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ABSTRACT

We give a new duality approach (based on the general theory
of [11]) to combinatorial min-max relations, using coupling func-
tions on the cartesian product of the primal and dual constraint
sets. We give some applications to "all-cardinality" min-max
theorems of "covering-packing" type, for which we introduce the

unified framework of "incidence triples", "A~covers' and "B-pack-

~ ings”, the main coupling function being "the nunber of incidences".

0. INTRODUCTIOR

The min-max relations in combinatorial optimization assert

that the minimum of a function on a collection of subsets ef o fi-

nite set is equal to the maximum of another function on g collec=

tion of subsets of another finite set.

: In the present paper we shall give, instead of the known
polyhedral methods (see e.g. [8], [9], (7] [10)) a diffe -nt du=

ality approach to conbinatorial min-max relations, which leaves



both collections of sets unchanged, and uses a'"couplinq“ of them,
with the aid of a "coupling function" defined on their Cartesian
product. This approach is based on [11], where a general theéry of
dual optimiéation problems has been developed, which encompasses,
theoretically, both the continuous and the discrete case. We think
that this method might ultima%ely lead to an answer e.g. to the
following remark, made by Lovasz ([6], p.147), in connection with
some combinatorial min-max-relations: "It is my iﬁpression that

the common nature of these results is not vet completely under-
stood, especially in terms of discrete programming™.

Thus, in the sequel, for each conbinatorial min-max equality,
we shall régard the minimum side as the optimal value of a primal -
(ox, of & dual) minimization problem, and the maximum side as the
optimal value of a dual (respectively, of a érimal) maximization

problem; then, the min-max equality asserts that, for this primal-
‘ ~dual pair of optimization problems, weak (and hence, by finite-
ness of the constraint sets, also strong) duality holds, in the’
general.53nse of [11]. We shall define and study some coupling
functions on the cartesian product of the constraint sets of ‘a pri—
mal-dual pair of optimization problens,fespecially in connection
with Lagrangian duality, in the general sense of [11], and we shall
give applications to various known "all~cafdinality" min-max equa-—
lities of "covering-packing" type (i.e., in which both the prinai
and the dual objective functions are the cardinality function; and
“ the elements of the constraint sets are "coverings" éﬁd "packings",
in some sense). In order to givé a unified.frameworkifof such ap-
plications, we shall intfoduge the concepts of "incidence triple"
(BB, 0): "B-cover' -and "B-packing” (which may also have some The
terest for other applications) and we shall use hypergraphs; in
view of further developments (in subsequenﬁ papers) , ‘we shall de-
fine and study coupling functions on the cartesian product of‘lar-
ger collections than necessary here, namely, coupling functions
¢:2A><2B->R;(~w,+m) (where QM denotés the collection of all subsets

of the set M).



% Ta Sl from the many Laqrangiaﬁ}dual problems (in the sense
of [11)), associated to a primal optimization problem, a dual ob- .
;jeCthO set and a coupling function satisfying the "bounding ine-
qualities", we ohall choose (unlqu@ly) a convenient "simple La-
grangian dual proolcm We shall show that, for any primal-dual -
pair of combinatorial optimization problems, there exists a coupl—
ing function on the carteSLan.product of their constraint sets,
such that the dual problem 001nc1des with the (gimple) Lagrangian
dual problem (whence the min-max equality c01n01des with the
Lagrangian duality equality). Furthermore, we shall show that, if
the min-max equality holds, then, for any coupling function satls—
fying the bounding and "dual bounding" inecqualities, the Lagran-
gian duality equallty also holds; however, the converse is not
true. Also, we shall give some other ielated results.

In §2, we shall define the Pincidence triples” (A B, o),
mentioned above, and three main coupling functions ¢ 12 >< +R
(i=1,2,3) for them.,:Also, we shall deflnA for 1nc1dence triples
(B, B0), thc "A~covers'" and "B—packlngs" mentioned above, and we
shall give some duality results for them, where the primal and
dual objective functions are the cardinality function, and where
the coupling functions are ¢1, @2 and @ These results will show
the usefulness of ¢3 (deflned as "the number of incidences"), on
which we shall concbntrate in the sequel; we shall be especially
1ntercbtcd in the incidences between minimum cardlnallty A-covers
and maximum cardinality B-packings . Finally, we shall give some
examples of incidence triples, using hypergraphs, and some results
on the coupling function ¢ﬁ for them.

In §§3-10, we shall apply this apprcach to varlous known
min-max equalities (Kénig's Hatchlnr and covering theorems for
bipartite graphs, Dilworth's theorem and .its polar for finite
posets, Menger's theorem and Fulkerson's polar to ik, Menger's
theorém—verte: form, and the Lucchesi-Younger theorem, for direc-
ted glaphs)

Some further COHanaLOllal min-max rclatlonp( which have .
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'welgnto, capacities, etc.), will be studied, introducing other

coupling functions, in a subsequent. paper. -Also, it remains an

othcr (prlmal or dual or both) ObJGCthO £unvtnonc (1nvolv1nq

' aim for further study, to obtain suitable general duality theo-

.xems (in the sense of [11]) , which yield various known combinato-

~ rial min-max relations as particular cases and which also lead to.

“new comblnatorlal min-max relations. : : ?

We wish to thank J.-E. Martinez-Legaz for his stimulating

interest in our duality approach to combinatorial min-max results

‘and for valuable remarks, and to I. Tomescu for remark 3.1 to

fmm(mnﬂlwy ) » . ;

21. SOME RELATIONS BETWEEN COMBINATORTAL MIN-MAX EQUALITIES
iAND LAGRANGIAN DUALITY EOUKLITIVS

For simplicity, we shall assune, wathout any spec1al mentlon,

that the sets G and W, occurring in tlic sequel are non-enpty.

" Definition 1.1. Given a finite-set G and a function h:G-R, by

the (combinatorial) minimization problem associated to the pair

(G,h) we shall mean the problem of finding

(P) min h(G), : o (1.1)
iand we shall call optimal @lemﬁnt ofs (B)G any 95 ¢G such that
' h(g/)=min h(G) ; : ; - (.2}

‘the (conolnatorla]) maximization problem associated to (G,h), and

its optimal elements 9 €G are defined 51nularly, replacing min by

max, in (1.1) and (1.2). Any (combinatorial) minimization or maxi-

mization problem is called (cowbnda-GV1al) OOtlmluathﬂ problem

Remark 1.1 o ann concrete ploblems, instead of h: G*R, we often

have h:G+, where McR (e.Gg., M=R Zy Dos (0,10, ete. ). Also,

often G and h have additional’ structurec (e.g., partlal order,
monotony , modularity, etc.). We shall not explicit these facts
here.

Definition 1. ”' Ggiven two finite sets G and W and two func-

tions h: G*R and p: J»R, %&Ll%fY]nO the "ggglity ineggglities"

AR B s |

~
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: h(g) 2p (w) . (geG, wew),  (1.3)

or, equivalently, : _ : :
min h(g)zmax p (W), - (1.4)

by the dual problem to (P) of (1.1), associated to the quadruple

(G,h,W,u) , we shall mean the'maximization problem associated to .
the pair (W}u), that is, the®problem of finding

(@ . mex p); _ . (1.5)
" in this context, we shall call (P) the primal problem. . :

The dual problem to a (combinatorial) meximization problem is
defined similarly, mutatis muEandis; namely, the dual problem to
_ the primal problem : v
@)~ maxh@, -~ e
associated to the quadruple (G,h,W,n) , satisfying (instead of
(1.3)) the "duality inequalities” o

h(g)zu (w) 2 (g€G, wewW), (1.7)
is, by definition, the minimization problem : ‘
(@)  min p(wW. (1.8)

Remark 1.2. a) In particular, the dual te. the dual (1L5),
associated to the quadruple (W,u,G,h) and-again to the duality
inequalities (1.3) (obtained by applying (1.7) to this case) , is
nothing else than the primal problem (P) of @)

'b) If we consider that W and u "depend on" G and h, via
(1.3) 5205 4)5 then. (125) isza”duél problem" to (a0, intthessense
of [11] (see [11], formula (1.4)).

Definition 1.3. Under the assurptions of definition 1.2, the

-(combinatorial) min-max equality corresponding to the quadruple
(G,h W) is; by definition, the equality' '
‘ min h(G)=max W (W) ; : - (1.9)

the (combinatorial) max-min equality corresponding to the quadru-

ple (G,h,W,p) is, by definition, the equality
' max h(G)=min p{W). @)
Remark 1.3. .a) Formula (1.9) may be regarded as the min-nax

equality corresponding to (G,h,w,u), or as the max-min equality

corresponding to (W,u,G,h).

P
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b) For many known min-max equalities, the duality inequalityb

(1.4) is easy to prove (the "hard part" is the opposite inequali-

¢

Let us recall now one of the concepts of Lagrangian dual pro-—

blems, in a slightly more general form than needed here (in view -

of possible applications in subsequent developments).

Definition 1.4.:-Given two (not necessarily finite) sets F,

iX,.a mapping u:F»X, a set Q<X with w(F)NQ#P, a set W, a "coupl-

ing function" ¢:XXW'R, and a function h:F»R, . the
Lagrangian dual problem to the infimization problem 4
ap inf h(y), R ool )
: yeR : 2 i
u(y)eQ

associated to (F,u—1(Q),h,X,W,¢) is, by definition [11], the

problem of finding

Q) sup A(W) , : o @2
where \:W°R is the function defined by , : 5
A (w)=inf{h(y) -6 (u(y) ,w) J+inf ¢ (x,w) (WeW) ; (1.13)
NEF- XES :

the Lagrangian dual problem to a supremization problem is defined

similarly, mutatis mutandis.

