ln,] + &]*:2}

that z€VWy as W is arbitrary, 2 = 0,
Tue notion of o principal module wme introducad in [?5}1 {aee also [:‘6'?1

: 'CZ'@I«»E‘SE}} ¢ the topologieal Rioess A-m: zmz;w B is ealled prineipal ﬁﬁ’ Az %5 dense

in za:{. for every x€E. This is &zguivamn% to ire C{,g&ﬂx 'ﬁ;e:a be éeerme in [ﬁgxl
for every ge:&i‘%& DE @a,@_]_::t to hs-s ense in [ tx )%}] iaz- every xc i, Using the
notion ef he=@izjointness we can wemmmuﬁ@ theorenm 2,2 in [_e.lf»:l a8 follows 5

o1e & topolegical Riesz A-module B is zm:m“iyﬁs} 11 order

disjoint elements in E are A-~8is sjoin%,
Any Banach lattice with a quasi y“"wﬁw element Is @ principal module
over £%o center, ' o
We introduce now the motion of a m’iﬁeipéz@l slenent,
PROPOSICION 2,4, For every x€E the following ar &@cmiv&iam‘%:

i) x€A|x| ,
i} Ke)}ww]\?i 2




N

w §F o . -

£12) |zl e oo8]x o
$v) %, and % ave Ao@is;%@mﬁ;
1) = 1) 1T a ] J—— azd B {agf\ @g\/*{mﬂh then B C[:w@w_ﬁm
@’gif‘{l 3 o
1) ==> 1) Cbvious, ‘ s
§1) == jw} 12 5‘7’*5‘ ,4...,,.:,}3 with s‘iﬁ Em&x?e.:}ﬁ then we also .kzawa {ag} Qj x| -m%»
—> x_ and ifﬁs}”iﬁl - E_ o .ﬁ: £ollows that ik

(33‘}@9:” = &&x&.)%(x; - _{as}mlx“ iy
gonsequently,
éaﬁ)@:ﬁ_ Rda) Izl - 4&8)#2;@ =%
waleh proves the A-disjointness of x‘gofm.?a X o
s

£34) = iv) 1If 8% =3 |%| with &86[:@@,9_]9 1 ye also bavs |o H z| m@
ey [:si'l; thus, ' e

hg"%»x + ("p_ o - 2T lgliz) ¢ a.x) ~» =+ x_ .

The sbove relation togothey with ia j > G[{}gm_; {aﬁ ) X C_[{!Mjﬁ;umg; {e } mg,
w——p X, 203 {ag) E 33X § henee %, and X are A-disjolnt,
§v) =2 41} and ) Let {@ ;, {n }c[f} @J be such that g /\%as = 0,

&
gzszzé_ — X, v E%:ﬂ:@ -3 E_ o ¥o have

acx = asizzw - %}qu} w—p O

%5}{‘&'23"3@8{&% -nx)—>0,

%35)‘?:‘ wedX @04 {gz;a _«%:eg}x = {x],

W say thnat an clement in ¥ iIs seprimcipal $f it sstisfies the conditie
o8 1) = iv) in proposition 2.4, We dencis b u iuﬁ tiﬁ e;{;t of all ?wpzmnciy&l
elements in E, Clearly Pﬁ?ﬁél B} is ciosed usder mulbiplication ‘by elements in A

and containg B N}L) § w 4'} ¢ in goneral, it is not closed undey addition,

OB 2.8, P ,,;;,»3 is closed,
FROCE, Yollows from proposition 2.4 £v) snd propesition 2,2 25,

PROPOSITPION 2.6, Let x,9€2r,(E} be A-disjeint, Then % + yERY, {E}.



\ G

2L

'mﬁ&uiﬂ i: a2 w?ﬁas ipal fied

multipliecation) .

b

e o

PROO¥, Pactoring, if necesssry, by the fnterséetica of all neighborhsods

of O wa may assume that the topology of P 418 separs

As Py, (B) 45 gemerally nob cleueﬂ urder &r*s%:;.f; ion

ok wwm; pationg

An A-principal subspace &f E is a vector subspnce of

:E‘:E“' E‘
q ( ) &
.“.&2.‘, .;‘3 W‘;'JE j;i..{ \ri ‘1',;‘-3.. R.’i%‘ﬁ‘;z Mub

alao g Rlesz.subspace,

ives {x|Alyl = 03 consequentig, (=

whed, "Mm proposition 2.5

%y)@wx * 3, i»+z&’) =X 4% .

-d4sjolnt from ¥+ §_ y hence x + g€ ?:r é

s iE nakes gense &
E contained in

space @f %t §8 an Amgaﬂmvx pal subspace which is

 PROPOSTTION : 7o The closure of sn f-principal (Riesz) subspace is an

iesz) subspace,
Y evE 3
O0F, Pollows

DI \4\__ “’f N Y b 1
PROPOSIZION 2.8, Order 45

. Bpace are A-disjoint,

PROOF, Let P be sn A-princ

o

crder dizjoint,
princlipal ¢ Tollows that x snd ¥

.ML.L ;}I\L \’z 2 J

The following proposition offers the possibil ﬁ;:gf %o

I ﬁéztzaj.m {5l %hen ﬁé?e bz =z, and (gl=12_

Ewwy-.&»z}rmﬂ pal Risss subsp

from proposition 2.5,

isjoint elenentsg in an .&«-yﬂrseia 2l Biess sube

cipal Riesz subspance of E and let 2,9 €F be
@ ‘%.:.53 & ﬁ.s &%m
are A-disjolnt,

pace which is slse an BBl

wivle (for the induced structures)

aoyen 25 t end proposition 2ol

axgmsw the A=1rile

elpality of an elemont in terms of principality with zes “g et to a certain (Ijm:m@

dey complete F-alzsbra,

>y —wr

t T T {AC V
PROPOSITION 2.9, Let X be

¢{Z} and let ‘Z’ e o locally solid

B "é"%iv

< pe a0 wagade a8 wn 2w
1) consisting

o8

¢’ =algebrs ganevated by the

L with respect to which esch ££C

Ricez Cemodule for the

)

the canonical extenaion of T (the

Then

S % S
funecii

topology T

we have E‘;@G{{;{X)) = Py

@ conpact space, let € be an f.subalgebra of

topology on C{X), Denote by B thn fesubalgebra

of those fusotions whieh are measurable wi i respect to the

cns In € {that is, the smallest ¢ ealgebra on
is measurable), Comsider C{X) = a topological
and B{X) as a topolos jical Riesz D-module for

iy B o i o 4 o Vo (PR 0.
struetures of modules being defi

(B(X)IN L X

ned by pointwis



o

8 noazers linear fuuciional £ an C(X) condinuous for the BuUp nomrma such

PROCY, Cleariy }?x:'{fizi;( INCEr A NC(Z). To prove the convers

sekr, (B(X ) Nelx) $ we have to show that ze Clxf. Yo this purpose, lat
& T -ncighborhosd of O f2 C{X}, Yo can f2:d a solid Tensighborhood Y

E> 0 guch that ¥* + [=u,u]C¥ {u being 4he unit of ths Twalgebrs C(X)

ﬂ! 3,

E
order intervel Em:g,z.;;j teing considered fn C(I}), The scl#d hull of W* ¢

v

B{X} 1s a neighborhood ef G Tor the Mmaﬁml extension of T %o BX) ¢

tly, a8 X ik Beprincipal, there is bif,,,é:}“i and yL WS suen tmza*i; {2 = izg/,,?t !i

Wwe have then two convex subsets in Cf X} with wvoid

2, let

o€ 0 and
and the
alken in

a'azzsaz;m&m

¥ e

eto 1f we show that % = Clxl x@temm@s [mvg,yl»& gtmmzﬂ

:iu‘t% 156 B

, ; now void interior for the tspolo&“g defined ‘n;/
tion, one of then havmg @ the cup norm en C(X), Ve can thersiore £ind

sup £{Tey,y] + g[m,zsj) =o & taf 2 ;mw;

The relation o € Inf £{(2 « C|x|) implies that o€ €{x) and £{C|=|) -%’}}

that

Let L Be the Radon measure samecisted with £, The set ib l ben{X), Smwmy = Gg

8 a vector subspace of B(X) which is closed under taking pointwiss Limi
order bounded sequences and condains the submlgebra €y consequer atlye the

ne class theoren {theorem 20 in ch, I of [‘?'ﬂ) -1* ies that S%vM ap

for auy BEB, Un the other side, the relatio: sup :’x‘?‘{[«»:;,gl & &[«mui‘}éé(-

i) ¢ K as myg,;ﬂ + EEMH;;»:] £8 8 solid subset of C(X

3‘3’{ "z, observing tnpt Ifl is associated with [£], we have

AL Tz} = S (s = Izaaiximrzié El E &@QKH{H{KH_S yajul -
. o izllyig el « &} 2l{u) ¢

t&e of

BODOY Gen

R

}o Theres

ag ££0 fmpiles |2l{u) D> 0, Tae contradiction so ob vbained concludes the proof,

The A-submodule generated by an ﬁm‘fﬁ“& ipal subsps

ce i
again an A-principal shbupsce,
PROGP, Let F be an A-princij }. subspace of B, We have to show ?;S'wﬁ

a compact space X end on order isc cuorpnicn J of Iz}g onto o ﬁmg‘“@
- :
= f . a3 e e ) 8 Ll sl o S e £«
subspace of C(N) such that J(x) equals the unit w of the F=nigebra C(X),

is an A-submodule, cne ean def ing, by continuous exitension a structurs o

RN, AIWISCNEREN | 5 i) %, o B

Sov B PR T R P i " o R e wa Py e ST
18 Aeprincipal for any ﬁ‘?““”‘j"*& A and :»‘»:@.“”thzé—f s LOE X = }; |z (
423 1 ok

P L&v‘_‘,
PN
£ Ao



s

Cav) (bw) = (a2} v}, a,bea, e € 0{X)

which is a co kiequence of the well known fact tha at Z{C{Xx)) i is mrjg:\hic: o S{13

;i s v 3 Ay i
From the above Pelatlon it is seen that ju s an ﬁ'«m%@fg@‘t}m of m:

gx‘?&{g y =4 ?( ("‘X})ﬂé’{ﬁm)}a

{1}

s g

4{} %ﬁ.’“m

the tepology @ en o{X) being the esncnical extension of the imsge by & of the

restricticon o B of $he topology of E, ¥ progosition 2 ,,5%

Bry i"‘{f{}} = Pr (B(Z))N G(X)

whore B 15 obtained from Aw as fndicated = ind the topology At om B{X) is the

canonical extension of e sﬁexzs%@ ﬁ_”i we have to de is to show that

m - : :
> {s iu)ﬁa{zﬁzd_}e??ﬂ,;{}fz{.‘;{}), As B is g"aer:i@.g' complete, there sre sequenses {b%}_
g: . B 8 B : o M

of linear combinations of tdespotent i’tm:’*ﬁMfm iIn B su h that [an = h&?]\ == 3
% 73

4 i

88 B —=300 {14 id mj, is Z é;;mé‘txi) JUNES f {r- %s)p}‘.;; } Por T' and Pr {B(X))

e | p : ‘i’ix? :
is clossd for ov* the preof will be con e 4f we :‘-mfm zim%;?:
& &

i=1
€ FrpB{}) whenever the %}i's are linear combinations of $dem: pote

:s»,i} &

nt :?um:%;i.mﬁ

in B, Indeed, there aps mutually disjoint idempotent functions Bgooces® E B

such thot

2}
3 L% & o
bi = - mﬁ&:} & ?:_2.‘_,2@4.
. j=t
Thow
z&
‘i'f{z' ] = E ‘,,,
’H:? i J=1 - d
where -
i': Q':”‘_ 0{-,»3{7& ) @
s % i
. i=1
g F :i,,, an Aeprineipsl subgnee, Z"m ogjzat,,,é P and cone uque‘:ﬁ‘tly. 3;,
§ o
i=nf >
o ae rel@? ion
s : - : i q
(e - e:}}@jyg =ey, =0, jik
shows the 1t & tjj‘;_*’ii ars gutuzlly 3-&#3’ inty ;Emm*mm Propositie
o
b4
2.6 imply that "}
'5‘:‘3