. Remark 1.4. a) We allow also infinite-séts in definition
1.4, at the price of replacing min and max by inf and sup, in
order to include e.g. linear programming duality. Actually, in
[11], the function h and ¢ may have values in R=RU{-»,+=}, using
extended additions + and + on R, but we shall not need here that
generality. ' '

b) As has been observed in [11], we have the "duality ine-

qualities" (1.3) with G=u_ (Q), or, equivalently,

inf h(u (Q))zsup A(W). .
In the sequel we shall be concermed with the case when
X=F, u=T . (the identity operator), (=G; : (@ea5)

il this case, (110, (1-43) iand (1:14] become, respectively,
(P) inf h(G), e e (1.16)

(@



o o - b
A (w) =inf {(h(y)=~¢ (v ,w) }+inf ¢ (g,w) < (weW) , 7y
yer geG ‘

inf h(G)zsup A(W). S . (@218)

Remark 1.5. a) Since the elements weW enter in (1.17) only

o

?
i

via the coupling.function ¢, the relatioens e
w1,wzew, ¢(y,w1)=¢(y{w2) : (yeF) (1.19Y
imply A(w1)zk(w2) (even when w1#w2,,which may occur, e.g. for
¢=¢3 of (2.62) below). Hence, as has been cbserved in L1, for
the study of Lagrangian duals (1;17), it is no restrictionsofs the
generality to cansider only sets W of functions w:F»R, and to
replace ¢(y,w) by wly), in (1.17). However, in this paper we shall
also study the dual problems (1:5), for which,a prierl,: the e
lations (1.19) need not imply u(w1)=u(w2). Therefore, ih the

sequel, we shall continue to work with coupling functions d.

b) Formula (1.17) presents the asymmetry that G is embedded
in some set F, while W is coupled with F, with the aid of ¢. Also,
~Glail) ko

problém (1.11), according to the choice of the set F containing

there exist many Lagréngian dual prcblems (1.12),

G, of the functien h{F\G , and of the coupling function ¢:FXW>R.

Now, assuming the inequalities (1.20) below, we shall choose
(uniquely) a convénient Lagrangian dual pfoblem,.associated to
(G,h,W,d), where ¢:GXW>R, as follows.

Definition 1.5. Given two finite sets G,W, a function h:G’R,

and a coupling function ¢:GXWR, satisfying the "hounding ine-

qua lities" :
b (g,w) <h (g) : (g, Wewlly. - o120
ar, eﬁuivélently, ‘
max ¢(g,w)<h(g) (geG) , (21
weW ' ; :

by the simple Lagrangian dual problem to (P) of (1.1), associated

to (G,h,W,9), we shall mean the maximization prcoblem .
(Qg) max A (W), : (@.22) ;

where -

A (w)=min ¢(g,w) (weW) , (1.23)?
geG : -3



that is, briefly, the prcblem
(©

g)  max min ¢lgw). | e .24
5 weW geG : : i
The simple Lagrangian dual problem to a maximization problem

is defined similarly, mutatis mutandis; namely, the simple Lagran-—

gian dual problem to the primal problem

@y mmeblEe oo S sy

where ¢:GXWR satisfies (instead of (1.20)) the "Pounding ine-

gualities" ' .

_ h(g) <6 (g,w) = (g€G, wew),  (1.26)

‘is, by definition, the minimization prcbhlem !

or) mmaeeglaade ©o0 - S )
weW geG : : :

Remark 1.6. a) (QSI) is indeed a.lagrangian dual problem in-

the sense of formula (1.17). For, taking any "abstract element”

yoéG; and_defining-F:G\J{yo}, h(yo):¢(yo,W):O (weW) , we obtain
GcF, h:F»R, $:FXWR and, by (1.20), |

min{h(y)-¢(y,w) }=0 ; “ (wen) , (1.28)
YET :

whence (1.17) reduces to (1.23). Moreover, taking any set FoG and
defining h(y)=¢(y,w)=0 (veF\G, weW), we cbtain again h:F»R, ¢:
. FXWR and (1.28), whence (1.17) reduces to (1.23).

b) For the sequel (see e.g, theorem 1.1)-it will be useful
that in the simple Lagrangian dual prcblem (1.23), (15240 the
of the Lagrangian dual problem (1.17) no longer occurs, and h o
occurs only in (1.20) . However, it may be convenient to use also
the general Lagrangian dual problem (iR 18 i pbssible fnether
theoretical developmernts. :

c) One can also define directly the dual probleﬁ'(1.22)~(1.24),
assuming (1.20) (see'[11}, remark 2.9 f£)), but then it need not be
a Lagrangian dual pxoblem.(ﬁ.17), when (1.28) does not hold.

d) The &imple Lagrangian dual prcblem (1.22), (1.23) is a
'particular case of a dual problem (1.5) (since by (1.20) , we have
(1.3) for ji=A) . with the essential feature that A of (J.23) ds

defined with the aid of G and ¢:GXW»R (and of h:G*R, Vi ({20005




for the dependence of Wand g on G and h, in problem (1.5), see
remork 1.2 b). : ot

e) For ¢:GXW»R, one can make similar observations to those
made in remark 1.1 on h:GR.

Definition 1.6. We shall say that simple Lagrangian duality
for ([B)sof (1.1) is a) synmetric, if the objective function of the

simple Lagrangian dual problem te (1.22), (1.23), associatedito
(W,R,G,¢—), where : : . '
¢ (w,9)=¢(g,w) : (weW, gEG) E99)

(whence the condition corresponding to (1.26) becomes A(w)=

= min ¢(g',w)<(g,w) for all weW, geG, so it is satisfied), coin-
g'eG :

cides with the objective function h of the primal problém (P) of
(1.1), that is, if y |

h(g)=max ¢(g,w) - : (geG) ; (1.30)
weW

b) weakly symmetric, if we have a), with "objective function"

replaced hy Maluely dic.e, 1L

min h(G)=min max ¢(g,w). e
géG weW :

The symretry and weak symmetry of simple Tagrangian duality
for (P') of (1.25) are defined similarly, mutatis mutandis.

EEXEEQENl;Z' a) For some "natural" coupling functions, not:
satisfying condition (1.30) (see exanples 3.3, 5.1, 6.1, ol end
9.1), simple Lagrangian dvality, for (B)of (dal), willibeuweeks=
ly symmetric (e.g., by (1.32) and remark 1.8).

b) One can also interpret formula (1.30) as the coincidence
of the dual problem to (Q) of (1.5).,associated to (W,A;G,h), and
the simple Lagrangian dual problem to the same (Q), associated to
(W,A,G,6 ), where i detinedaby (122900 e

"~ In the sequel, instead of "the simple Lagrangian dual pro-

blem (1.24)" we shall say, for brevity, "the Lagrangian dual

Prdblem (4.24)" s thie wilk lead to no confusion.

!

Definition 1.7. Under the assumptions of definition 15, the

(simple) Lagrangian duality equality associated to (B) et i)




and to (G,h,W,¢) satisfying (1.20) is, by definition, the equality

' min h(G)=max min ¢(g,w). : (1.32)
weW geG

The Lagrangian duality equality associated to (RLYoE . 20)

and to (G,h,W,$) satisfying (1.26) is, by definition,

max h(G)=min max ¢(g,w) . (1.33)
, weW geG L ‘
Remark 1.8. By (1.21), we have :
" min h(G)2min max ¢ (g,w)2max min ¢(g,w). =3y
geG weW weW geG .

Hence, the lagrangian duality equality (1.32) ho}ds if and

only if we have (1.31) ggg"

min max ¢(g,w)=max min ¢ (g,w) . : o (1.35)
geG weW weW geG

Thus, in this case, Lagrangian duality, for (B) - of (i), is
weakly symmetric (seé remark A7 a)).

Theorem 1.1. For any quadruple (G,h,W,n) as in definition

1.2, there exists a coupling function d:GXW>R satisfying (1520),

such that

p(w)=min ¢ (g,w) A (wewW) , (1. 36)
geG

i.e., such that the dual problem (15 coihcides with tbe‘simple

Iagrangian dual problem (1.24) (whence the min-max equality-(1.9)

coincides with the Lagrangian duality equality (1.32)).

Proof. Define the coupling function : e
¢ (g,w)=u (W) (g€G, wen). (e 57)

Then, by (1.3) and (1.37), we have (1.20). Also, clearly, by
(1.37) , we have (1.36). '
Remark 1.9. a) One.can also interpret formula (1.36) as the

Symmetry of Iagrangian duality for problem (@) of (1.5) {sccde-

finition 1.6 a)). _
b) If (1.36) holds, then any proof of the Lagrangian duality

equality (1.32) yields also a proof of the min-max equality (1.9)

(and, conversely, any preat of ((1.9) yields also a proof e (320

c) Similarly, for the coupling function ¢ defined by



olgw=hlg) T (g€G, wew), . (1.38)
we have (1.30). . | |
; In the sequel, we shall see that some coupling functions
$:GX WR, introduced in a natural way, turn out to coincide with 1
(1.37), so theorem 1.1 appliés, while some other coupling func-
tions, different from (1.37)b, will also satisfy (1.36), and thus,
for them, we shall still have the properties mentioned after

(1.36) and in remark 1.9 b). However, some coupling furictions,
.for which (1.9), (1.32) hold, will not satisivw(1.36])  (sce
examples 4.1 and §.1). : o :

For general coupling functions (without assuming that they
satisfy (1'. 36)) ;. let us prove ' | :

Theorem 1.2. Let (G,h,W,u) be a quadruple as in definition

1.2, for vhich the min-max equality (1.9) holds, and let $:GX WR

be a coupling function, satisfying (1.20) and

¢ (g,w) zp (w) : (geG, wew) . (1.39)
a) ‘The lLagrangian duality equality {1.32) holds, whenee also'
max u_(V«J)='m'ax min dlgm)e o o : (1.40)
: weW geG ;
Ab) For any optimal element goeG of the primal problem (1.1),
we have : = :
h(qo):$§§ ¢ (g /v - .' : @adt)

¢). Bor any woe W, the following statements are equivalent:

2 W is an optimal element of the dual problem (1.5).

2o Wy is an optimal element of the Lagrangian dual problem
(1:224) and :

) (wo) =min §{g,w,). : : (1.42)
. e :

d) For any (go,wo)éGXW , the following statements are equi-

1°. g . i an optimal element of (1.70) and W is an optimal

clement of <(1.5)-



2o 9 is an optimal element of (1.1), wO' is an optimal ele~ :

ment of the Lagrangian dual problem (1.24), and

u(wb)=¢(qo,wo).
3°. We have

Preof. a)=By (1.206)., (1239) and (1.9) . we have

min h(G) 2max min ¢(g,w)zmax p(W)=min h(G),

weW geG :
‘whence the equalities (1.3'2) and (1.40).

b) By (1.2} ; (1.32) and (120}, we have

h(go) =min h(G)=max min ¢(g,w)smax ¢(go,w)§h(g

, weW. geG WeW
whence (1.41).

1

c) By( (1:40) and ((1.39), For-any woeW we have
max u(Y‘})ZHé.X min ¢(g,w)zmin é(g,w ).Zu(wo) -

weW geG geG -

whence the equivalence 1°«»2° follows.

d) By (1.9 for any (go,wO)GGX_W we have

h(go)Zmin h(G)=max u (W)Zu(wo) 7

(1.43)
(1.44)

(1.45)

whence the equivalence 1°«3°; moreover, by (1.4), we see that

(1.44) even :Lm,piies the min-max equal’it,y

(e

3° — 2°. Assume 3°. Then, by 3° =»1° and c) above, e is.an

oPtimal clement ef= (224 hilise, A_by (1.20), (1.39) and (1.44), we

have
h(g )26 (g W) 2k (W) =h(g )
. whence (1.43).

2% 2. I 28 holds, when, by (1.43) , our assumption on W

and (1.40), we have

max u(W)Zu(wo)zcb (gO,W')ijm ¢ (g,w )=max min ¢ (g,w) =max W (W),

@] geG

whence

I (wo) =max M (W) .

, A (w) :mih ¢ (g,w)z2u (w)
geG

weW geG

(weW) .

(1.46)
Remark 1.10. a) By (1:23), condition (%.39) is equivalent to

(1.47)



Note also that the inequalities (1.39) are nothing else than
the "bounding inequalities" (in the sense (1.26)) for the maxi- °
mization problem (1.5) and the coupling function ¢ :WXG*R of
o) '

b) By the bounding inequalities (1.20), condition (1.39)
means that we can insert'¢(g,w) between the terms of the duality
e melilics 1 5), e ' ‘

' hig)2glg,wizptw) (G€G, weW);  (1.48)
or, alternatively, we see that (1.20) and (1.39) imply the duality.
‘inequalities (1.3). ' v

c) By (1-39) we have :

¢ (g,w)zmin ¢ (g',w) zu(w) ((g,w)eGXW); (1.49)

g'eG
hence, (1.43) holds if and only if we’have (1:42) and
d)(qo,wo)=min $(g,w)) . Ths (1.50)
geG

d) The inequality (1.40) shows tﬁat, under the assumptidns
of ' theorem 1.2, the dual preblem (1.5) is “eguivalentt, insthe
dense of [11], to the Lagrangian dual problem (1.24), and that,
again (as in the case of theorem 1.1), .the min-max equality (1.9)
coincides with the Lagrangian duality equality (1.32).

e) The cenverse of theerem 1.2 a) is not valid, i€y the
Lagrangian duality equality (1.32) need not imply the min-max
equality (1.9), as shown by example 3.5 below. Further examples,
related to the other parts of Cheorem 1.2, will be given in §§3-10.

f) The above results ndght’suggest new min-max equalities for
problems (1.1) for which no min-max equality is Jenown. Indaed, the

nature of (G,h) might suggest a choice of a set W, for which cne

can find a "naturally defined" coupling function ¢:GXW-R satisfy-
ing (1.20); then, the Lagrangian duality equalacy (1.32)5 6 &8 Erue,
would be a min-max equality (1.9). Although, even for "natural" ¢’S,
(1.32) need not hold (see e.g. the remarks before example 3.5), this

method might be useful in scme cases (see e.g. remark 10.1).



2. I FRAMEWORK FOR ALL-CARDINALTTY COVERING-PACKING DUALITY
RESULTS

For simplicity, dn the sequel we ha]] as s;umo, without any
special mention, that the sets A and B are non—empty. When this
will lead to no confusion, we shall write m instead of {m}.

Definition 2.1. a) Iet A and B be two (non-empty) finite sets

and let p<AXB be a binary relation, which we shall call incidence
;_c;u,_l_a_x_‘c__iﬂqz}. We shall say that aeh and ‘beB are _jlr_l_c;_jiignw‘g ,OF,S ENaE A
covers b, and we shall write
_ apb, ‘ 2 (2.1)
if (a,b)ep. We shall denote (A>\ B)\p, i.e., non- mcldencc, by -

b) We shall extend p to 7 X? by saying that y€2 and wc?
are incident, in in symbols,

VoW, , : i it (2.2)
if ‘there exist aey anid bew such that apb. If V€ ZA and
we2B' are 1ot incident, we shall writc VoW, ' :

¢} Dy ‘triplie (A,B,p) as abovg, will be called an }g:idence

Definition 2. 2. -For cm 1n01aorwco triple (A, B,p), we define

the coupling functions ¢.:2 ><2 SR =] 2 ) e pfctwely, by
PAE w)—\{acy;apw}! (y62 s weo - 123
¢, (v ,w) =] (bew|ycb}| (ye2A, wéZB) o)
Qﬁ(y,w jellila b"\//<w‘aﬁb}1 (yGZA, WGZB) =21 5)

where |M| denotes the cardinality of the (finite) set M.

Remark 2.1 1. a) In other words, ¢1 (y,w) is the nuber of ele-
ments a of y, which are incident with the set w. (and, a similar
remark holds for @2(y W) ), while q>3(y,w) is the "nunber of\ ineis
: dﬂnf‘fw” between the sets y and w. We use the notation ye2 instead
of gé?, in view of possible subsequent applications of e ).

b) With the notations

o(y)={beB|ypbl}= \_J{beBlagh} (_YGZA) ‘ (2.6)
acy = _
B
0 1(w) = Lao\‘apw} A\ _J{aen|apb} (we2) , (2.7)
bew
we have

’.1 ALJL



<j) (v ,w) }p wNy| . (yE'ZA, w632B) ¢ 12.8) -

¢ by ) =[p(y) N vl : (yet, wez )l 12.9)
il pa3:tic:11l_<,u, <;>,‘ ( y,@): (y€:2A) and q)2<¢ ,x;j)=0 (Wc-?.B) >

c) If we define the "incidence function" c:AXB>R, by

1 if apb a
c(ab)= ebiblhas 0 ‘ - (2.10)

then-@?) (y,0)=0 (yez- ) > ¢3 (@,w) :0 (WGZB) and

bytyl= ] ] clab) (¢#yez"*=,¢%wazB)l (2.11)
acy bew

From these formulas it follom; that ¢3 2 X2 +R 1c "bimodular”
(i.e., modular in each variable) and that, embedding 2 ,2 into
RIAI‘/\{R’B} in the usual way (i.e., identif fying each e with its

incidence vector in Kl ‘”) , d‘ can be extended cum)'ucally teial bi=

linear coupling function T< >/ RlBi
d) We have s
b, (v, DN =45 (v, 1) - (ge?, beBY, - (2.12)
b, (Lal,w)=0, ({a) w) 4 (aen, we2’).  (2.13)
Défj'fij,'i-fi_011w2.3. Let (A,B,p) be an incidence triple.
a) We shall say that gEZ} is an A-cover (for B), if
(beB) , 0l

i.e.,if gob (beB); or,«with the notation ’(2‘,6), if plg)=B. We
chall denote

G=the collection of aill Z\ COvVers g. , (2;]5)
b) We shall say that sz a B-packing (for B}, if :
| {bew|apb}| <1 (ach), (2.16)

dio@e, df for each agh there exists at most one béw uch'v that .apb.
Je shall denote

W=the collection of all B-packings w. : 200

Rcwur}y_.._ 12 el Tnon der to ensure that G#@, ie o e exice
&

is sufficient (and necessary, since every

tence CJ. A-COVErs, i

set containing an A-cover is an A-cover) to make the assunption

that A 'ic an A-cover, i.e.,- :
[p (b) |=|{aealapbl}|21 N T (beB), (2.18)

or, in other words, Agb (beB); or, with the notation (2.6), p(A)=B.
v G i ! :

o



b) B-packings always exist, i.e.. W), since e.g. the ampty

set ¢ and all singletons {b}, where beB, are B*packings,lkmmzwar;

in order to study the duality equalities (2.25) and (2.34} helow,

it will be convenient (see remark 2.5 b))'Ep make the assumption

|p(a) |=]| {beBlapb}|z1 (a€h) , (2:49)
i.e., apB (aep), or, with the notation (D% pw1(B)=A; in other
words, A should have no "isolated" elements (i.e., which are not
incident with any bé¢B).

Note also that (2.19) is symmetric to (2.18), and -hence it
ensures the existence of B—covérs-ﬁor the "polar" incidence rela—.
" tion p°gBXA defined by '

(b,a)€p® <= (a,b)ep. , = U
c) One can associate to A,B and p as above, a bipartite

"incidence graph" (AUB,p), with the edges defined by

(a,b)ep & adb; : L (2.21)
for the case of example 2.2 below, such incidence graphs are de-
fined e.g. in [1). However, note that the Afcovers'grespectively,
B-packings) involve only subsets of A (respectively, B), so the
are completely different from the vertex covers (respectively,
matchings) of the graph (AUB,p).