E}

.\3" {%i;{}fe

©Pa o - “\ tg = 2 G ey et ey ) . be o T A B e
CORCLLARY 2,1. Lvery maximal A-pr inedipal subspace is g ciosed Riesp

w



o
L%
&

subspace and an A-submodule,

‘ PROOF, A maximal A-principal ﬁuumpwce Zg elosed by propositicn 2,7
mad it iﬁ.&ﬂ &«éubme&ule by theorem 2,3z henece, it is also a Rnwaz fubﬁpa&@rb?
proposition 2.4 iii}g

COROLLARY 2,2, E ?erg &«prvﬁciﬁ&l uﬂﬁ"‘%@& is contained in a paximal
&u@riaaip 21 Riesg subspacs,

PROOF, Apply Zovn's lemwma and corollary EO?Q

COROLLARY 2.3, The closed A-subpodule genexa?&d by an &-princiﬁ&l St Do

&space ‘is an A-principal Riesz gubspaco,

J¢ The ptrong modulus of an operatow .
Throveghout this.snd Mze nex$ sectlon, B will e a Riesz space snd ¥
will be & separated opaloegieral Eiesz space,.
¥e say i at a aubset ¥ of F adnits ¥ as a strong supremus and we write
¥ o= awm 1 if ¥ is an upper bound for ¥ and belongs to the topological closure
of % \/ Vs t 8 21, ygé Eé_z) o Every sirong supremum is a supremes in the usual
: i‘*zi : o -
HENEG,

For every linear operator U:l w3 F and every xEER , wo denote by i‘%(x)

the set

B : ,
i \E(xJ\ l (x?,.,asxa)ezswg

As the map (F,o0009% ) > E [ Ul= }l from D(x) into F is increasing, 4t
Jeb : e
follows that i Qﬁz} is upwards dim&%&dc

PROPOSITION Fe%. For any. E:é‘-lﬁ s Lhe exzlstence of ssup ?.\in{x) ig eguivowe

lznt to that of ssm,zg U( [z, é.:[}‘e- waenever they exist, they are equal,

s
(]

PROOF, Our sssertion will b

o

ot

2 consequence of the mllam,ngi Factss

1) EZvery element in M ,{(x) ie a finite supremum of elemeats in O [=x,xl),
J :

Indeed,

4 ; o
= gup iU{) é:%»%) \ (éfégg.sg&sz}ei“io'is*a&

]

5 3
BO4

Agnaver (E F and g:‘ﬁf?g,oﬁec ;6 l}{:{}g

For every y&U{[=x ,.ﬂ) there is fzel‘”{ ) such that y<z,



U{u) vbixﬁ -;1}(.1;;, ;4\&{0 W o« ]t!(mm}[ + | ulx w['@\}l

and the rightmcst element belongs to ngx},

o s
T - o -

cllows fxom the Riesz decomposition broperty that o

ssup K. fx? + %) = ssup ﬁU{" i} + noup %iir{?:z}

whenever ssup il Jw ? ana ssup g‘:{;(_zg‘;;» exist .

e B Ay that a lineax @;g;erm:al' UsBedy ¥ has a sirong modulus if ssun M {x)

{or, equivalenily, ssup U{ [x, v'])) exists for any ‘{é“ By the above rrhmtwb",

in m:u,h g situation the m&p X fd F\;)’) M {x) can be unigualy extended to & positie

ve linear oper: fmrg Z iato P; we 8;m11 call 1% the strong modulus of U and

P e A

denote it by [ Ul, ¥e 2ls¢ comsider the operators

i
E . '{ l-&-ij)’ mm? '(u}'l_ﬂ"),
The notations se in.tr‘c:-{iuc‘e:ci are Justified by ‘é.fx@ f‘anmrirg obvious propositicn e
PROPOSITION 3.2, I€ U bas a strong. ma&zuw then U €L (E,F) and . |
|7l =UV(0), U, =0V0, U = (Vo : Ly

for the order relation on Lg,(}i’,}?}.

Tae set of all linear operators Ush ey F Naving strong modull Hﬁ} ‘
be denaée:xft by SM(E,F), Clearly 1% 1s clesed under suléiplication by scalars and
contains L (;,, k) U{w}jwiﬂ.}?‘)‘?}g; we shall see in § 4 that SH{E,F) is generslly
not closed undsr ‘”m’iiai’&:ﬁ, »

PROFUSITION 3.3, Let G be another topologd eal Riess spmea and let J:F a3 @
be & continuous Riesz homomorphizm, Then for g any U¢ 98(E,F) we have JU(;— "?&(E,&}
and {JU| = 2|0l , If ¥ %5 & closed Riess subspuce of § anﬁ I in tue e inelusion
map, then UEUM(E,?) whenever U:R ms} F is such that JUE € SH{E,6), - ‘ :

A For the pruo? of the next two propositions we éshzz},z need tho fea}.ic:wzm»

lenng 3

3.3, Lot U,Ve};r E,F} be such that ’é}e;[ ”»}mzd led %M"Mﬁ”

wzﬁ"‘@« €5 be such tr Rk = {id?. . Tox ?f_ﬁ("p Then

B oA

¢ nl
- IR n i n
oy R = i '»¢.‘.” % ot X o A
o0& N:} ’«,‘} m> i.;{g-,&.;lé’ v > V;*i} w; 'u{y{);‘ 5
Smf ket =i I=1 il =



-2
-3

9 )43 )1} l;'ﬁ :
> lotad 3> julx, e S uty,-x )¢ A_va -%,) =
b L § 1% 3
=% * i=9 i=1 =1
iy
= gg = %> =z,

PROPOSITION 3.4, Let O be & majorising Riessz subspace of B and let
,’ifeh {Z,7) be such %hat Ué[}-‘" Y¥land ﬂw is the strong modulue of b&u. Then
. V is the strong no ﬂuf}v.«: of U, : ,
PRODE, Lok :::(-5}5‘.‘& be givene hs UE [«V,%’j, Vx) is an upper bound for
: 3431{5':)’ A G is majorizing, there is y€€¢ such thot <y, Lot W be @ solid neie
gnbmmmd ef O ia P, “f{ﬁ‘v ’r:mir"r the streong modulus of 'G('{Z» there is (3«1“.”3’ )V
é%D@(y) such that ¥(y) - §:jl (y sVe v, Phe e decomposition property gives an
(x%:pca.,lﬁiﬁ)élhﬁ(h) verif‘gfmg x,&y, for 1<1<n, By Leamz 3,1,

V(=) u,,_,h::(z N& vy »2 iﬁ(yi)l -
i=9 i=1

which fmplies that the leftmost meahor belengs to ¥y hence Y¥ix) a ssup EviU(x)e

PROPOSITION 3.5. Ouppoes that B is a topological Riesz cpace and let @
be a denso Rienz subspace of B, Let U,V:iE -«&2’%“ be continwovs linear éperators,
Thén the i‘ollefé:’.ﬂg are equivalends : |

1) UESH(E,F) and U] = ¥,

13) Ule €9(&,F) anad Ule| = vle.

PROGT,

1) =% 11) Follows from lemmaz 1.1,

it)=3 1) Lot x¢B, be given, e Ule€[-v{e,v]a) 1% follows by contimna’

ity that ue“\}v,ﬂ; hence V{x) is an upper bound for %.(x), Let W be & noighbore

hood of 0 in F and let W' be a 5olid neighborheod of O such that W® + W (¥, A8

G is dense in E thers is y €&, such that 2¥{|z - yl)€& W', AS V(G is the strong
n 3

modulus of E}'{{}g there is (.}’Vuwym)éz‘?;@(g) such that V(y)} - %M‘U(?i)‘é W

The inequality

342 «&»g“my]
i=q

and the decomposition property imply the existence of {zﬁ,,,.,}:ﬁw)é D {x)
4 &
vexifying .zz:ig; ¥y for 1€ 1 <n end LI < i £ - j’ﬁv‘ga By lenma 3.1,

i3 B

WS E) -S> julz )4 Wy -5 uly,)
/\} - i=1 4 d=q & \)‘}j}

G
ﬂ{*\‘

TR T R




® {0 «

: et
consequently, V{x) «ﬁ 511’(:6: ”é;“i ehich shews that V(x) = ssup Mﬁ.(x) .

COROLLARY 3., 1. um,poae F topologically complete, Phen for any Ue l;r(;éi‘i,}%‘)
the following ars aquivalent @ .
€
11) U_e 8

3

b
P

s
A

i) 2,7},

7 {
2al ®

'1
¥

F) for sny ?é"é} .

"\-
iL

T
4 5

Koreover, if V ie %he strong modulus of U, then V ig the strong maﬁumg @i ‘Ej
PROOF, I2 V 59 the strong modulus of U, then '@'};’ E«?ﬁ‘g is clearly the

streng moduins of Udﬁj?&i»;” Ass B /Ex 18 w dense Riesz subspace of -L""'}, and U_,
: P & S : P

%

foplies that Vy i8 the strong modulus of UK .

V are contlnucus, proposition 3,

R

172

; ; n e
Conversely, if Q’}_(—; S ,F) then U |E, /rs‘ S%(r /Ei oF} by propositions

‘.:‘}.,”;5 and 3,5, which implies that ﬁ‘t}ﬁ @ {EK,F);a as x is arbitrary, UCSM(E,F),
COROLLARY 7,2, Let E,F be Bam.ch lattices, Then for every UE SH(E,F)

v w
wo hme Uéz,‘:éﬁ '{‘) and Uéd’u(w, ’)@ ‘e strong moduli are given by (U] = Y,
v
II)T{ = V where V = f'(i‘,

PROOY, Let ¥ ={Ul, as b”ﬁf V*.V*] and E is a majorizing Rissz BubSpae

Wi o : s W S Vo, W
ce of E, it followa by Propocition 3,4 that UE Ss"i(ﬁ,{-‘) snd V= |Ul, a6 B 18
: ‘,\.; . V
Gence .i,xz, E and U%, V" gre continuous,. £t follows by proposition 3.5 that U &
Z{L

The next result gives o criterion for the existence of the strong mo~
dm.usi in the locally convex caaw, Before stating it, let us make the follawing
vemark, For any UéLlj}F;,F) we can define in a mzmml way a transpose map UL

{E@ i as ﬁmm order ccmplete, hm usual modulus l“ﬁ'"g of U' always eista,

'PP;OPO LTICH 3.6, If UEs{B,F) %hen |U¢ = |U]e, {:ﬂnmw%ly, if P s

lc:f'al,?y convex, U & L, ( B,F) and |U'] is continnous for g (F',F) and ¢* (B™E),

then U enii(®,F),

e

ROOF, Suppose thet Ug&8N(E,F). As U¢ [«I Ul ,HIJJ it follows that Ut <&

<{Ult . To prove $he rveverse inequality, let fé}i‘; and x¢ B, o As JUj(x)

€ M.(x) we have

KD x) = {edullx)) = sup £ () . (1)

enach ti GOV, for any (Aqﬁvv#ovﬂgg &D{.f’-) there are f?vwaaafwé e

€t and <2, é‘?{~j§§>-s £t 56U m)} « Consequently,



&

which eonpletes the firet part of the proot.

- e

’ ¥ m ‘ :
Z b4 = 3 : il 4 ; L -1 i
<ﬁ’m§§ o "2”> 5,:%1‘<'M(§i}°ii>\ im:‘i< ““5 3 i\,}é
n
) S <H«”€{“) % > w<§zje (f)g§i>
=1

Combining thies with (1) ws obtai

. QLIRS _§<w<f),g>

L}

Comversely, suppose that F is loeally cor avex, U €SB, F) and W’\ is

coutlinuous for the wesk teopologies. Then there is ViR => F such that |UY] = ¢0;

 this impliies §n particular thatb ﬁ“éb‘%"g?} Let x CE , be given, As ¥(x) is an

upper bound for i (a) it remains to prove the kb V(x) nelongs to the tepologicel
elosure of the solid hull of the convex set tiuw} to tnis purpose, it suffices
te show that (£,V(x)y < 1 weenever £€F;: and <f,y> <1 for any yei (x), So

considsy ,;,é}:” with the means imzefi property, We have

Lo, W=y =L0(8)x) = Urf(2),x ).

But : n | |
%\/W\é& | n 21, ?C(—er*f} ’]‘lm((f) g

i=1

28 b3 4,%) &8 an erder continuous map on B™ 1% foliows that
§ON vte)ey | nys, el 2SN Qo102

=1 : ;

‘We have

% on ‘ ¥ : v‘
< \/ Uv(,exi),x P fm};z%;;[\m(gi},xi>\ (x,i,;..,g‘xm)é}}(x)g

Gt

5‘*@ () 0%, wﬁ%,m i)‘}\ﬁ; 5 gl (s, >i>

W. i=1
£y e‘“wl ¢t
Consoquently, L:&‘,V(zs;)>é_ 1 and the ggxmm is complete,
An important notion related o strong moduli is that of sirong dmﬁmﬂm'
ém@gs. Ve say that U,VEOM(E,F) are U?X‘(U‘iw disjoint if for every x¢&E + and

e

every nsighborhood ¥ of 0 in ¥ thers is {K,B,geo 5,9.;’\:1'1} &D{x) such that

2.
»Ei‘ é ffﬂ\é ~)“:"5‘fs

Je=4 i



Lt ie worthwile to note that for any z*:{;h and any positive opervators
9,78 «» F, the nap (ni,o..m i i-m;y S{= 7/\?{%) i8 o decreasing map from D{x)
into ¥, '

;1»,\

WOPOSITICYE 3.7, For every U 8M(E,F), ‘U@ and ¥ are strongly disjoint,
Gy o .

Conversely, if U,VE (X 95; are strongly disjoint, then U 4 Ve sM{n,r) gm&

U+ Vl=|G]l «iV},

L8 it hl

PROJE, Suppose that é 3"(.&,)?)5 Then using the identity

VAV = 2:"?(&; Vo= v])

ws obtain that

n ' i ‘ B
S_U (AU (x) = 27H(U(=) = 34T L)
i=q L

for any % €E, and (:z,‘,a.”:a‘.‘ﬁ)&}){?;) 3 from this relatior it follows that U, ond
U are strongly disjo oint, -

Conversely, let U,V& SM(E,F) be strongly disjoint and let x&B he ohe

ven, Clearly, ful(z} + { V=) is an upper bound for M‘Ue;»v{}i) ; to prove that it
is a strong supremun, we begin by remarking that im any Riesz apace we have
fu] + (vﬂ«»m@viée(mf/\lvﬂ i (%)

Indeed, the first formula in theorom 1.9 m‘i’ T[m] gives

lu’! + h’imiu 4 V’V}u X V! g

eonsequentliy,

jul + (vl ~[uev| =(ju~ v =luesr vl glp=v|=ju+vi].

But the rightmost member is equal, by the second fc;ﬂrnziev in the mentioned theoe
rem, to 20 \uialvl).

‘Wow let W be a neignborhood of O in F and let W Ea a golid neighbore
hood of O suen thai ‘ "."i-i-l'g + 2W'C W, By the definitions of strong moduli and of
strong disjointness and recelling the fact that D{x) is upwards directed, wo ey

L

find (L;‘»:Aﬁg ceess® JE D{x}) such that

b4 §

(U= *’X%ﬂ:ﬁfi){é "

DAL bl R S o SR S e

3
%
;
|

;
§
/
|
|
¢
;
i

i
5
1
E
§
i
i



V) - 5"‘!9’(.,, lewr,

¢}
g_‘_’_‘ julix }M‘zf{( ey,

'?"“'i

Uasing (1), we obiain

. by
i) + WHX)'@X:W(’;M) + Wz} =

J=q
: n : n ‘
z.lvﬁig}_m-zz'iﬂ(xk)é +1Vl{z) - ;T“l?{Xi}E +
d=4 a5 T e

Julx) WZW(?LQ} + §V{x) - i"(x o+ ?Zw(x HAN=)] .

gy i ,
As EU(xﬁ)igj ﬁ&{gi} aad l?(xi}yg Evi(x%) s it follous that'the leftmost member of

the above inequality belongs %o W and tha proo? is comnpleto,

The connection botween strong moduli and the theory developed im é:ﬁ is
given by the following result: |

TUEOREH 3,1, Let G be a principal ﬁQQe&ul@ and let B be aﬁ ordey COmDe

lete acp rated principal Bemodule, Them -

: sz@(iz,f}r\m{a, 1) RFPM?;,”*(X’ (¢,8)),

tne topology on 1“(G,p) being the solid strong tbpmlngy;

P“QUV, Lets UESH(G hﬁf}L"{w,h}g By proposition 3,7, U, and U_ are
Strongly disjointy as they are also continucus on order bounded sets, theovem
3 in [24 ] inplies that they ér@ ﬁé@gadiﬁjoimt {observe that the proof of %hé
refored theorem is unaffeeted by the faot that we requirs continuity on order
bovnded sets instesd of usual continuity) s henes U is Aé@ﬁaprinci@al;

Cenvercely, suppose that U is A@}Bumﬁuu‘:ipal, go U 4 and U.,, are A@'ﬁf ,
int, The dofinition of AG mdiqﬁﬁihiﬁﬁ 88 together with lemma 1.2 imply
thet for any x€8_ and any P&@@Q@Q*b&&ﬁ Wol O in F there are 41,.a.gu cAa aﬂﬂ
h?,,eg,hﬂégi such that the following hold (» denotes the wnit of A and €np the
unit of B)

1) (84000098,)E Blo,)

sl b elbe], seizn,
: b1

im}iﬁamzi@%@%aﬂmﬁihﬁ@quGWJ(m&wﬂmm et (x) €wr
e N8 & ot

A==t



e 05

where W' 18 » solid neighborhood of 0 such that W° + WC_W,,
Bmz ¢ 20 and e,@e, = ¢ *’*’.;5: ﬁ_@{d,, = B,) 2 @g hence | (e e, = c‘:m i =
= (@ Be, = a,)‘ﬁ and |20 i = ol %v:awqm;mlj,‘
?i;*i} {n J.%z‘\iﬁ (o, "*)é%:% ’{e»m"ﬂ 1o, (2%‘ ~;=) + B K“ J) =

= ({e,@e, = e)U ){x) + (U )(x)

which sbows that the lefimost xamer Belongs to He As W is arbitrary afa,&
.{a,%.;z@:ﬁ@“ )g-; ), % follows that U, and U_ ore strepgly disjoint; thas,
€ eMlB,P) by vroposition 3.7,
COROLLARY 3.%. Suppose F 1;0})01 ogieslly complete, fuen for any UEL (1,F),
the i?oilem.zw are sguivaients

ﬁ.) Ve si(E,?).

A
P i
11) U SElr, e = 5% (Eg‘}(;wiagw}) for every m&: B s
PROOF, By a**‘o‘ilm,}*’ 2.4, BES ‘(M,"f’) iff ’&L{éz :;z;zmz,{‘,f) for every xéfu+ g
by xr B oanrn % b _44'43;“.“ SiLs :{?mﬂ»_ peng o A I Al oo 7 T ™
but by theovem 3,1, the letter set equals LZ(E )QZ(E\»)(L@CM}HH) a,w,hr(i‘;mgl‘) P

e:ix;(ﬁxﬁ), T is o principal Y(& )wb cdule nnd Z%." 16 & priseipal 7(F)-wodule,

As S¥{8,F) is ;fsznei‘m}.y By e:lsuwx under addition, it makes semse to’
niroduce the H.csllcnv“ﬂm notions:

A strongly wodular elass of operators fyom E Yo szs @ vector subspace
oi L ( B, F) contained im SM(E,F). : :

° i ¢ £

A strongly lattieial class of operetors from B to F is a strongly modve
lay cl&;a ghich containg the strong medvlus ef each of ita 'memberm

EBach strongly latticial cless of cperators from B to F iz a Rieez space
for the ordsy mdvcvd rom L { 1}:5“3&“); v

PROPOBITION 3,8, Buppose that thé topolegy ¢f ¥ is locally cnnvé}:s Then
& vector subspace LCL (B,F) is' e strongly latticisl elaes iff %U” | Uéb}isz @
Ri‘ssm subspace of er.ﬁ“,ﬁ“‘),

T

PROOTF, Follows from proposition 3.6, -

PROPOSITION 3.9, Let L, ,L., ke stronmgly modulay (latticial) classes such
yoily

?9
that each U, €L 4 8 strongly disjoint from each i?z,é{r, La,e Thon L g+ Lg ig & 8irode
¥ % &

- gly modulay (latticisl)elass,

Liows from provoaivion 3.7,




PROPOSITION 3,10, Order disjoint elements in a mtrmgly 1&%5%&1&1 clons

are strongly disjoint,

”t

.t,}‘w.

e
L5

OF, Lot L be a strongly latticiel class and lm; U%Q‘U &L e order

disjoint, Put V = Ei?ig « {0 o Then V&I, "{;‘%wg’{% } and V o= Q{iF,S s the result

follows then

A P
b i

We give now the promised version of theorem 0.% which holds even in the

situstion when the Ltouolngy of F ig not ordeyr continuous,
_ i il

PHEOT

Bemodule and

the A@Beno

Lor0lo8Ye

B 5,2, Let G Be a p?z*:mc:ipal Aemodule, | a.‘%parmeﬁ, principal

tled

LCL {G,H) ’iér_ce a strongly lattiecial clase and a pubmsdule of

dule E.m((},fﬁ, Then L is a principal A®B-module for the solid strong
d & y g i

PROOE,

By praposition 3.10, order disjeint elements im L ave strongly

disjointy henca, Ly theorem 4 in [ 24|, they are A®B~disjoint, Conseguently, L
J ¢ A : 8 ¥ J )

is principal by theorem 2.1,

COROLLA .13{ Gefe Dot G,H and L be as in theerem ;.? and lo%;yl'(‘/;. by a Co=

; EJ oction of su

V;ﬁﬂ:‘

& ¥ whenevey

.

baets of B, with the following pm};}ezx-%yz for every neighborhood

b

% &

w particular, i

+

6L 0 in F, every HEUL and cvers @"éi{; there is y€E, such that U{{zx « gf}‘ 1€

He Then L is a privcipal ﬁ@.}w@m&ie f’e}z? the solid. (,%mnp&lagya

if ,x.C‘E; M,;ﬁ then L i9 a prineipnl .&@?wzwdu’i& for the solid

order precoupact topoleogyr,

PROOF,

Observe that U{M) is topologically be n;z:;:u:i for every UE€L and

makes sensg to consider ths solid (,A/f(f =LOPOLOEY on L, OUP 2858

§€..{,&fa5 enea it
tion will . follow from theorem 3.2 if we show that itbe solid sty ‘ong topology 18

i8 sirongexr

on each ordey intervel of

o

L tham the solid u[é w"é';'ogjsolﬁgy. Indeed,

let (Vg)C. Lw“»fpiﬂ and V€ m’%ﬂ,ﬁ} be gsuch that V. =% V fox the solid sirong topology,

)

/ - '1 . % . . oo e "
let z?.é(/% and let W be a neisnborheved of € in P, There is a colid nefghborhood

¢

WY of O such

Fnepquality

that 2W°' + W'C W. By hypothesis there is y& B . Buch thal U{{x - ¥} Qé

&M, Let U, = ‘%"5 w ¥V § as SQ'S — 0 for the solid strong topology,

that lﬁg,_i{' ¥y E WY vhenever ¥y ga o 4% follows then Trom the

g?;g.u & | Bl ((xam),) + | U] () £ 20(05p) ) + \*«::fs.i(y}



o 28 e

dhet ét? & M Cw_ whenever £ 565; heneea ‘{5 «> ¥ for the solid VZZ =50p0108Y,

We present nov a monotone epproximetion theorem which applies '%;c:e R el I
gly latticial clarses, First, some nstations, For any Riesz svace & and sny oube
ret MCG we Jot K' bo the subset of those x €@ far which theve is (x LJC 1 such
that aﬁ,{‘ ? M Iy similarly defined replecing 'E mf\é' o In the oome way ve defie

ne M' and W replacing sequences by nets, We let M be the subset of those x&0Q

for which there are {:;}_}’}C.Ei and (¥ ){;Cﬁ‘w evch $hat 1% = '>ﬁ§ £ ¥, and ym\ftfﬁz; H% 1g

sinilerly defined veplacing sequences by uets,

The following rzmxmmna approxinstion theorem for Princival modules was

_proved in EM:}:

THEOHEM 3.3 Let 110 be an order complete Riecsz space endowved with o 5838
rated Fatou topology {see Z:‘“i’l‘ and let L be a Riesz subspace of L{) wvikich is also

a principal A-uodule {(for the "‘ﬂu'ﬁ“&‘ﬂ top ih.;:;;e Then we have

c([@ e;,ﬁw ([ })\W\L

Z:“}iv'j C ([~ m‘]‘x)}w‘/‘} { [=e WJ \lﬂ/

for any 2L, and

}] c ([~e, *’{I ng“‘)

for any x €L tere ¢ donotes the unit of Ly the owiex intervals from the lefd
are considered in L while the ordéw cloBures fmw the yight are c*mmwwﬁ in I"’G
Using the above result one can ctate

LHEORBH B304, Let & be u principal A-tiodule, K sn order complete Rieasz space

ke

endowed with a separated Yatou topology, B o Riesz subspace of K which is aleo &
principal Bemodule {for the indueced toral ﬁe v) o Consider a gtrougly latticial claes

5% 'u

L "w,,zz) whiieh is sleo a subacdule of the A®Denoduls L (Cag““} {Wnd henece, an

CL
Qwcny 5 A .
ﬁ@“mﬁf\ ule), Then we have

1 AN «
o.u] clo,e.® e JU W N foe,@

7]

B s,ﬂm}ﬁd[
™
L"‘" #“1 (@ {E’"’& ’{:;}_a, o 2 {@"m U;{i/ f\ ‘E_““’* ) ., vt' @ﬁ- ?IL‘}\! : .

A s s 1 el s 2
for any UE L. and
+

[-lul,lul] ¢ ([-0,82,,0.8 o, Ju) 40



o

for any UEL; here o, { respectively ﬁ“} denotes the unit of A (respectively B},
the orpder intervals from the laf% ave considered im L, the order intorvals from
the right are considersd in A®B and the ovder closures from the rigbt ave contie

3

PROOF, By sheorem 5,2, L &= @;?fiﬁﬁiﬁﬁl ﬁ%§%mm@da1@ for the molid aﬁréﬁg
topologyy hence we may apply %h@ﬁv@m Je3 0o L and L@ mrﬁwCG,K), @ba@mvimgvé&&%.
the solid &%r@ﬁg topology on L. (ﬁgw) i8 Fotou,

The above wéamlﬁ'iﬁ ﬁ'{ﬁﬂﬁﬂﬁiiwaﬁi@ﬁ in %h@ &Wﬂﬁ@WQf? gf utvcngkv 1n%e
ticial classes and principal modules of a theoresm in Egjg which 18 dealing with

the monotone approximation of the components of a pozitive operator Usl m%% ¥

by its principal components, Cur. thsorem iz more general ss, for instnnce, the
R e i 14 B

%h@arem.inijﬁj is proved under the sssumption thet the order continuous dunl of
the order caapleée pz@&z apace I separates ity however, there are ordey camplﬂée
Ricsz spaces endowed with a secpavated Fatou fopelogy but admitting no nentrivizl
order continuous topelogy (for instance, the Dedekind eztension of G(LG j})}a
EEG”’M; ol jﬁiia G@ﬂﬁii&? the saii& strong topology on L xm. Flo Then
the fegja"iﬂg are true: 4
1} The map Up-> | U}lie uniformly continuous on SM(E,F).
ii) The set of all cmwl@s (U, V)€ SM(E,P) X SM(E,P) such that U and ¥
ars Btroagjv disjoint is elag@ﬁ in SM(EB,F)X SM(E,F),
114} 8u( ;,E) iz closed in L ( F) whenever F is topologically complets,
PROOE,
i) fh@ assertion is a'ﬁcﬁ$$Q$&ﬂ@@ ef the f@ll@wing ineguality: for

any U,V,P (,sm( E,F) such that U « Ve[w2,? | ws have

[0 - Vi e[e.m] ‘ ‘_ ' E )

Indeed, it follows from

V| = P4V = PLULY + PLIV] + B

e

that UL £} V] + P ; interehanging U and V wo also obtain ividiu| + 2,
ii) Let (8,%) belong to the closure of the set under consideration, lot

ge&ﬁé and lot W be & neighborhoed of 0 in ¥, There is & solid naighborhosd Yo



&

kL

of 0 such that ¥ 4+ ¥' + Y% W, By hypothesis wo can f4nd a couple (U,V) of

atrongly disjoint operators and twe pesitive eperstors P,Q such that 8 - %}’ég: &

T-Ye fmé;.z,,(ii o Blx)EW and Q(x)E %', By (1) sbove, we aleo have |8) - é‘i??g{«:@%ﬁ,?}

angd '&?g o Eﬂg(i:[mﬁ “"E As H ¥ are mu"“'@’}yﬁi oo g d"}%jﬁullﬂg theys i8 (m?gceo@g ),4: :U{"E}

,&2&% o

C‘iué‘ﬂ’i that '{., ?A& iz, ) €W, It follows then from the inequelity
1 : :

luAv - WA v“ég’: 18 - w) +lv = v}

that
2_ Isiz)Alnits, T e SR CICATY ey + Lisllzy) = fulxg]| +
i : = :

IS T Bl )AL= + 26x) + olx)
=1 '

Censsquently, the lefimost nomber belongs to W and our assertion is proved,

et

141) Lot UE SH(E,F}; %o show that U é;( oF) &t suffices to prove tha
fq‘}.&“ fany Xég.,;x & the ned (ow gaemgm ) ?nmy E U{w ((wﬂ @eeggv{ ){__B(X}) ia Cou
We shall make use c}ai" the following 1‘@3?&@.%{: .1.1{" g nol (2;5)3 e has the property
that for .e:wesf'y neighborhood ¥ of O there 18 a Caouchy ned (yg e\ such that
Z, » 3 €& ¥ for any S€0\, then (=, )

fb : zJ é/ y C ® % &

solid mi‘,ﬁbm@meﬁ of 0 in F, By hypothesis, theye is VESH(E,Flend o pwi"»wﬁ

operator P such that U vg,[gy Q?ama P(x)€ ¥, We have

0 B
| E’“ u(x, )| ﬁ}“ IRz ) € 20 10tx) - Vx £ 2(x
A=A i=4 2 i g -

ly, the leftwost member belongs to W, As
B
€ $(E,F), $ho net (%ma,ﬁx ) = } &E?‘{xja}@ ({'};,&Mn@ﬁﬁ}ém:ﬁ)} is Caunshyg

for any («aﬁewww Y& B{x): consequent

by the above remark, the corres umw:g.xz wmr for U is elso Gmﬁhyo

From now on to the end of %m @e&%mng P will be assunsd Sopologically

complote,
COROLLARY 3,5, The closure for the solid strong topology of any strongly
modulay (latticinl) clnse of opsrators from B te ¥ i858 a &z'%: ealy modulay {(lattie

einl) elasse,

THECR LM ;»,,Esg fuppose B Archimedean and led &aﬂ.&s (u, ) be a asrongly

modular ¢lase, Thom

is itsslf a Cauchy net. So let ¥ be any

e AT



P

ﬁ:’gﬁéii l"% b, édimg ég;g-;;;ﬁ {?&(g} g,}

e

TROOP, We have %o show that any V of the form

B o |
Vep BULA, ME By, BiE 2{¥), &ém

fmd
belongs to BM(E,P). To this pirpese, lot xé‘:% e gim. n gnd l2% €§ fw } be '
R ; -
the extension to E_ of the restrictiion f:‘rf’ %"R to yg zx“ﬁs_f QE} be the extension of |
: X

B, o }?5 By e a:&@ﬂmy P 5{"5;%;{:& j is & 'éz,; Y& 2 ‘:**')m;z;;wmei;gsl subsonce of
= 1
w{E ?)g %h@f‘fﬁ%& shoorem 2,% shows that V 0 which equals 7 Eiéﬁ )ﬁ g0
- . , 7 w
; 3=4
is a (L ){3/1;&/\)»?% ipal element 01’ L, ( *‘),, Ao % is arbliiravy, corcilary

e

g

%

- 3 @ 81P0he :
gly latticia;zi elnss 01:» sed for the solid strong m:mlcgy gnd provided E is Archie-
medsan, & submodule of the B(R) i(F)=module L (E,F).
PROOF, By corcllary 3.%, L is closed; by “gggramlﬁ Jpdt R 8 SpRIGI 0.
To seo that 1% 18 a etrongly latticlal class, let Héi“ and. Lot ¥ = 10, c@nsiﬁaﬁ
an 2€B . ﬁy‘05T@11%FY‘3¢39 v, is the atﬁéﬁg modulus Gf U.p by corollary B¢,
g lrer] te a ©E, )@ 2(¥) —princizel subspace of T(F F). Corollary 2.3 shows
that this subspacs is contained in = principal Riessz subspace of L MR i
follows in particular that WV ® Tiomd¥, Txiiﬁ.Z(EQEQQE(?}mﬁyimaip&; or ;
any o € ¢ R ond TEL, As % i8 arbitrary, corollary 3.9 ﬁ.:;:ﬁ;&:&m that %@i"e’#fﬁf%}(é@ em‘féz'i
45 @ strongly moduler clags containing Ly but L is maximal, hence we must have
. VEL,
(CORCLLARY 3.6, Buvery strongly modular class LCL,(E,F) (in particulor
& ’

gvery operator having a strong modulus) is contained in o mazimsl 5% mgly lpthi=
isl classa,
PROOF, By Zorn's 1&*‘%*%,, L is contained in a maximal strongly modular

¢lass walch, by

‘1&.

Shooren 3.6, nust be latitieial,
TILOREM 2.7, Suppose in addition that'E is a Riesz A-module, ¥ is &
Riess Bemodule and consider L (M,aﬁ a8 an Then the closure for the

BoLid

;any stronziy latticial

th z?t{‘b‘ Hegubmoduld

S

" elass LCL _(B,F ) is again a strongly latticial class

o
b



&

f&

PROOP, By theorem 3.6 and corollery 3,6, L is contalned in a closed
. Fo : :
strongly latticial eclase L, which sleo an AR Besubmodule of L (F,,), henge an
i

ADB=module, The elesurs of the A@b-mubmoduse gensrated by L is precisely the

closure iu Ly -of the L Besubmnodule generated by L (use lemma 1. ?} consequently,

the proof will be cencluded by appiying the following result:

PROPOSITION 3,12, In any Ebya gdieal Riesz A-podule, the closure of tho
subnodule genersbted by e Riesz subspnce 18 a Rlesz subspace,

.;ﬂCG?@ Let G be a Yopologicnl Riseg A-module, let L be & &i@mv mu&ﬂpéﬁm

of G ahd let L

‘“ be the clesure of the ﬁubmﬂﬁ&l@ genevated by be ALl we nﬂmﬁ o

de i8 to show that §§;; auﬁoiéi $§ wasnevey KQ,agggxmﬁEL and aip.,q,&ﬂﬁiég To

£
h?

ikis purpose, let 2% = 2 jx L. L(}GK ig n Riessz subspace of ﬁg containing

=1
x and Lﬁ(]ﬁx 45 a subnodule of G_ closed for || |l & hence, the preof will be
3 & P

1

finished if we show that in every Riesz A-module with a girong ovder wnit z%i&;

the elosure for || [}, of the submodule generabed by @ Risvs subspace coalainipg

i

% i3 a Bipsz subspac ce We nay of ccourse aceume that the Riesz A-~module under

dltn

= p P g . o f 4 s
conaideration is complefe for i HV , heneé iscuprphie %o a space G{X), x being

B

bei

fdentifisd %o thes funchion identicelly one 8, Ve shall make wuse of the well
known resulid according te which a closad vector subspace of ({(X) containing e

i3 n Riessz subspace i 4t is & subslgebra, Let [ be s Riesz subspace of the

Semodule C(X) containing e; replecing, if noecessary, H by H we may assume thal

s

in the procf of theoren

H is closed, hence it is n
2e5 shovs %hat the sulmodule generated by H is also a an balgebra, Co ﬂ“&q&@ﬁ%‘

its closure is o subzlgebra, hence s Hiesz subspace,

4, EBxamples of strongly modular

and strongly latticial classes

tlans 0esh{F).