Proposition 2.1. We have

lglzlwl © (geG, WeEW). (2:22)

a mapping f:w»g by choosing, for each bew, an a=f (b)eg such that
apb. Then, since w is a B-packing, for any b1,b26w with b,i;/«b2 we
-have f.(b1

tradict (2.16)), so f is a one-to-one mapping of w into g, which

)#f(bz) (since otherwise apb1, aob2 and bq#bz.would con~

proves (2.22). :
Proposition 2.1 shows that for G,W of (2.05) - (2. 17)a0d For
h(g)=|g| s dgee), (2.23)
i (w) = | w) : (wew) , =
we have the duality inequalities (1.3}, (€.4). Bowever, the min-

-max equality



min|qg|=max|w]| ; : {2.05)
geG weW ;

need not hold (see e.g. the remarks before example 3.5).

Iet us give now sone r%latidns between the coupling functions

@i of (2.3)-1(2.5) and the sets 6,W of (2.15), (2.17).
Proposition 2.2. We have .
¢1(y,w):¢3(y,w)‘ : (y€2A, wewi, (2.26)
by (gm=ly] o (geG, we2d).  (2.27)
Proof. By (2.3) 62 ), 2 16) ands (2.5)., we otain
¢1(y,w)=[{aey|apw}|=]{aeylfibew, apbl}|=

=|{(a,b)ey)(wlapb}‘=¢3(y,w) (yeZA, wewW) .
Binally, by (2:4)., (2:15) and (2,04} we get
b, (g,w) )=| {bew|gpb}|=|w]| (geG, we2d) .

In the sequel, it will bL nmore convenient to use ¢3

Proposition 2.3. a) y62 is an A~cover (i.e., yeG) if and

only if
gl b=t : (beB) . (2.28)
b) we2f3 is a B{E;ckinq (i.e., weW) if and only if ;
9, ({a},w) <1 : (aeh) . _ (2.29)
Proof. a) By (2.12), (2.3) and (2.14), we have yeG if and
only if e :
¢4y, bh =g, (y,{b}) =|{aey|apb}|21 (beB) .
b) By (2.13), (2.4) and (2.16), we have weW if and only if
¢3({a},w):®2 ({a},w)= {bfwlapb}\<1 (sen):
Remark 2.3. If Bz{b1 b, } then, defining u: 5 >Z by
u(y)=(¢3(y,{b1}),..» ,d>3(y,{bm})) (y€2 Vs (2.30)
we can also write (2.28) in the form :
uly)ze = (1,00 ,1) (€2)) e (2.28")
Similarly, if ArLa1 ...,an} then, deflnlng u' 2 ‘Z : by
b= (y3 {a Yolt) .,,¢3({an},w . (WEZ = (2319
we can write (“.29) in the form

u’ (w)se = (1 e T ey, (2.29")

o
Then, (2.25) becomes
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min_|yl= max |w]. (2.25")
el we2l :

e e 1 L~

u(y)mcm u (y):Ln

‘ Since the operators u, u"of (2.30) (2.31) are "mosular!
(0 is each component function) and since the functions

hiy)=|y| . (ye2), (2.23%)
, b () = |w] (we2®) , (2.241)
" are nodular (and even u(#)=0, u' (®)=0, h(@)=0, 1(@)=0), this sug-

gests to construct directly a theory of "modular progranming"

(instead of the usual linear programming approach to linear ob-
jective combinatorial.optiﬁdzation problemns) .
Corollary 2.1. We have
95 (v w) ) <yl . (y={a1,...,a1}62 - weW) 232
¢3(g w)z|w (geG, w={b1,. }C2 (2.33)
Egggge By (2005005 ¢3 0 =0 (2.29) and (2 28), we obtain

o5 (ym)= ) ol ({a; },w) sg= 1Y|

£
L ¢
_ i=1
-

d5lg)= ] ¢ (q,{bj})2p=lW|-

=
Corollary 2.1 shows that for (G,h,W,1) and $:¢3 of (15
(2.23), (2.17), (2.24) and (2.5), we have the bounding inequalities
(1.20) and (1.39). However, the Lagrangian duality equality ‘

Im_nlgl =pax min cj)3 (g,w) = (2.34)
geG weW geG - o :
need not hold (see e.g. the remarks before example 3.5).

Theorem 2.1. If the min-max equality (2.25) holds for G and

W of (2.15) and (2.17), then so does the Lagrangian dvality equa-

lity (2.34), and for any minimum cardinality A-cover g and any

maximum cardinality B- p'lc‘ﬂnq o the number of incidences between -

g and w_ is
¢] G

¢y golwé):|90|:iwot-
Proof. This follows from theorem 1.2 a), d), applied to the

quadruple (G,h,W,u) of (Zelb)o 12,23}, (2. 1712 24) ; and 1o ¢:¢3
O 255)x :

(2.35)



Theorem 2.2. If the min-mex equality (2;25) holds, then for

'wny pair (g ,w)) as in theorem 2.1, we _have

hbew lapb}|=1 . - laeg) - (2.36)
|Haeg, 1aob}l~ : (bew,) » (2.37)
ice., eagh agg, 1is s incident with exactly one bcw and for each

bewb there exists exactly one aew such that a and b are incident.

Proof. For any optimal go={a1,...,aq}GG and any optimal w_eW
we have, by (2.11) and (2.35), :

)¢3<{a },w> =9, (9w ) =l9,)=a

vhence, by (2.29), we obtain :
L6y ({a.},w =1 7 Gl el

Hence, for each a, 59 there exists b, SEV such that aipbi '
"and this b.l is unique (by (2.16)), which proves (2.36). Further-
more, by (2.14), for each béwo there exists aiégo such that b:bi,
and thus f:a,>b, maps g  onto w,. Hence, since igd|:lwol (by
(2,35)) f ig ocne-to-one, which yields (2. 3D
_ Remark 2.4. a) One can also give the foJlOWLug procf of
(2,m£7) above which does not use formulas: By (2.25), for any
optimal pair (g_.W JeGXW we have {g *;=!wolT Now, since g £G, each

0 - sandesinee WOGW, distinct

O

bewo is covered by at least one a=
b's are covered by distinct a=a, 's, so we need at least }wb$ dig-
tinct elerents aeg_ to cover all bew,. But, since |g {=‘wb}, all
' elements aeg are used up in this process, and each. dcg usedv
; exactly once, which completes tbL proof.
: b) Theorem 2.2 implies again.the second part of thborem Dielie
“herproro Tnskhe partlcu]dl cases which we shall consider in the:
sequel, we shall Firstgive theorcm 2.2 and then wcntnon, as a .
consequence, formula (2.35). : ;

Corollary 2.2. Assume that the min-max equaliﬁy (2.25). holds.

Then

a) Given any minimun cardinality A-cover g «{g], ,.,d ¥ for

each a, €9, one can select b eB wLLu U.fb in such a way th@t

woz{_b1 ,..,bq} is a maﬁlgﬂw CJYdl])LWLV Ljp“ cking.




(»

b) Given any maximm cardinality B-packing w =={b1 e, ,bq} -

for each b, (6w one can select a, €A with a, po , in such a way that

g .= {d1 e e {} is a minimun car dmah ty A-cover.

Prcof. a) By finiteness, there exists a maximum cardinality
B-packing W and then theorem 2.2 apglloq.

b) The p]”O’)f is 51m1] aly choo&nq any minimum cardinality

- A-cover g .
5 _ ‘JO

In the Sf’sque]_, we 'shall also use ‘
Remark 2.5. a) We can ensure that G#¢, i.e., that (2.18) holds,
replacing the set B, if necessary, by its subset :
B'={beB|F ach, apb)={beB|Acb}, - (2.28)

‘which catisfies (2.18) (with B replaced by B').

b) For the study of the equalities (2:25) and (2. 24F 4F 15

convenient, and it is no restriction of the génerality, to assume

(2.19), replacing the set A, if necessary, by its subset
~At={aeh| T beB, apb}z{aEAlapB}, - - (2:,39)
which satisfies (2.19) (with A replaced by A'). Indeed, if g €G is

an A-cover containing an element a €A\A', tben g \a is an A-cover,

SO 9, is not a minimum cardinality m-—covor (thus, the elements of
A\A' cannot b"]ong to any minimum cardinality A-cover) ; for, if
aoeA\A‘ , then thex;e is no b €B such that qopbo, and hence we have
gopb (beR) if and only if (g \a )ob (beB). Furthermore, weW is a
B-packing for A if and only 1f ;Lt is a B-packing for A'. Blso,
clearly, ¢)3(ao,b):0 (aoe'A\A S heB), whence. \,u3(g,w) -—13(g\ao,w)
(geG, weW, fl\.\A ) :
Let us give now a simple example of an :an1donce relation.
Example 2.1. Let M be a finite set. If A,BcCM, we define the
incidence of any a€A and beB by -
A apb & a=b. : o (2.40)
Then, thcndmg o-to 2 >\2 by definition 2 b) for any
ye€ 2 and wE2‘ we obtain "
VoW &= yﬂw#@ ' (2.41)
The incidence relation (2.41) can b_e used to build the two

main examples which we shall use in the sequel, as follows.



: (¢3(° D) )aC\ beB

: dnd only if

'ﬂ-o 2.2 et be : a finite set and let A=M and B, Then,

' (B,B) is & set sy Juﬂn; with "ground set" M, in the sense of [1];

if, in addition,

e | (beB) (2.42)

\Jb=n, ' 1)
beB ik S

then (A,B) 'is called {3} a hypergraph, with vertices aéA and edges

' +béB. One can use (2.41) to define the incidence 01_". any aeA and
- beB by -

apb & ar\bﬂ & aeby ke : _ (2.44)

this is nothing else. than the usual incidence rel ation (and hence

is the usuxﬁl "incidence matrix") for set systems’

[1] and h vpergraphs [3} Then, by definition 2.1 b), for any yé2A

“and vc/ we obtain

VoW <> H(a,b)éy}(w{aeb}lZT; : (2.45)
aleny conditions (2.18), (2 19) mean nothing else than (2.42) and

(2.43).. - Furthermore, gCZ Hean Z‘wco\r >y, in the sense (2.14), if

g Db ey (2.46)

i.e., if and only if g is a transversal [3] of the hypergraph (A,B) .
¥ S : Z : o
Also, we2 is ' a L-* acking, in the sense _(2.16) . ifF and . eonly if

oy A b.“—t@ : (b, ,chw bi#bj) (2.47)
i.e.. if and only if W is a m@ tching [3] of the hypergraph (A,B);
or; in other words, the co,le {ion w of subsets of M is a packing

into M, jn‘tl'xe. vsual sense de.g. [21) . In this case; the inequali~ -

ty (2.22) is known (see e.g. [3], p.424, theorem 5).