Recall that U (r;;;l(':‘,,:’) called an orthomorphism if jo(x}{A]lyi=0

wnenever X,yé{?.am@ izialy | = fne eclass of all such operators is desnoted %y

v - o fieud <
orth(F), It is a strongly latticial class: indecd, it 4s well known (see |3 }
¥ 5

~

that the modulus of any UEOrshiP) is given by
5 ot

i et A RN



o

s

wnich shows in parvic

Bl

A subset of M is called relatively wiformly tevally boundad 4f it in

contained in a principal crder idsal FX and 1% i totally bounded fax!§5§g

ged

onte relstively &mifafmly totelly bounded subsets, The class of sll
5ueh.8§&y%ﬁmra 18 dencted by L f@{EgF)G

Whenever F is relatlvely uniformly complete, then any relatively uni-
Tormly totally bounded subset M of T admuits a stroag supremunm andg m:%é@vav the
i also relotively vniformly totally %ﬁun&ﬁdg consequently,

gly latiiciasl class in this ease, This class was considered

It is the vector subspace of L (E,¥) penorated by nll operators £@y
with £€ B and ﬁfi's vhera £@y denctes the operator x => 2(x)y. As F(B,FIC
(2,¥), it followas that G(E,F) ie a otrongly moduler cluss whenever F is
relatively uniformly complete, In gemeral, it is not a strongly latticial claszs
d) Dis slags §3j393§a

Far any order idesl aca® we let dw&(L ¥} Be the vector subspace of

v

Lg(ﬁgﬁ) genernted by the operators f®y with ££C and yeFi then wo lot E%é E,5)

be the closure of tﬁé {E,F) for the solid strong topology.

% USSP AT AT TS

w?’ﬁdsy) is o strongly latticial cless whenever F is topologically
complets, Indeed, as E?é{ﬁ,?) is strongly modular, it 7*zficaa Ty ?W@§e$&%10£
3.11 and corollary 3.% %o show that | Ul (fg?} 29? whongver U{,£3:§(Msk) Wa

have U = m : with fié ¢ and y, € ¥, henece gu&eﬁ:&ﬁ mimk‘) and LUlL f@y

5

where f

Lol €05,

Yhen the topology of ¥ is metrizable and complete, ?v(wa) coincides

Bk o e - %
WAL :&mm\w». } JJ}.,
! R T A NG
S i 3 5 g 4 - a8 < 7 43 i 73 e g 55
Ye have the followins ctrong disjoinitnese theorem for O#ﬂiia,) in ease

L4

Pt

gar opayator Uil ~> ¥ 18 eallsd orvue-conpact Af it maps omder boune
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2

e
P B

nk disleint from every atomid elems ent, the 1atior Yo

ing those x such they L{?QE xE]ﬁgiﬁm scalar muliiples of [ x| only.

noge F topologically complate. Then every Riess honde

_&

s

disjoint from every YE FE (; B8}y & boi

ing the band

PROOYF, Dy proposition 3,17, it sufficer %o show that J is sirongly 418w

Josug

1% suffices to conusider the case U = Iy

a2

with £€G and y¢€F s Let Ké‘ﬁ% gnd let W ’m g solid ms'g{;,uh'\z*hmﬁ of 0 in B,

-

anaca X ;m an order $somorphism T3 u%e Cl%) sueh that Bx) =

- & - = em‘%
= e (the funetion ldentically one op X), Lot g = (19)° (¢ ) gnd let fA. te the

Reden measure on ¥ sssociated with g, We sumay have ﬂ(gf}) = for guy sé& iz

otherwine, we would find a nonzere Riess homomorphism iz:(‘}( 1) el BE pach thal
R o : 3 DS T :
h{@g. 12 PsE 3 &, denotes the cansnical mop end &f k e (12)'(h) then k is
s e i
n Riesz houomorphism on B~ such that P:é:?&f?ﬁw s Weo extend k to B by dofining
% oM

k(u) = sup Li‘&/\‘@;) . wEB. g
nzt ;

the definition is covreet heecause E(uAnx) £ fluAnx)d £(u), k 48 & nonzevo
Riesz howmomarphiss such that kéf, in fact, k i= atomic, because iF E,(E:L :]

then

|2{u) &t ul) Ll

5

\} «mﬁﬁiu)k aa )

for any wEE such that k{u) =0, vhich implies that 1 = ok for some L € [R
But f being diffuse, we must have kAL = 0, leading thus %o a contradiction,

as /i is diffuse, there is a partition inte Borel subsets of

G4} o n

% such that /Mm Y4E/3, €0 being choosen so that £ycW. Let N, be & closed

M, sueh that /ééé NE Eé &j.ﬂ and let (!H 21l C’E(Ew{%?ﬁ) e & soquance

ko

)
i # & W
of positive pairviee disjoint functine such that M{(Pi) 5 /2 snd (?:i( =1 e

proof of theorem 2.4 in

0t elenents such that

. s s 0 -
pix ) a @, B L= Re S B, Then é:s%,geogzim J;,ié(x) an




n+1 :
%;_’J(x ATz )y 2 %;J(x )/\f( Jr+ #x )y -
}/1.1(3 IAL(x )y + f(x )
= f(X ) % f(x : =
}4 y

fn /
- \/g((Pi)y + ale "Z%,)yé ey

ags the J (x.)"as are pairwise digpinty con°equen‘tly, the leftmost member balongs
to ¥ and the proof is complete, ‘ Sy

As a canseauence of the preceding theorem and proposition 3¢9, we gee .
for instance thet Orth(F?) + @'G(?,P) is .a strongly latticisl class whenever F is
topolopically complete and G i3 the band of all diffuse elerents in ?'V
| e) R -madules. e : .

The motion of anJ(_-mndule was mtroducsd by H,U, Schwars in [16_] An
X-module is a class \@ of continuous linear onemtors between Banach lattices
80 that, if one .denotes by B(E,F) tre set of those U in(?) which act betwsen
the Banach lattices E and F, the following ‘are wpposed to hold:

1) X(8,7) C B(z,F).

11)@(&,?) is a vector epace of operators,

114) Rs? € EqsFy) vhenever SEL (B ,E), T€R(E,F) and REL (r F )

Kormed“;\pmodules are defined as‘je-modules JZS for which the spaces
\ES(E F) are endowed with a norm aatisfying certain requirements ([36;} ch, I1I,
0 § 2).. The elosure of (F(E,F) with respect %o the norm onE(E ') is dennted by
. @o(E B). It is proved ’[161 ek, 111 JS'}) that, under certain assumptions,
(B°(E,F) 1s a Danacn lattice of operators, Actually, it follovs that B%E,F)
is contained in the elosure of &f(E, F) for the regular norm (sce the proof of
Stz 8 in [16], ch, TII » §2), hence it 1s & strongly latticial class,

) Ihe glass H(E F)e

For any Eandch lattices E,F let M(E,F) denote thé class of thosge operte

tors U for which U(}?f ) 13 a relatively uniformly totally bounded subset of F;

a norm is introducsd on M(E,F) by

HU“M = “ sup U(BE) H o

% v
OMhciawrdmese +hadt I 2\ v o o\ e Y S I W el ey T e, ORI S A S i s S Yl

MR
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latticial class, '
- g) Zha class A(E,F),

For any Banach lattices E.,F’laﬁNE,?) denote the class of :t;hosa 07 G
fa%orex UsE --«9. ¥ representable as UEU'1 where 01 ie a positive operator f{rom H
.ﬁx&o an AL-spape G and Uz is a compact operator from & into F, v ' ‘

The clascses ?&(E,F) and /\(E,F) were introducsd and studied by J, .Chaney
in [4] in connection with the bpera‘tqrial rewesentatien of rictensor products,

- To prove that ,A(E.F) ' ié 8 strongly latticlal class we need the follo=
wing results ' ; »

PROPOSITION 4,1,

1) I1f UEM(E,F) then U'€ SM(F',E'),

ii) If V€ L(E,F) and U'€ M(F',B') then U& SM(EL,F),

PROOF, . _

1) By theorem 2.1 in (4], F(&,F) is dense in M(E,F) for the norm |l HH s
as ﬂUI[réhUNﬁ for UE M(B,F), it follows that M(E,F) is contained in the closure
of F(E,F) with respect to [ ”r . The result Zollows now from proposition 3.19
taking into account the continuity of the map Up—d U' with respeét to regular
norns,

ii) By proposition 3.6, we have to =zhow that lU'] is continuous .for

g} (F*,F) and ¢g?(B*,B); this 4s equivalent to {O'[*(E)C P, By the same proposition,
LU =] U], Now U SH{E",F") by 1) above and UME")CF as U is compacty cone
sequeatly, |U®|(E)C [U"|(E")C P, : e :

ﬁ@turniﬁg to the proof of our assertion, it was observed in (: 41 tnaf

VEA(EB,F) 1£2 U/ M(FY,BY) ¢ therefore, proposition 4o1 implies tkzat,A(E,F) ia
etrongly modulsr, Wow if U(—:[\(E;F), proposition 3.6 éives 1oy = ]U']‘é M(F',B') s
hemé {Uule A(B,F) waich proves that /\(E,F) is strongly latticial, '

k) Glasses of operntors on gpeces 9f gontinuous functions .

Lét Z,¥ be compact spsces and let U:C(X) <3 C(Y) be a positive eperator,
For any £€ C(XXY) define the operator £@U as follows: (£@U)(g) i the functie
on b > Fﬁ'(f%é?;)(%:) where £, 18 the function s p=> £(s,t), |

The set L = if@ij l £.LC(XN Y)} is a strongly latticial elass and the

mﬂp*fw f@U 18 2 Riegs homomarnhicm. Tn aoe hdec 1a®d T. e o mewd e cod o mem



gly latticial class containing U, Ia ica & C(X)® C{\)=submodule of L (C‘(X) 0(Y)),
henee & C(X)@”(Y)»module. Lot h c{x)@c(y) —> C{XXY) be the canonical Riesz hoe

momorphisn, Ve clearly have el = h(c¢)RDU for any ¢€C{X)RC(Y¥), hence

U = h(a)QU , o€ c(x)@c(r)

by the density of C{X)®C(Y) in C(X)@C(Y). Consequently,

n(c)@sjl = {cU( = |e|U -:n(]e\)@:x In(c)(®u

As the map £ ZQU is centinuous for the norm of C(XXY) and the regular norm
“and LO is closed for the rogular norm, we obtain that TRUEL, and lf@ﬁ'l
-lf’\@U for any £&€C(XXY), The proof is complete,

1) m@a;@b (E,F) & shronzly latticial class?

When B is arbitrary and F is fixed, an answer ia provided by the folla-
wing results : ‘

THEOREHM 4,2, If F is order complate and its topoiogy is érder égntinu-
ous, then Lr_(E,F) is a strcnély latticial class for everﬁz Riesz space B, Conver~
woly, if F is topologically complete and L(L [0,1]),F) 15 a strongly latticial
class, then the topology of F is order contiﬁuous. '

PROCF, If P is order complete and its t-opology is order co%inuaus.
then every order bounded subset of F has & strong supremums comequcntly, L (F F)
:Ls a strongly latticisl class, . : _ _

Conversely, ley ¥ be topologically cémpleée and let L (E +F) be a )t} BN
Ely latticial eclags for E = I, ([:O ﬂ). Suppose 'tha‘c the topology of F is net ore
der’ continuous, Then there are by proposition 248 in [‘7] ~<C 1" and a disjointg

baque}nc@ (x )C[O,x] nos convergent $0 0o Dofme U ViE. ....) P by
U(£) aig; (.ggfrﬁdt)xﬁ "

1
V(E) = ( S £ot)x
0
where r, is the n-th Rademacher function (rﬂ(‘k) = 8ign sin 2R t). The fact that

1
S f‘xﬁm{;% —> 0 as 2 —joco for £€ B and the topological completensss of I ensure
0 » o

that U is well defined,

Lat LQCLP(E,?) be a maximal strongly latticial class containing L?(I;!,F),
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By theorems 3,2 and 3,6, Ty 18 & principal 3(“)@5”’§3~moﬂu10 for the solid Gtroﬁg«
topologyo AB Ug,[;v V] it follows that U bﬁlongs to the clo&ure for‘thw so01id
strong topology of tha submbdule generated bv V. (take into account Yemma 1,2);

as ?([;@ @])is totally bounded (e being the function identically one on [0, ?])

ve obtain that U 1;0 @j) is also totally hounded, But x = U(x )€ U([--e),e]), s
any toual?g bounded digjoint sequenc? must converge o O, we have arrived st a
contradiction. The proof is complete.

From the above thoévem We-aee why SM(E,F) s génerally ﬁbﬁ closed under
additlon- othervise, we would have that L (E,T) =1L (E F) - Lr(_E.F)+ is-always
" strongly lattiedal,

The next theorem provideé an engwer in the case when ¥ i3 a fized Banach
lattice and F is arbltrary. ; ;

THEOREM 4,3, Let E be a discrete Baﬁacb‘lattice'with order continvous |
norm, Then L (E ) equals L' (B,F)} for aﬂJ'reln%ivo]y wiforuly compleie $0poloe
gical Riesz spsce T hence it is a stronbly lettisial elass,

,Cﬁnverse&y, i€ E is a Banach 1attice such that Lr(E.%x) is a strongly
latticind class, then B is diserete and has order continuous norm, :

. PROOY, By theorem 2,35 in [%], 1EéELoru(E;E) whenever £ is o diac?@%e
Banach lattice with order continuous norm; consequently, ﬁr(E,F) =rLOru(E,?) for
every relatively uniformly couplete topological Riesz space F,

For the proof of the converse we shall need a lemmn,

LLAuA 4o 1 Lot E be o Banach space and let M be o subset of B with %

: followxng prmﬂertv' for every £ » 0 and every sequences (xn)C.M, (fn)cjﬁE, theve
i3 a comvact convex set XCE such that inf fmﬁxn - x)é_€_ for any m,n, Then M
¥8 relatively compact, } et |

A, PROOF, Suppome that M is not relatively compact, Then there is 71) 0

and a secusnce (xﬁ)c;ﬁ guech tha@i]xm - xﬁﬂ}v} for m # n, Choose a double sequence

0 B - a1 a3t & T o : £ o 5 Somir . " 3
(fmn)mﬁmz1 C By, such that £ (x Aa)2QI » Define the seminorm p on E by
m#En
p(x) = sup °| fpﬁ(x)‘
; moupt
m#n

and let ¥ = Efp” {O}) be the normed space associated with P. Each f givem rise

to gﬂfﬁiﬁﬁ, $ denoting byll“® the norm on P we have
Liik 4




Il:vﬂ,az“* le.mﬂ(j)l o er (1)
m.gé

Let J:F «=3 P be the canonical P and le% Y = J(x )n By the éhoic@ of the
fﬁnfa we have (| Y =7 gh ;71 for m # n, Ve shell derive a contradictien By shoe
wing that (y ) is a totally bounded seguence in ¥, This will be done by provinv
that for gvery £> O there is e compact subset L(:F such that the distanee from
each y_ to L is l@ss than £ o So let € > 0 be given, The relation (1) shows that
co{-ﬂg | mon 21, m # ng is G (7 ,F)=dense in Bny & consequently, there is a
sequence (h ) which i3 ¢’ (F°,F)=dense in Biove By hypothesis there is o compact
convex set KCE such that inf {J'(n ),x - X)ZE /3 for any m,n, Put Le J(X) ana
" assume that for sone n we ;i}za inf ﬁ - y]h)g « Then y ¢L +£,B + as the
latter is a eclosedconvex set thgizLis h€F® such that Nhlla:1 and sup h(L+£BF)é
£ h(yn). But

/

sup h(L + EBg )- = gup n(lL) +;£sup h(B,?) = gup h(L) + £ 3

consequently, inf h(y =32 E A& L is compact and (h ) is G(F'.F)~d9n3@ in
JEL
Bhe o there is m such that sup |h(y) - hm(y)i < €£/3 and lh(yﬂ) - b (y )| <E/3,
- syéL Bl
It follows that

£/3¢< ing b, («; - y) = int LI (n ),,,, -x)<E[3,
yelr " %K
The econiradietion so obtained ghows that inf lly - y“‘ts £ and the proof is cone
YyebL

plete,
: . - proof of the/
Wo return to the theorem, Let E be m Banach 1attice such that Lr(E’%o)
is strongly latticial, ¥We shall brove that each order interval in Enis compacths
a theorem of B, “alsa(_/ﬂ] will then 1ﬂad to tn@ conelusion,
Ve remarh first that if L, (3,1 ) is strongly latticial, then so is,
L (G 1) for any closed order ideal G in E (as each UeL LLEL,) is the restriction
af some ?efar{n,gﬂ))o hus, we may agsune without loosing generality that E has
a quasl interior element; this guarantees that B is & principal Z4(#)-medule,
Canwiﬁ@r an order interval [bpx] in B; as [O,iE]x is dense in [b,x],
all we need to show is ﬁhaﬁ [b,%é]m is relatively compacit., We shall use lemma
4.1; s0 let £ 0, ‘ﬁk)c;[é,ﬁﬁl and (fﬂ)(;ﬁﬁe be given, Denote by F the Banach

lattice of all bounded deuble sequences of sealers ( the nornm being the sup norm)
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and consider the operators U,Vg Lr(E.F) defined by

Ur) = e A (), oy

Viy) = (|2 H&f))m it
F is an f-algebra for pointwise mul’siplication,hﬁnc_e % principall module over 1%

self, As T is topologheally and order iscmorphic to 1 . LP(E.F) is strongly lat-

[~-4]
ticialj therefore, theorem 3,2 implies that L (E,F) is a principal %{(E)® Femodue
le for the solid strong topology, In particular, as 0<U< V, it follows that there

o

is e&[@ 1“690] (e being the unit of F) such that

mu . cv}(«)n <£ ' * | (1)

by lewmua 1.2, e can be taken of the form Z B @a with B 6[0 1] and
i=4
(Z poecegl )é, L‘( )o

Now we remark that if SE€ Lr(E,F) is given by

Sy) = (g, (s,r)),n 1

with (gﬁm)éh", then | 5] is given by

Taking this into account and the fact that | C'fl =]C| *|£] for Cc €2(E) ana fe

& B, we derive from (1)

sup if?‘l(lé‘ (x) - E °<m i( D)) £
myn3 1
g
the sca}.am 04: being de*nz‘niaed by (v(xm)m w1 = * « Consequently, if K =

= c0 §B,(x) | 1<1< &} then
inf £ (& (z) = y)<int | fm](i.&m(x) - .:%'\) =
yex yeK

and the proof is Qompléta.

COROLLARY 4,1, YLet F be topologically complete and g”-order comgl@tmO'
let B be a Banacn lattice and suppose that Lr( oF) is strongly latticisl, Then
at least one of the following conditions holdss:

i) The topology of F is order cﬂntimuou§,

Cii) B is discrete and has order continuous norm,



S

PROCE, If the topology of P is nov oyder‘ced:inuous taen P ocontalns g

Riesz subspace ordaer and topologlcally iscmerphic to 103

he reader is asked to compage <vhe above result with theorem 0.2 in

¢ apply theorem 4,3,
h
[}4] which(ﬂwwacterizeﬁ diserete Banach lattizes with sfder‘conﬁinunng nerm u8
being those Banach lattieces B with the property that Lr(E,F) i8 a Rlesz epace
for any Banach lﬁtticq F: %the dis tiaction is given by the faét that, whenever F

is order complete, Lr(E,F) is always a Riesz space while not alwmys a strongly

latticial class,

9. Applications to operators on

Banach‘lattiéea

Throughout the section, B and F will be Banach 1ét%ices.

We bezin with a principality theorem for strongly iatticial clasgses of
operators betweon 3anaéh lattices,

Call an operator from e Banach space G into F order compact if it maps
BG onto an order precompact subsst of F,

PHROPOSITION 5,1, Let @ be a Banacn space, For every UCL(R,G) the f0llow
wing are ecuivalents

i) U' is order compact,

ii) For every £ 0 there is £EE 20 such that JU(x)] £ 201x]) +Ell x| for
XEE,

PROOF,

i)=> 1i) As Ut{B,,) is order precompact thers i3 fE€H) such that

HCrosie) m~f)+]té£ whenever g€B., . Consequently,

glU(z)) = {u(a),x Y £ur(g)],(x1> <
< LGutel = 2 ,0xh + 20xL elixil + (1))

for any ﬁc,E&, » hence

iUzl = eup  g(U(x)) < £hxil+ £(}=|)
ﬂeﬁgﬁ

t

i1)=21) Let £EE! bo such that WU(x)IL 2(}x|) + 'zw%sjzh for x€ B, Then

(U (g) - ziw Y =sup <UNE - fyPdew (UG - 2(3))¢E/2

Gévdk O3 2 wwe' s>
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for any g EB;, and x€D.NB,_; thus, [(U'(g) - :’f)+11 %€/2 , The same is true

replacing g by «g; hence

TG £, =li(us(e) - 2) V (U'(-g) = 0) NI €,

HECREM 5,1 Lot L be s strongly latticial élms of bpemfzors from B
to ¥, Suppose that B is a principal A-moduls, F is g principsl B-nodule var'z;i‘ T
s a submodule of the A@B-module Lr(E,F). Than the following are true:
i) L is a priuncipal fa@an;cdule for the s:.oiid urder'prec_oxnpact topology,
ii) Suppose that E' has order continuous nors and that U' is brfdé!; compact
for every UL, Taen L is a princip:—il A@B-.mdul@ for thne regular noram,
PROOF, ‘

3)

=

& a cousequence of corollary 3.4 obsarving that i‘r(E,F) = L;‘(E,F),
ii) Ye shall verify that for évery‘g'70 and every UEL i there is y&£B 1'_
such that [JU((x - y)_’_)l{égzmenever‘ xéﬁﬂ; an application of Zorollary 3.4 will
then conclude the proof, - '
~ Indeed; by proposition 5.1 there s £EE! such thet NU(x)€£(1x)) +
+ 2"’1:&” z|] for z €E; by theevenm 1.2 there is FEE, such that £((x - y)+)é E/2

for xeBE. Consequently,

Ntz =% 2z =9 ) + 7 kilx - 9, || < €

for z¢ B: -

The first application is an extension of theorem 4.3 in [a;‘f] on idesl
" properties of those eoperators which can‘ be approximated with finite rank operge
tors on every comnact set,

»'I‘ixe compact topology on L?( E,F) is given by the seminorme U fromeze
> oup [| Ux)]| for every compact subset K of E, The notation CA(&B,F)A (respectie

K :

mly G%(H:F)) was used :m[zs:l for the closure of @‘;’(E,F) (respectivelyﬁ(ﬂ,f‘))
with respect to the compact topolozy {@(E,F) denotes the coue in Lz‘(E,F) £ent=

rated by the operators £y with £¢€ B} and ye F 4_).

1

3 latticial elasg L of operators from

IO R 2 A o
THEOREA 5,2, For every strong

E to P, C&(R,F)NT and 1&;{ veL, jule 0;2,+(;§§,zf)} are ovder ideals in L.