Remark 2.6. For every incidence triple (1,B,0), g}i:_g@_fv_}rg

(2.18), (2.19), there exist a hypergraph (A,B) as in example 2.2,

and a mapping oD of B into B (not necessarily one-to-one) cmuch

e ~ ~
that, for any b,b'eB with bsb', we have

aph' &= aeb. : } : - (2.48).
Indeed, it is enough to take .

Bipm1 (b) ={ach|apb} : (DEB)y. - (2.49)

B={b|peBl, o .



since then (2.48) is cbvious; and (2.18), (2.19) yield (2.42) and’

(2.43) (with b, B replaced by b and ﬁ-respectiﬁely).

Theorem 2.3. Under the assumptions of example 2.2, if A=MeB

(inparticular, if -every superset bl of each set b€B belongs to B),

then

[y|=max g, (y,w) _ (ve2) . (2.51)
wew - =

Proof. By our assumptibn, {A}eW; also, for any~y62A we have,
.clearly, , :
_ 95 (v, BN =]yl . = © (2.52)
which, together with (2.32), proves (2.51).

Remark 2.7. From remark 2.5 it follows that, under the assump-

tions of example 2.2, we can achieve (2.42), (2.43), replacing the

set system (A,B) by the hypergraph (A',B'), wihere

A'=\_Jb, B'=B\{. : ' (2.53)
eB: i :

Example 2.3. Let M be a finite set and let aAc2? and B=M.

Then,. (B,A) is a set system, and, if

atP : ‘ S ii(aeh), (2.54)
\_Ja=B; : : (2.55)
a€cn it

then (B,A) is a hypergraph, with edges a€A and vertices beB..One
can use (2.41) to define the incidence of any aeA and beB by

apb &> anb#p «<=.bea, : (2..56)
i.e., by the usual incidence of the edge a and the vertex b in the
hypergraph (B,A); this p is, essentially, the "polaf” of (2.44),
in the sense (2.20). Conditions (2.18), (2.19) méan now (2.55) and
(2;54). Furthermore, géZA is an A-cover, in the sensé (2.44), it
and enly if

EaE - e (2.57)
a€g .

i.é., if and only if g is a covering of the_hypergraph (B,A), in
the sense of ‘[3]), p.420 (the term "edge cover" might be more ap—
propriate) ; dr, inAbther words, the colloction g of subsets of M
ié,a gpverigg of M, in the usual sénse. Also, wEZB is a B-packing,

in the sense (2.16), if and only if



]

'”H!w/\a[$1 , }v_,_,, 7 _”(aEA)}. ,»MMH(Q;SB)

li.e., if and only if w is a strongly stable set in the hypergraph’

'(B,A), in the sense of [3], p.448 (one might also use the term
2"independent set", or "coclique"). In this case, the inequality
{(2.22) is known (see e.g. [3], p449, theorem 1).

Remark 2.8. In the survey paper [2], the "set packing pro-
blem" and the "set covering prcoblem" are formulated in terms of
20~ matrices; and then it is cbserved that, since every 0-1 ma-
trix which has no zerd rows or zero columms is the incidence ma-
trix.of scme\hypergraph, these problems can be also formulated
in terms of hypergraphs. However, our approach, via ecoupling func-

tions for incidence triples, is different.

Theorem 2.4. Under the assumptions of example 2.3, if for
each beB=M we have {b}EA_(in'particular, e (2.54); 1(2.55) hold
and every non-empty subset a' of each set a€A belongs to A), then

Jwl=min o (g - (e ) (2.59)
geG e -

Proof. By our assumption, g1;{{b}[beB}GG; also, clearly, for

ény w€2B we have
d5 (g ) =lwl, - . (2.60)
which, together with (2.33), proves (2.59). :

Remark 2.9. From remark 2.5 it follows that, under the as~

sumptions of example 2.3, we can achieve (2.54), (2.55), replacing

the set system (B,A) by the hypergraph (B',A'), where

B'=\_Ja, A'=A\p. : . (2.61)

In the frameworks of examples 2.2 and 2.3, we have :

b5y =] {(ap)eyXwlanbig)| (ve2®, we2), (2.62)
where anb#) means aeb for example 2.2 and béa for example 2.3,
SO ¢3 is the usual incidence'function for the hypeéraph (A,B)
(respectively, (B,A)).

In both-cases, one can also define a new coupling function
$,:2°X 2R, by

6, w)=| (anblaey, bew, anbid) | (ye2l, weaty:  (2.63)

in other words, ¢4(y,w) is the "number of non-empty intersections"

o

!



between y and w. By (2.62) and (2 63) , we have s
(3 ) 26,4 (7 40) (ve?, we?®), (2.64)
where strict inequality may also occur (since several different
ir_ltersecting pairs {(a,b) may have the samé intersection’anb).
: Iet us observe now that, in the case of example 2.2, we have
b,y =dylyw (ve2®, wew). - (2.65)
.Indeed, if (a1 ,b1), (a ,bz)éAXW satisty ;
a1f\b1 =a, Nnb #Q), '
" then, in the case of example 2 i a,= a2€b1f\b2 S contradiction
witth: (2-47).
: However, in the case of emmle 2.2, (2:65) need not hold,
>even for yeG and weW (m example 4.1, with y=E, w*{v }, we have
¢3(y Wil = ¢4 (y,w)).
In §§3-10, we shall study min-max equalltles of the form
(2;'25) , for various sets G and W, sO h and p will be the functions
(2.23), (2.24). We shall consider only certain pairs (G W)y FOr

which we shall be able to choose an incidence erple (A,B,p) such
that G and W are the sets (2.15) (ox"almost” (2.15) , esgeiim (8 1))
and (2.17). We shall also study the Lagrangian duality equality
(2.34) , with ¢>= $3 of (2.5)=(2.62), and.some related prcblems.

3. MATCHINGS AND VERTEX COVERS IN BIPARTITE GRAPHS

Throughout the sequel, for 'sjznplicity,' by a "graph" we shall'_f
mean, without any special mention, a finite simple g:caph, iel
(see e.q. [3], p.5), having no lcops and 1o multiplé' ‘edges, and

Cwe. shall consider only graphf without lsolatea vert,lces

let us recall (see e.g. [9], theorem 2)

"Konig's matching theoremn'". In a bipartite qv )h J W=V B,

the masciman cardmﬂliy of a matching (i.e., of a set of pairwise

disjoint edges) is equal to the minimum cardinality of a vertex

cover- (i.e., of a set of vertices intersecting all od*rgs)

We can write this theorem in the form, (2.25) , by cheosing

G=the collection of all vertex covers g, (3.1)

W=the collection of all matchings w. : 32

n/

(-H'( T
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Now, let 05 4 -
A=V (=M) , B=E\DC2' ’ ; C

ﬂ(where we identify each edge with the set of its two endpoints),
~and let p be the usual incidence of vertices and edges in graphs,

 defined, for any v(=a)eV and e(=b)eE, by (2.44) of example 2.2;

note that conditions (2.42) and (2.43) are now satisfied. Then,

the A-covers are nothinqielse than the vertex covers of &, and

the B-packings coincide with the matchings of &; hence, the sets

G of (2.15) and (3.1) are the same, and so are the sets W of

(2.17),.13.2) ; end the results of §2 apply.

Thus, since the min-max equality (2.25) is now Konig's match-
ing theorem, from theorems 3.1, 3.2, and corollary 3.1, we ob-
tain the following results, for a bipartite graph 9:

Theorem 3.1. We have (2.34) (so Kénig's matching theorem

coincides with the Lagrangian duality ecquality (1.32), with ¢=¢3),

and, for any minimum cardinality vertex cover 95 and any maximumn

cardinality matching W1 each vertex ved belongs to exactly one

edge eew , and each edge eew contains exactly one vertex veqg ;
— ) = o) = : o)

_ hence, the number of incidences between g ggg_wo ig H220)

Corollary 3:1. a) Given any minimum cardinality vertex cover

= cac 2 ne can select an edge e.éE, con-
95 {v1,...,vq}, for each v €9, one can select & je e ¢k,

tadning W, 10 suchia way that wO:{eq,...,eq}‘is a maximum cardi- .
ol Y

nality matching.

b) Given any maximm cardinality matching wb={e1,...,eq},

from each ‘edge e EW one can select a vertex Vi gg_ei, in such a

way that qo:{v1’°"’vq} is a minimum cardinality vertex cover.
fﬁﬁﬁﬁﬁ;§;ﬂ: Corollary 3.1 b) is known; for an algorithmic
proof, see e.g. [121, pp.279-280.
Moreover, there holds now

Theorem 3.2. For G and @3 9§_(3.1), (2ﬂ5),-E§LE§y§

] 5 S g

|w|=min ¢ (g,w) (we27) . (3.4)
3 : :
geG
1t E ity
pProof. For any w:{e1:(vi,v%),...,ep=(vé,vp)}62 , define
1 1" [

gw—V\{V',] s ams ,Vp}} : - el , v . (3. -))



note that socme of the vl! 's (and some of the v'j"ss) may coincide,
but we write w in the above form, for the computation of (])3 (qw,w) .

“Then, gw(jei—*—{vjf_}#@ (121 ,.swup) ond, clesrly, gwne;fQ) for.all

@EE\wW, SO gweG. Purthermore, Vir\w:{vf}%‘@ (i=1,...,p) and vnw=P

-1 L i " 1]
(Végw\{v1 e oV =v\{v JrVreee ,vp,vp;) whence

99, W) =p=|w|, | (3.6)
w}ucn, Logethor with (2. 33) , proves (3. 4)

Finally, let us give now some coanter—-exan ples related to

the preceding results

Formula (2.26) need not hold for we2 \W, as shown by
Example 3.1. Let V‘={v1'} ; V"={V',1',V"}, E:{e1=(v1‘ ,V'1') .

%

ezﬁ( 1',\7” )}. Then for y=g=V'eG and w=E€2 \W, we have ¢1 (v ,w)

=] {vey|vowl|=1<2=|{(v,e cy}(wlvoe}l—¢3 Y i)

Under the assumptions of theorem 1.2, the converse of the

statement in theorem 1.2 b) is not valid, as shown by

Example 3.2. Let V'={v1'}, V”S{V‘,"}, E={e =(V1' ,'v")}, and le;t
$={V'UV",E}. Then, for g =V'UV"eG we ave 6. 509 ,e1 :2=lgol,
whence (1.41) (since ‘,-Jz{{cw},@}) , but 9g 35 not a minimum
cardinality vertex cover.

Formila (1.41) need not hold for all gOéG, .as shown by -

Example 3.3. For % of example 3.1, and gOZV"GG, we have :
¢5 (go,ej)=¢3(go,e2)=1<2=§gol oo (1.41): is not satisfied (Since
w={{e,}.{e,} .8} . ‘ __

Formula (1.50) need not hold for all (q AN )<G><W such that

: g is an optimal element of (1.1), as shown by :

Example 3.4. Let V'={v 1,v2 'V”={v" ,~v"} ; E:{ef(v{ ,V',") 1 €5
£ S S pall 1 e =P
—(v1 V5) s eg= (\2,\/ )}, and’ let 9={V'UV",E}. Then; g =iv, ,v1}cG

is a minimum cardinality vertex cover, but for v;ro:{e1 1eW we have

2=¢ ( i ) >min b, (g,w )=1. (attained, e.g., for g=V'€G).
3 9€G 3 ¢ .

In the sequel, we shall not mention examples corresponding to
examples 3.1, 3.2 and 3.4 (with the exception of example 4.2),
but we shall give some, which corres pond to example 3.3 (see

examples 5.1, 6.1, 7.1 and Q).



“min|g|=2>1=max

e

It is well-known that for non-bipartite graphs the min-max

‘equality (2.25) need not hold (e.qg., for the triangle K., we have

5

geG WEW

iEien ¢3 of (2.5). The Lagrangian duality equality (2.34) need

not hold either, for this case, aé shown again by the triangle

K3 (since max min ¢ (g}w)=1). Moreover, even when the Lagrangian
' weW geG

duality equality (2.34) holds true, the min-max equality (2.25)

- need not hold, and hence (3.4) need not hold even for maximum

cardinality matchings weW, as shown by

Example 3.5. LetA@=K4, the complete graph on four vertices.

~Then for any maximum cardinality matching weW we have |w|=2<3=

=min ¢, (g,w)=min i
g€G geG

‘Remark 3.2. For maximum cardinality matchings in arbitrary
(not necessarily bipartite). graphs, the known max-min equalities

(see e.g. [5], Ch.6, theorem 7.1 and [9}, theorem 11) are not

"all-cardinality" equalities (namely, (3.1) and (2.23) do not

hold); these max-min equalities suggest to use another coupling

function ¢:GXW»R, which we shall give elsewhere.

4. EDGE COVERS AND COCLIQUES IN BIPARTITE GRAPHS

Lek us recall (see &ug. [9], core.llary 2 a)

"Kénig's covering theorem". In a bipartite graph 9=(V=V'UV' E),

the minimum cardinality of an edge cover (i.e., of a set of edges

covering all vertices) is equal to the maximum cardinality of a

coclique (i.e., of a set of pairwise non—-adjacent vertices).

We can write this theorem in the form (2.25), by choosing

G=the collection of all edge covers d, (4.1)

W=the collection of all cocliques w. (4.2)
Now, let —

a2, B=V(=) (4.3)

(where we identify each edge with the set of its two endpoints) ,

and let p be the incidence defined, for each e(=a)eV and v(=b)eV,

w|), but one can still consider the coupling func-

P}A
frod



by (2.56) of example 2.3; note that conditions (2.54) and (2.55)

are now satisfied. Then, the A-covers are nothirig else than the

-edge covers of ¥, and the B-packings coincide with the cocliques

:gﬁlﬁ. Thus, since the min-max equality (2.25) is now Kdnig's cov-
. ering theorem, from theorems 2.1, 2.2, and corollary 2.1 we ob- ;
itain the following results,. for a bipartite graph 9 E

Theorem 4.1. We have (2.34) (so Kénig's covering theorem

'coincidas with the Lagrangian duality theorem (1.32), with ¢=¢3),

and for any minimum cardinality edge cover 9% and any maximum

cardinality coclicue W each edge eeg contains exactly one verkex

’vewb, and each vertex V(w belends to exackly one edae eeg 0 hence,

the nunber of incidences botveen 9. and w is is (2.35).

Corollary 4.1. a) Given any minimum cardinality edge cover

g ={e.,...,e_}, from each edge e.,eg_one can select a vertex v,
0 1 q = - R i,

of e in such a way that wo={v1,...,vq} is a maximum cardinality
coclique. ‘

b) Given any maximum cardlrallty coclique w ~{V1,...,V b for

cach V., ewo one can select an edge eicE, containing Vi in such a

vay that 9. —{n A ,eq1 is a minimum cardinality edge cover.
In cont ‘dot with the situation of §3 (see example 3.3),
there holds now

Theorem 4.2. For W and ¢3 of (4.2), (2.5), we have

|y |=max ¢ (v ¥) BE2 Jo (4.4)
weW
E
- P e l " L u . i
Proof. For any y {01 (v1,V'1)(...,eq (Vq,vq)}CZ , define
wy={v',...,vé}; , (4.5)
note that some of the v s (and some of the v;'C) may coincide,

but we write y and wy in the above form, for the Computdtlon of

¢3W\v).imm,sumev&gV‘,wehm@\%ﬁG.Fmimxmne,ynvfui#-

20 (d=1, v ,9) , Whenge

b3ty )2a=lyl . (4.6)

-which, together with (2.32), proves (4.4)...
A rosult corresponding to theorem 3 2 need not hold, even for

weEW, as bhOwn by s e =0

Y\



|
Example 4.1. For J of example 3.1, G is a 81ngleLon namely,i

the only edge cover of & is gO:E. Hence, for the coclique w—{v }e;.
eW we have |

|w[:1<2=¢3(_o,w) =min ¢, (g,w); . / (4.7)_f
geG

fnbvorthOless, equality holds for the coclique w —{v1,v”}, and, in
iacz, for any "optimal pair" (go,mo) (by theorem 4 1) |

Exanple 4.1 and remark 1.10 ¢) suggest the question, whether
- formula (1.50) holds for all (go,wb)éG)iw such that Iy is optimal
“for problem (1.1), where G and W are those of (4.1) and (4 2):,
:respﬂctlvely. The answer is negative, as shown by
‘ Example 4.2. Let V‘={v1,v2}, V"—{vq,v "} E= {e = %,vg),
€= (V] ivh), eg=(vi,v3), ep=(v),vi), ec= (v, g)}, and let.3=
=(V'UV",E). Then, for the minimum cardinality edge covers o
:{e2,e4,c-} and g':{e2,e3,e4} and the coclique W?{V’ 5}€W we
have ¢ (g I w)=3>2= m3( LW

For non-bipartite graphu, the equality (4.4) need not hold,
even for minimum cardlnallty edge covers véEG, as shown by

cardlnality edge cover U£G is a matchlng, and hence max ¢3(g,w):1<
weW

<2=|g| (since W={{v1},...,{v4},®}). Note also that, in this exam-
ple, we have (1.35), but not (1.31) , (2.34) , (2.25).

5. CHAIN COVERS AND ANTTCHAINS IN POSETS
Let us recall (see e.g. [9], theorem 7)

"Dilworth's theorem". In a finite poset P, the minimum cardi-

nality of a chain cover of P {(i.e., of a set of chains covering all

elements of P) is equal to the maximum cardinality of an antichain

(i.e., of a set of pairwise incomparable elements).

In the usuwal formulation of this theorem (see e.g. [1], theo-
rem 8.14), the words "chain cover" are replaced by "partition of
P inko chadns' (i.e., disjoint chain-cover) . buk il is eacyto ceo

that the two formulations are equivalent.



We can write the above theorem in the form (2.25), by choosing

G=the collection of all chain covers g, (550

W=the collection of all antichains w. : (522)
Now, let | ‘ |

AINGC 2D, B=P(=1), ' (5.3)

‘where L denotes the collection of all chains £ in P, and let p be
the incidence defined, for each %(=a)éL and p(=b)eP, by (2.56) of
example 2.3; note that conditions (2.54) and (2.55) are now satis-—

fied. Then, the A-covers are nothing else than the chain covers of

jP, and the B-packings are precisely the antichains of P. Thus,

since tﬁe_min*max equality (2.25) is now Dilworth's theorem, from
theorems 2.1, 2.2 and corollary 2.1 we obtain the following re-
sults, fer a finite poset P: '

Theorem 5.1. We have (2.34) (so Dilworth's theorem coincides

‘'with the Iagrangian duality equality (1.32), with'¢:¢3), and for

any minimum cardinality chain cover 9 and any maximum cardinality

antichain W each chain Zégo contains exactly one PEVI and each

pewb belongs to exactly one chain Qego; hence, the number of inci-

dences betwcon-go and e dig 20 3b).