PROOF, Clearly UE&CA(E,F) (respectively UE CA%’(E,F)) 1£f its restriction
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tively CA+(£}X,F))3 thus, we may assume that B and F have quasi interior elements,
Consider U,VEL such that (U] <|V] and VECA(E,F) (respectively |V|e
éCAJE,E‘)). Let I‘G be a maximal strongly Zl..e;wticml class containing L. By theoorem
5.1 1) applied tc: LQ and lemna 1,2, there are nets (‘c,), (d YC Z(E)GZIZ(F) such
that PSV - Uy @ (Vi 3 l"'ﬁ*or the solid order precompact topology and meh :

dg is an element of the form Z_ L%:"@B with A C Z(F)+ i B €- x.’;(?) o It follows

2
that cg’\‘f 3 U gnd ¢ lv{ -m-y{ t;&;.‘cr the compact topologys thus, UECA(E,P) (res=
pectively | U} €Ca (%,F)). . : '

The next epplication concerns the relation bétween the order ideal and
the cl.osed opem’zor ideal generated by a regular operator; it arises as a gene-
‘ralisation of theorem 3,7 in [:22:[. de shall need the concept of an operator ide
al as definec by A, Pietsch in [13]

& class Q,L, of continuous lincar operacvors between Banach spaces is
called an operator ideal'if the components .Q,L(G,H) =Y N B{e,K) satisfy the
following conditions:

i) ‘QL( G, H) 1is a vector zaubs;pacé of L(G,H) for aﬁy Banach spaces G,H,

l ii) If TeL{G.,q), 3{—‘(),[((},511) and R&‘L(H,HO) then RST@Q[(GD,HO).

An operator :L:iq:xl is called eclosed if all its components are clcsed for
the opsiator novm, .

For every SEL{G,1) thers 13 a smallest closed operator Jdeal %0
containing 53 it c*.mzzpanéni: %ﬁ (r,},},x ) is the closed vector subspace of L( Opﬂc‘))‘

 generated by tha. operatora RST with T€ L{GO,G) and ke .La(}l,xlo).

The notation JF' will be used for the canonical epmbedding of F into %
The notatic v, will refer to the dual of iﬂ cc,zzame“eﬁ as a norned subspace of B,

THEOREM 5.3. Let E@,E 0 be Banach epaces and let E,? be Banach lattices
which are principal modules over their centers, Then “é;.h@ following are 'i:ruea.;

i) Let U,ViE -3 F be ordey moundwl operators such that M’ { ‘ l
and let ii‘éi.(}:;(),ﬁ), RE L(F,,FO) be such that T and R' are order compact, Thm’s

RUT é%? .

ii) Let

e

ot

be a strongly latticial c¢lass of opcmtws from B to ¥, let

U,VEL be such tnat Ul | V] and let ?t-'»L(u »B) He order compact, Then UT&%V

TIIONIYIY



o 4 e

i) By theérem %02 applied e L:;,(F,(E), it follows that F* is &
principal Z(F)-module for lg’] (?:“',F); applying once sgain this theorem to ¥ =
ez L;‘;h(F'.R) (the topology.on F! being Is7) \'E",F)) e find that ) ié a principal
%(F) -nodule for (g"i (.S?'g,f‘). A8 \c“((%f" F*) is order contirw.nua. corollary 3.4 appli-
ed to LY 2,¥) shovs that there is m net (e ) Z(B)@”(F) such that |e, [£ g @‘I
and cSJEV S u}?ﬂ for the solid order precompact topology on Lé(&,i@‘) ‘aeduced
from id't(l}}!,l“).__ By lemma 1.2, we may assume that cgé Z({E)BZ(F) aﬁd»ttmrafcm
has the form . ‘
¢ ﬂ:f_g 4, @B .
jap 5 18
Let '

VS mg Big‘mig : |
clearly RVS’E éﬂ and J ‘es = cSJ V.Put U5 =0 - ?’5 i the proof will be concluded :
if wo show that RUS‘I‘ .--) o for the operator norm, As T(EE ) is order preéompact,
it will suffice to show that sup || R‘U.(x),([ ~3 0 for an:/ order precompact set

xcK
K. Let 2)0 be given, By proposition 8, T we find fCF' such that

RGN € 251) + 0 Y%yyn, ves (1)
vhere M = aup || I V|(ix[)]] . Observe that
xeK s '
\opoe| €1 9gu] + Vol = [o u(ﬂ 1 agv] & 2lav]s

thus,

lop Gl = il agu i€ Miaguj C=hiig 2 jagv] 2

for any x CE. Therefors, (1) implies
sup [[RU (x)]|€ sup 3(\ﬁs(x)\) hif .

‘ kel B %K ‘
But ff(lU.(x)l) o "‘*“’g(“)\ ,&.> 5 oas ‘E‘Us;’ -~ 0 for the selid order precompact
topology, it follows that sup £( [J (‘.)]) ey 0 Cons seaueni}ly, lim sup sup I\N“’ {: )l}

bieY 8 ) e il
£ £ and the proof is complete,
ii) Let I‘O be a maximal stronzly latticial class containing L, By coroe

lla ry 3.4 applied %o Ly end lemma 1.2, there is a net (OS)CZ(E)@Z(F) such that
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.. ﬁsv -3 U for the aolid order precompact topology. Then QS.VT iy UT fov the

operator norn and C“$VI‘6Q,{ # hence UT CQ[V ®
‘ Ve g;mqam now a version of theorem 5,3 obtained by replacing f% by

the smallest regularly cx.i. osed ‘K?-»madwlez Q? camair}mg 8 regular apemtor
V:E -m;}" ¢ this is by &efinition the R «mndule whose component \'A,V(EG,F )
(F and E"g being arbitrary Banach lattices) is the closure fo.c' the mbulm’ noTm.
‘m? the subspace of L l,u@.“{)) roneratod by the operators RVT with T€L (DO.E’) and
Reir(F,E‘Q)a We need bofore a lommas

LEMA 501, By ie dense in By tor &71(F, 1),

PROCE, We prove first the following: for every x€ BY , every fEBE,@ﬁ?;
and every £> 0 there is y&F such that £1% = y1,2V<E dnd £({ y{) $1. Indeed,
the cenonical mop TP = (P,£) has norm £ 1 and (P,f), being an AL-space, is &

‘band in (F,£)9; consequently, T"(x)(—, ﬁ(ﬂ. . As T(P) is dense in (F,f), there is

£)
yEP such that £(lgl)< 1 and | "‘“(x) - yll&€ o A8 T* preserves order intervals,

T" is a Riesz Homomorphismy hence we have for every z€ "

[2%(2)]] = <{2*(2)|,.8> = Z}E”(lﬁi)ag> = 4155.&"(@;)} = Lzl

where g €(F,f)* is defined by T'(g) = £, Thus,

ix=yl,g) =itz =l , = ll2"x) < ylige .

=4

Bet Q:F°® = I'* denote the map £ f=> :'t{. As Q i8 positive and J%Q = 11” .
it follows that Q is & Riesz homomorphism and 4Q(F') is & band in %’. the projet
tion on this band being equal %o QJZ% 5 7
Kow aupposs that EF i®s not dense in Bﬁ\{ s then there is xé]%‘aa( %md gf%:‘ B
=3 [R linear and continucus for \6 i(& ) such that sup f(ﬁy)« ‘i<g(:ﬁ.), Let
f = lc}},(ﬂ)& o« AS ?'é:%?.ﬂﬁ‘; ,. it follows by the first part of the proof mhm_ for

every £ >0 there 48 y€ P such that {|x = y|,£) S € and £(1y|) L1, The continuity
v

' ¥,

of ¢ impliss the existence of h&{? such that jg|< ks consequently, g = QJ.;(@;)

and |g| & ”(ﬁ,ﬂ} = ¥, Hence

1Le(x)< | el(izD el allyl) + 1elllx = 3)) =
=f{(j7]) + {1z = ¥ ,:ﬁ?é 1 4E

As ¢ is arditrary ve have arrived at a contradiction ; thua, Eﬁm is dense in ;,2{
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THEOREM 5.4, Let By +Fy be Banach latticesa and let E,F be Banach latti~
¢et which are pmump 1l modules over their centers, S‘E‘hen the £ollowing are trues
1) Tet U,VEL (5,F) vo such that !JU}¢ J0,v| and Lot 7 €1 AEGE),
R, €L "_{?:?“,FQ ) be such that Ty and R} are crder compact., Then RUT é’-ff\,) for any
R € [.%, o] snd € o520 ], -
ii) Let L be a strongly latticial class of operators from B ‘w P, des
U Vé L be such that (U{é}?] and let TGQL (LO,E) be order compact, Then UT¢
& ﬁ? for any l.‘é E’"‘LG'TOI
i:ii) Let L,U and V bo as in i1) and Gupposs that B has order contimzous
norm and |V|' is order compact, Then UéJ),V .
PROOP, 2
i) Rep@at the proof of 1) inifheorem 533 ail we must do in addition is

to show that WS > 0 for the regular noram., We haw

J. RUT] = | %3 ?d.h - (1)
Iy, R} £ T “l (

By proposition §,%, the restriction of R, to B, is continuous for Jo*)(F,F') ana
v :
the norm topoloiy on FO;: hence, by lenns 5.1, we obtain the inclusioa R(%)C« E‘(}

and the fact that for every £ 0 there iw fé Fi verifymg

I i‘éﬂ.mu 22lal,2) 45l , se¥ .

8onsequently, by tha came argunents as in the preof of i) in theorem ).3 we fipd
that Y J Ugii > 0 for the operator norm; as L 13 %A T, jakes ito values in
: Fyo we obtain from (1) that RUT =3 O for the regular noram, :

£1) Repeat %he proof of 1i) in theorem 5,3 mnd observe that
£ (V2 = UDZ [0V = u]1 ' '

- 141) Let LG be a maximal éﬁreﬁgly latticial class containing L. snd 1ot

Li ﬁ@ the order idenl in LC formad by those U for which (Uj' is erder coLpaut
Thon the ms ertion fﬁllswm from theorem 1 i1) applied to Lq,

Applying the above theorems fm the case when V i compact we Tind that
the well known results of Dodds = Fremlin [5] and Aliprantis = Burkimshawr[%]
which have been proved for the case when F had order continuous noym remain

by a strongly latticisl class:
true provided if we replace Lz;(E,F) ‘-
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- COROLLARY. 5.1, Lot L be a strongly latticial cluss of operators from

B %o ¥ and let U,YEL be such that V is compact and lﬂléi\?%, Then the following

!_ L‘

ar@ trues

1) UP is compact for any order compact operator ¥ frgm a Benach space

14) If B* has order continuous norm and [V 13 order compact theﬁ‘@
iy compacts..-

- YROOP, Dhuerve f’;t‘aa?: U (fespactively ur) is eozﬁpaét iff its restxjic”cion
to the. closure of every principal order ideal in B (fespectivaiy to the praivage
Ey T df %h@ clogﬁre of every principal ordexr ideal in E) is compacty thug, we
" may assume that E and P have quasi interior elements end the proof follows from
theorems 5,7 and S.4.

AS concerns i) in theorem 5.4, iﬁ is an improvement of th@d?em‘4.10 im
[}3} (as; fo?-inﬁ%anse; wé do not raquivs.the"cperators U,V %o be positive).