Corollary 5.1. a) Given any minimum cardinality chain cover

go={21,...,£q}, from each chain Ziego one can select an element

€%., in such a way that w ={p. ,...;p ) ds a necumun cardinal ity
a5 il - O '] "vq )

antichain.

b) Given any maximum cardinality antichain wo={p1,...,pq},

a way that g ={%.,...,2 } is a minimun cardinality chain cover.
S ey

Furthermore, from theorem 2.4 we obtain

Theorem 5.2. For G and ¢3 of (5.1}, (2.5}, we have

wl=min ¢, (g,w) (we2b). - (5.4)
geG :

A result corresponding to theorem 4.2 need not hold, even

for yeG, as shown by

Example 5.1. Let P:{p1,p2}, with p1>p2. Then, for y=g'=
={{p1},{p2}}66 we have ¢3(g‘,{pT})=¢3(g',{Q?})=1<2:ig'l, so (1-41)



. is not satisfied (since W:{{p1}}{p2},®}). ‘ .' -

: 6. ANTICHAIN COVERS AND CHAINS IN POSETS

ILet us recall (see e.g. [9], theorem 8) the following

"Polar" to Dilworth's theorem. In a finite poset P, the maxi-

mum cardinality of a chain is equal to the minimum cardinality of

- an antichain cover (i.e., of a set of antichains covering all ele-

;ments of Bj

: This result is '"polar", to Dilworth's theorem of §5, in the
sense (see [9], p.456) that interchanging “"chains! and "antichains"

. carries one to the other. .

' We can write the above theorem in the form (2.25),.by choos-

Ehbnte

G=the collection of all antichaiﬁ covers g, 601

W=L (=the collection of all chains w). e (6.2)
Now, let .

A=T\¢ czp, B=P (=M) , : ; 2 (6.3)

where T denotes the collection of all antichains y in P, and let p
be the incidence defined, for each y(=a)eTl and p(=b)eB, by (2.56)
of example 2.3; note that conditions {2.54) and (2.55) diresnow

satisfied. Then, the A-covers are nothing else than the antichain

covers of P, and the B-packings are precisely the chains of P.
Thus, since the min-max equality (2.25) is now the above “polar!
result to Dilworth's theorem, from theorems 2.1; 2.2 and corollary

2.1 we obtain the following results, for a finite poset P:

Theorem 6.1. We have (2:34) (so the zbove "polar' ke Dil-

worth's theorem coincides with the Lagrangian duality equality

(1.32), with ¢=0

3), and for any minimum cerdinality antichain cov-

er g, and -any maximm cardinality chain w_, each antichain feg. -

O
contains exactly one PEW and each péwo‘belonqs to exactly one

antichain Y€, hence, the mumber of incidences between 9o and W

ds i (2.35)

Corpllar; 6.1.48) Given any minimum cardinality antichain

cover goz{y1,...yq}, from each antichain y,€g  one can select an



‘element P.€Y,, in such a way that wo={p1)...,pq} is a maximum car-

dinality chain.

b) Given any maximum cardinality chain wo={p1,...,pq}, fer

each piEwb ne can select an antichain inT, containing Py 1 in such

a way that'gO:{YT,...,yq} is a minimum cardinality antichain cover.

comparable elements of P; If one also requires these clementsito
be arranged in increasing order, then in corollary 6.1 a) one
should replace "wb:{p1,...,pq}"'by "some permutation w_ of
B '
b) Corollary 6.1 b) is known and it admits a simple direct

¢

proof, which is also the usual proof of the above "polar" to Dil- -
worth's theorem (see e.g. [1], proof of proposition 8.15); namely,
it is enough to take ' : :
./i={peP|d(p)=i} 2 " el a6 4)

where d(p) denotes the length of the largest chain in P, with
(u@par) endpoint p.

Purthermore, from theorem 2.4 we obtain

Theorem 6.2. For G and ¢3_9£ (6.1) 212 5)we have

(g,w) - (we2

|w|=min ¢ . (6.5)
geG

A result corresponding to theorem 4.2 need not hold, even

3

for'yEG, as showm by

£§§g£19~§;1: I@t,P={p1,p2}, with p{ and P, incomparable. Then,
for y:g'={{p1},{p2}}eG we have ¢, (g’ ,{p1})=¢3(9'/.{,1;>'2})=1<2=1<J' |/
so (1.41) is not satisfied (since Wz{{pi},{pz},@}).
7 fgﬁngISJOINT r—-s~PATH PACKINGS AND r—s—SEPARATING ARC SETS
IN DIRECTED GRAPHS ‘

Let us recall (see e.g. [1], theorem 8.1)

"Menqerfs theorem” . LetéD:(V;U) be a directed graph, and let

r#seV. Then the maximum nudber of pairwise arc—disjoint r=s-paths

(i.e., directed paths from r to s) .is equal to the minimum Celachis

nality of an r-s-separating arc set (i.e., of a set of arcs such




R

| 3 eI S e . : 2 o 1 Rk i o e R Ao i

that after its removal from §, there remzins no asi el )

In another formulation of this theorem (see;[9], theorem 4),
the words "r—-s-separating arc set" are replaced by "r-s-cut" (i.e.,
a set § (V'), with V'eV, r¢v', seV', where & (V') denotes the set
fof all arcs entering V'), but the two formulations are equivalenﬁ;
jindeed;'éach r-s-cut is r-s-separating, and each r-s-separating
arc set centains an f—S*cut.(see cag. 5], pal2lys
: We can sacite the above! theorem in the form {2.25) , by chooshn;

G=the collection of all r-s-separating are sets g, ' (7.1)

W=the. collection of all sets w of pairwise arc-disjoint
r-s—paths. : (7.2)

An r-s-path in & is any sequence ﬂz(voér,u1,v1,u2,...,vn_1,

D s ot 3

W v =g awhere sy eV (=0, ... ,n)y u.2v. el =1, .0 n) Seend

n o i il

nz1, and we shall identify it with the sequence of arcs m=

=0 s ) Wek vepaldisthat canur—s=pathin=0 .. 20 ) diseaiel te
1 n 1 n

be sinmle (see eig. [3J, B8 1f g f for all i#j. It is well-

}_l

~known that each r-s-path 7 contains a himplg r=s—path (inEtact),

any shortest r-s-subpath of m, i.e., having the least number of
arcs , is simple). Using this fact, let us observe

Lemma 7.1. In Menger's theorem one can replace r-s-paths by

simple r-s-paths.

wise disjoint r—s- pathQ. Thon each ﬁj contains a simple r=s-path

13, whence w'={n! ,.;.,ﬂ'} is a maximum cardinality set of pairwise

1
disjoint simple 1—“~n1fh3. On the other hand, an arc set g discon-
nects all r-s-paths (i.e., g€G) if and only if g disconnects all
simple r-s-paths (since each r~s-path contains a simple r-s-path).
Thus, replacing r—-s—paths by simple r—s"péths does not alter the
max and min in Menger's theorem, which completes the proof.

. Dlﬂw<mmml,w>JmlLamwdm’@ﬂvsamherﬂﬁmﬁm.L&f

-\ /n =) il B—*m e : ' @)

: {n( S)
where H(r,s) denotes the set of all simple r-s-paths ﬁ:(u1,...,un)

in & (these A and B are cbtained by applying remark 2.7 to U and
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I(r,s)c27), and let p be the incidence defined, for each u(=a)e

e\.____Jmand n(=b)€ll(x,s), by (2.44) of example 2.2. Then, (2.42)

- el (r,s)

and (2.43) are satisfied, and the A-covers are nothing else than

the r-s—separating arc sets in &, while the B~packings coincide

with the sets of pairwise arc-disjoint simple r—s-paths in &. Thus,

since the min-max equality (2.25) is now Menger's theorem, from
theorems 2.1, 2.2, and.corollary 2.1 we obtain the following re-
sults for a directed graph &= (V, U) and for r¥seV:

Theorem 7.1. We have (2.34) (so Menger's theorem coincides

with the Iagrangian duélity equality (1.32), with ¢=63), and for

any minimum cardinality r-s-separating arc set 95 and any maximun

cardinality set W, of pairwise arc-disjoint sir mple r-s-paths, each

£ slongs to exactly one r-s-path mew , and each r-s-path
are ue - belongs t tly path L d eacl patk

ﬂewo contains exactly one arc uego; hence, the number of incidences

between g and w NSk (2e350

Corollary 7.1. a) Given any minimum cardinality r-s-separating

are Ség go~i01,...,u i for each 0o cg one can select a simple r-s-

=path W.Gﬂ(r,S), containing u, in such a way that w ~{J1,...,ﬂq1

is a maximum cardinality set of arc- @'sjo1n+ sinple r=s=pathis.

b) Given any maximum cardinality set w ={w,,...,n_} of arc-
o { q =
-disjoint simple r-s-paths, from each mEw, one ca elect an arc

uj,,in such a way that gO:{uT,‘.L,uU} is a minimum cardinality r—s—
B 25

=Separating ang set,

Moreover, there holds now

Theorem 7.2. For G and ¢3 of (7.5} (2.5), we have
|w|=min ¢, (g,w) er TG
geG :
H(ilo?g For any w= {n 11,...,u1’31),...,1rp (uPT""'up,jp)}é,
e2 ne deflng =
_U\{u ,..,,u1,j1, u22”"(u2,j2""'upz""’up,jp}; (7.5)

note that some of the arcs u,, may coincide, but we write w in the

Jr
above form, for the computation of ¢ (g“,w), Then, gwf\ﬂi={ui1}#®

(H=10. o @) and, clearly, g, f\w/w (mell(x,s)\w), so gwa. Further—



more, {ui1}f\w:{uj1}#¢ (L 1,...,p and {u}r\w @ ucg \{u 1,0

21 Joeoe
f"’upT}):U\meﬁﬁwg»mw//uik)’ whence '
U, e,V .U
alga P
by (g, w)=p=|w], | | . 7.9

which, together with (2.33), Jproves (7.4). ;

A result corresponding to theorem 4.2 need not hold, even for

v€G, as shown by

> P
Example 7.1. Let V‘{L,v ,VZ,VB,S}, U= {rvq,v1v2, v,V 3,V?S far s}

5 Chiz “_-)'y S
and let $=(V,U). Then 9g [ a,v s}€G, but for .= (v v Vv ,v,u),

- St 2 17 e
ﬂ2~(A Vi Vgrvas )Cn(r,g) e have ¢, go;{w1} —¢3 O,{HZ})-1<Z:]gOI,

SO (1.41) is not satisfied (since W={{W1},{ﬂ2},®}).