We continue ouy series of applicafioﬁs by considering fdeal properties
of Dunford - Pattis operators, In '[B],‘Q.J. ¥alton end P. Samab have proved the
follawing theoremss

Suppose that F has order continuous norm and let S,T:E««%E’ba such
that T is a Dunford - Pettis operator and 0£8<T, Then S is & Dunford ; Pettis
cperator, \

Suppose that B is an AL-space and that ¥ is weakly sequentinlly comploe
te, Then the Dunforé - Pettis operators form and order ideal in L(E,?),(m?myiE,F)°
in this case), '

We shall see that the above results remsin true for an arbitrary Banach
lattice F provided if we ask 8 én@ T to belong %alﬁhe-same'étrangly latticinl
class, For the proof of our theorem we shall noed the following lemmap it is
the &a@e'ag lonng %.2 in [81 but the proof we present is simpler,

LEMMA 5,2, Let MCE be the aélid hull of a relatively weakly compact

set K, If (xﬂ) is a disjoint sequence in MNE

" then Xy wsed O woakly.,

PROOF, Let fé}E; be given and let TiE—> (E,f) be the canonical map,
As T(K) iz velatively woakly eompact, theorem 1.1 gives, for every £ > 0, an

e e e e s W R s e e e e e R e
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mor'ph.l.c»m, the same relation holds for zx¢&H, Therefore, *Lf {x )C I‘iﬂf‘ is diSe

Joint, the relation

Ctlz) = Un(x )N = H(2(z) - y), lI + W= IA v

showa that

1im sup ‘f(x Y &+ 1im T(Xn)/\?ﬂ' = & ,
1 e300 - Bl iy OO
As £ is arbitrary, ﬁ(z{,”) - 0,
THEOREM 5,5, For any strongly latticial class ef operators fmm E toF
the fal’! awin;; are trues . ‘
i) Let 5,T€L ba such that T ie a Dunford - Pottis opemtor and 0< s«
Then 8 is a Dunford = Pettis operator,
5i) If B 4s au AL-space, then the set of all Dunford = Pettis operators
1n L is an order ideal in & |
PROOF, In the beginning we remark that,as in ouw pg‘eviaﬁs reaﬁmﬁ,
we may confine ourselves to the case when E and F have éua&j.' interior elements,
Let S,TGL ve such that T is a ;;mnfox’*d - Pettie operator and 0L S< %
in case 1), {8\<| 2| in ca% 15), Suppose that xnéE and X > 0 Qea&ly a.n-:‘l- let
M be the solid*hull of {xﬁi n};‘%’} o Lot LQ be a zmxﬁimal strongly latticial c¢laze
-can“%:lain.mg L oand let E«? be the order ideal of those Uel‘;o with the following
: property: for every £ > 0 there is yEE,_ such that Ntz = ¥ )(légg whensvey

x&M, By corcllary 3.4, L, is a principal 2(B)& V(E)«@amule for the solid clf -

¢
topologye J;é consisting of the sin«gle element MNE o Ve shall see that T EL? 8
in case ii), this follows from tHeorem 1,%; in case 1), this follows from thecw

rem 1% 4n [5] applied to ¥ and to 7¢(B;,) provided if we show that

lim sup Bi’“(gf )é = for every disjoint sequence (¥ ) in MNE . But

ne=doo LET(B,,) ev . _
k!

oup |2tz )] = Uty m ¥, ~> 0 weakly by lemua 5.2 hencs, i?(m)llw} o

fe f.z‘@(mﬂ,) " iy

28 T is a Duaford - Pettic opsrator,

It follows that for every £ 50 there is e ¢2(2)Q2(¥) such that

by lemma 1.2 we may assume that cg€ Z2{B)®Z{¥). Then o is a Dunford - Pettis
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operator and we have

lim sup J) S 8(x §g,_ sup |8 - e} (f=, \)H+ 1in 0 etz )%%
1h =300 ny¥ . BeBuo

< suy f)ls « cEl(0) ll £€ .
%€M

As & is arbitrary, HS(:%)H - sm& the proof is complete,
W9 conclude this gection with a study of ideal and principality pm:zmmo
fes of the class M{E,F). For any ovrder idesl ¢ CE® we ghall denote by i\»IGV(E,F) the
_closure of 337(%2,3?) for |} {! | -
- THEOREN 5.6, L@*c ¢ be an order iGeal in E' Buch - that E is order prvm
compact for I°l(%,6). Thon the Zallwmg are trues ’

i) %G(E,}}")HL fs an order ideal in L for every strongly latticial class
L of operators from E to ¥, In particular, EiG(E.F) ie an order ideal in M(E,F),

ii) MG(E,F) is @ principal A@B-nodule For (i ”M wheneveyr E is a pé‘inciu
pal A-module :ﬁ"@r*W‘E(E,G‘) and F is a principal Bemodule i’or the norm topology.

PROOF, The proof will be divided into several ateps, Besfar@ proceeding
to it, we remark that the class M(E,F) can be dmime% for gvery noyped la‘!:‘t:ic:aa B
not necessarily norm complete; the main properties of it remain essentially the
‘é&ma, as one can see by identifying M(E,F) with P&i('ﬁ’ F), where E denotes the nozm
completmn of B, This remark will enable us to consider M{Z .?).

STEP 1) The solid strong topology and the topology defined by il Hﬁ'
agree on the order in‘terval (~lut, ﬂ;ﬁ] of H(E,F) for any ;Eéfvﬁﬁ(E,F)“

Pi‘a@ﬁg"o Let H dencte the set of those UEH(E,F) with the property that
~the s0lid strong topology and the f:opc'?@ 5y defined by || ”‘ﬁ agree on EIUE ,'“{513;
by lemme 1.2 in C’SL H 418 an order ideal in M(E,F) closed for |l ”wﬁ o Conseque=
ntly, it will suffice to prove that @y ¢H whenever £& C end yE&F +° To this
purpose, it sufflces to show that for every E)O theye is x E such that
ii“é}ffm < €  «+flulx)l] whenever U-é[@ﬁ”@f . As B, is order precompact for

16’} (B,G), there is x€B, such that ((vw - x) J < yile  whenever we BE.' Hence

UL U((u - ) ,) + URLE((w = x) )y + U2) & ypie v + Ulx)

for any uweb,; therefore,

sl

H'iiéiﬁ = || sup '*-Zf(i}p)“ Slhnsi~te g+ v@Ig £ + Ul ...

4
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S8TEP 2) Let E be a normed lattice and a Prineipal A-module for Il(=, Gv)
(Gheing as in the sintemeny oi‘ the theorem), F be a Banach lattice o and & princie
pal Bemodule for the nors topology, Then ?:Gus,a JOL 48 an order :i‘.::ie:a al in L for
any strongly .E.a“%:tir:ézé.ml class L of operators from B te P‘, B"G( E, P} is sm ordar
ideal in M(E,F) a3d & principal A @Bemodule for Il H

FROOF, Lot VEH(EFINT and 1ot YEL be such that | Ul< | v, consiger
a maximal stro ngly l(z?*i; M.}. class o Containing L ang let E,‘ be the order ideal
in LQ generated by"é"; As the mswietian of V] to ordex bounded g Bots is cmmi@
Auous :E‘a;? W iE,6) and the norm topology of ¥, theorem 3,2 implieas that Lt is g
priuci;ml A@uwmuzla for the ml:é.cl B‘!JI‘(}Z?I topology; hence, taking intoe accou}m
demna 1,2, there is a mt(c )Cﬁ@a such that tc ‘%“‘ <l‘§{ and cS,V-my, U for the
s0lid w%rong topology, By step 1) it 1ollow's that (c Y) is a Cauchy net for
il ljﬁ o 48 H(E,F) 13 complete for il ]] (thepron 2,1 in [&]5, we oblain that Ue
€ M(E,F) ana eV~ U for || iy & thus, uen o(EF) as ¢ L VEH(E,F), -

In particular, we have obiained that M (ﬁ,}?) is an order ideal in H(E,P) ;s
the fzwt that i‘a iz a Principal A@B-madul@ followa from theorem 02 applied to
Mo(E,F)} and from step ). o

STEP 3) 1at (\Zf =. {;: I g€ G} o Then éf is an cx-r:i‘er ideal in e such %Em‘t
Bi; is order Precompact for LG"{( u,G)
= FROOP, If Q:E! oy ;’g‘ denotes the map £imy i\i" then Q fs » mm-»%c::mon@
fiib % homomorphism gnd Q(E?) is a band in §9 {2ee the proof of Jomma 5.1) & hence
5. G) is an order ideal in i\;“/“, Az every g i continuous for 16"}{3?5”,3:'3”, the
assertion foilowé from lemma 5,1, | v

STEP 4) The proof of 1),

Let Ve ( ASa)/‘}L and UEL be such that lU}{lVI,'By camll.wy 3.2,
.u = ‘iu t L EX } 18 o strongly latticial Ciass of operators from X to P* and the
map S \,z.,% 3 (SE€L) 18 a Rieng homomorphism, The map S wg (sewn(n,r)) is.an
isometry of M(E,}) into Kii(ﬁé,b’): henee, it takes K, (.L;,i) into l‘zv( Fle a3 ¥ and

B being order complate, are principal moduies over ‘cm'ﬁr czsmew, steps 2) and

9§

y v o5
) show that HY(E,F*)INL &5 an o der ideal in i;. As ]ul l | we obtain that
S M
Ué?igg(éﬁ,?“}; in particular, Ve (s, r), 1% remm_u‘a to show that actus Wlly, Ue

€ MN.(E,F), %0 tnis purpese, remark that j‘«’i(%},?) Is containes in o principal oy
g ]
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der ideal of F: we may thus assume that ¥ has & quad interior element, Let Lg s

“"L&l SEL, .4 )L.F 7 is a Riesz subspace offf hence a etrongly latticisl

t»‘d(o

¢lass of operators from E to F, As V(f V(F F)f)LO c Ué&h and lUl «1%}, steps

2) and %) imply that Jé:yé(u,F). The rebtr%cticn nap from M(E F)} to M(E,F) being
continuous, it follows that UEHN, (B,F) . ‘

. Two particular-eaa@s.nf theoren $.6 are aspeci&lly important, The first
is provided by the situation when E° has order continuous norms 4,

COROLLARY 5,2, Suppose that E' bas order continucus norm, Then M(E,F)NL
is an ofder’id@al in L for every strongly latticial class L of operators from
E to F. If moreover E is a principal A-module and F is a principal B-médule,

then M(E,F) is a principal A§5Bf¢odulé for H‘ﬂm . '

PROOF, By theorem 1,2 we may take G = B' in theorem 5,6 and observe
that M (B,F) = M(E,F) by theorem 2,1 in [4]. '

The sccond assertion in the albove coxoilary vés announceé (with only a
sketch of proof) in [54]

For the second corollary we use the following notatian from [@]: let
M (E‘ JF) denote the eubspace of M(E',F) consia+ing of those U for which UL Rc
C E; by proposition 4.1, ME(E',F) is 2 Riesz subspace of M(E',F), hence & siron-
gly latticial class, -

COROLLARY 5.3, Suppose that E has order continuous norm; Then Mﬁ(E'gF)(\
NL is an order ideal in 'L fc?'every strongly latticial class L of operators
from B' to F, If moreover F is a principal A-module and F 418 o principal B-modue
- le, then Mﬁ(E',F) is a principal A§§B-ﬁodule for {l NM .

PROOF, As I has order continuous norm, the canonical map takes it onto
an order ideal ¢ in B"p moresver, theorem 1,2 says that Bw, i8 order precompach
far“dﬂ(ﬁ',&) By theorem 3,2, E' is a principal A-module for lﬁw(d ,&). By
theorem 1,3 in.L%], Mﬁ(x’,?) s:MG(E’,F); hence we may apply theorem 5,6 to get
éhe result,

Tt is worithwile to restate a part from the above corollary in the lﬁngu»
age of tensor products ae a permenence theprem for principality. Recall that

the Menorm on E@F is defined by

b3 , : n e :
Rewll e 5‘_3«33?‘—(;{15“ ﬁl‘iﬁ.ﬁﬁf.ﬂ \l’i)‘ig xCR, wLY g W‘Z:K‘;@yq% °
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The completion of EQRF for the Menorm is called the H-tens 0T product of E and

T and iz denoted by EQ@FE; it i8 a Banach lattice whose positive cons is the
4

¢lessure of

9 %; @yi[ nyf, K€E+, yief‘ 1

It is kaown from [@j that the canonical map from FG@F into & (L' oJF) extends to

8 NOYm ﬁnilmr&e?115ﬁmafphisg of E/XMF onto %ﬁ(h',F); gonsequentliy, carollary Bl

gives '
v ;zuonhu e le SUppose that ; hes ovder esntinuoué no¥n, i a principal A

module and F is a primcipal B-module, Then 355%? is a principal Aégﬁamédulc

(the structure of Aé@B—moﬁul@ ig given by {a®@r)(x@y) = ax@by and principality

is considered with respect teo norm topologles).
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