8. r-s-PATHS AND r-s-SEPARATING ARC SET PACKINGS IN DIRECTED
GRAPHS

Iet us recall (see [4], p.311)

}mUmNWWSWwﬂmﬂtmﬁmmaﬁstMmmm.gmé}4VJ)bea

directed graph and let r#seV. Then the minimum nunber of arcs in

an r-s-path is ecqual to the maximum cardinality of a set of pair-

wise disjoint r-s-separating arc sets.

Again, there is another equivalenﬁ formulation (see [9],
corollary 5 a), in which the words ”r—s—soparating arc sets" are
repleced by r=c-cuts’ § (V') (see §7, the remark after Menger's
theorem) . , ,

e can write the above theorem in the form (2.25); by choosnxj

G=Il(r,s) (=the collection of all simple r-s-paths g), (8.1)

W=the collection of ‘all sets w of palrw1 se disjoint
r-s—-separating arc sets : S (8.2)

indeed, an r-s-path with a minimum number of arcs is necessarily
simple. Now, let

B=U(=M) , B=)(r,s)} c2°, e
where E(r,s) denotes the collection of all r-s—separating arc sets
0, and let p be the incidence defined, for each u(=a)eU and o(=b)e

c?(r,o), by (2.44) of example 2.2; note that conditions (2.42) and

(2.43) are now satisfied. Then, the B-packings are nothimgelse



B |

than the sets of pairwise d15301nt r-s—separating arc sets, so the

sets W of (2.17) and. (8.2) .are the same. However, the A-covers are

now the sots g' of arcs such that ieach r-s—separating arc set o con-

tains at least one arc uég', so the set G' of all A~-covers does not

coincide with the set G of (§.1). Therefore, let us prove

Lenma 8.1. Each r-s-path g is an A-cover, and each A-cover gt

contains an r-s-path. Hence, the minimun cardinality A-covers are

nothing else than the minimum cardwnilLty simple ‘r-s wpaths

EEQQi The first statement is obv1ous, since, by definition,
each r-s-path g intersects each r-s=separating arc-set o. .

Assume now that g' is an A-cover. Then, g' contains at least
one arc, belonging to some r-s-path, of the r-s-separating set
6+(r):{£31,...,f$c} (the set of all arcs-leaving r). If g'06+(r)=

—

——p s =
:{rvi XV, reee IV, }, then g' contains at least one arc, belonging

1 2 k
to some r-s-path, of the r-s-separating set
e e IR N - (8.4)
i iy

and hence at least one arc, belonging to some r-s-path, of

+ . 2 S :
§ ({vi eV }); thus, g' contains at least one path from r, con-
1 k

sisting of two arcs and contained in some 1~<~path' Considering all
arcs leaving the "positive" endpoints of all two-arc paths from e
contained in ¢g' and in some r-s-path, and continuing in this way,
we obtain an r-s-path g, contained in g' '

Pinadiby, af gé is a minimum cardinality A-cover, Lhﬁ it con-—

tains an r-s-path g, which, in turn, contains a simple r-s-path Iy’

then, since I is an A-cover, it follows that‘gérgosa simple r-s-
-path.

Since the min-max equality (2.25) is now Fulkerson's Ieliar!
to Menger's theorem, from lemma 8.1, theorems 2.1, 212, and corol-
lary 2.1, we obtain the follownng results, for a directed graph 9=

=04,1) and. for wisel:

Theorem 8.1. We have (2.34) (so Fulkerson's polar to Menger's

theorem coincides with the Lagrangian dual ity equal.ity (1.32), with




ity reasrssend

¢=¢3) and for any r-s-path o with a minimum nunber of arcs and

any maximum cardinality set W of pairwise disjoint r-s-separating

arc sets, each axc ueg belongs to exactly one r—-s-separating arc

set Gewo, and each O(Wb contains exactiy one ueg ; hence, the num-:

ber of incidences between 95 and W 18 (Zeb).

Corollaxy 8.1. a) Given any rws—path g =(u1,...,uq) with a
minimun nunber of arcs, for each u, Cg ore can: seleel M s=sepa-

rating arc set 0y containing U in such a way that W ={g 1,..,,0 }

is a maximum cardinality set of pairwise disjoint r—e—soparatlng

arc sggﬁ.

b) Given any maximum cardinality set w —{01,...,0 } of @F paire

wise disjoint r-s-separating arc sets, from each O.GWb one can

select an arc u in such a way that some permutation 9s of

{uW,...,uq} is ah«E=s=path with a minimum number of ares.
Remark 8.1. One can also give the following direct proof of

coroliary'8.1 a) (and hence of Fulkersgon's polar to Menger's theo-

ﬁﬁ):j L,ui"v Vs (i=1,..;,q), YEére vorr,.vq=s. Choose 01=6T(r)e
g)(x,s); then uc€o,. Let § (r)={rv, pee e XV b Ity 0
o o 1y 5 Ty

then rs is an r-s-path with a minimum riunber of arcs, so |g0§:q=1,

and we are deneshithiw =lg-}). I ¢V, ;... v, }, choose
: o} 1 i i

%({v. ,...,v.})é?(r,s); then o. Mo =0 and u
11 lk 2 1 2

to the set of all "positive" on6901ntc of the arcs of ¢

=& e T c:
05=0 2602. If s belongs

o7 then

]g’{:q:Z, and we -are done (w1th'wb:{01,0 }). If not, then, continu-

2
ing in this way, we arrive, finally, at a set w —{01,...,0 } of

pairwvise SjOlnt r-s-separating arc sets, with u, Co (L~1,...,q);

then ;. since gw =g ¥, is of mahlnmnlcaxdlnalxty (oy theorem

O i
12 d), implication 3° =2 1%) .

A result corresponding to theorem 7.2 need not hold, even
for weW, and-even using r-s=cuts instead of r-s-separating sets
(since r-s—cuts ave: "smallexr"), as shown by

- ey

5 1VZ,V s}, and let &=

205&E r,s) (and o=6 (V'), where V':{v1,u;LV,

Example 8.1. Let V~L1,v1,v salalls 11v1,v

=(V,U). Then o:{1v1,v



$0 0 is an r-s-cut), whence wﬁ{o}éw and G is the SLngloton consis-
ting of their-s-paith o= (1v1,v1 o1 2 ) but ¢ g,w)=2>1=

However, since Uel(r,s), from theorem 2.3 we obtain

Theorem 8.2. For W and ¢3'9§ (8.2) - 12.5) s werhave

|y |=max §5(y W) ; (ye2U). (8.5)
WeW : ;

If we use r-s—cuts instead of r~s—ueerat1ng sets, then theo-
rem 8.2 need not remain valid, even for yeG, as shown by
Example 8.2, Let V={r v,s}, U:{u1=rs,u2=fv,u

=(V,U). Then ytg'=(u2,u

3=.vs}, and let 9=
4)€G, but for 01={u1,u2}=6“({v,s}), g
={u1,u3}=6-({s}), which are the only r-s-cuts in &, we have o0.ng.=

12
={u1}%¢ (hence {01,02}¢W) and

',{01})=¢3(g',{62}):1<2~

9, INIERNALLY VERTEX-DISJOINT r-s-PATH PACK AND r—s-—SEPARATING
VERTEY SETS IN DIRECTED GRAP!S

Let us recall (see e.g. [9], cérollaxy 4 a) or [1], theorem
3.2)

"Menger's theorem-vertex form". Let $=(V,U) be a directed

graph, and let r#sev, rséU‘ Then the maxiimum nunber of pairwise

intemally vertex-disjoint (i.e:, baving in commn only the verti-

ces roand s r~s~paths is. equal to the minimum cardinality of an

r-s-separating vertex set (4.e2, of a set of vertices in YNtz st

intersecting all r-s-paths).

We can write.this thoerem in the form (2.25)., by cheesing
G:the collection of all r-s-separating vertex sets g, (9.1)

W=the collection of all sets w of pairwise internally
Vertex—dis joint r—s-paths. ; (9.2)

In this section it will be convenient to identify each r-s-—

=

s) with the sequence of ver-—

-path 7= (v _=r Nl e v
IR S s el Y
tices n=(v /... ,v,_,)eV\r,s}; similarly to §7, we may restrict

ourselves to considér only elementary r-s-paths m, i.e. ([3], p.8)

such that vi#vj for all vi,vjeﬂ, i<y (including i=0 and j=n).

Now, let

o0



BN /nieMye VN, s}, B=1f (r,5) c 2B, (9.3).
e veE ‘
mell (r,s)
where T (r,s) denotes the set of all elementary r-s—-paths ﬂ—(VT,..
..,,Vhrq) in '@, andidet p be the incidence defined, for each v(=a)e
gl e s end ﬂ(=b)€H€(r,s), by (2.44) of exanples? J2 Gilhen;
nell®(r,s)

(2.42) and (2.43) are satisfied, and the A-covers are nothing else

than the r-s-separating vertex sets, while the B-packings coincide

with the sets of pairwise JnternaJWV vertex-disjoint elementary

r-s-paths. Thus, since the min-max equality (2.25) is now Merger's
theorem-vertex form, from theorems 2.1, 2.2 and corollary 2.1, one
obtains vertex forms of theorem 7.1 and corollary 7.1, which we

omit. Also, corresponding to theorem 7.2, we have now

& (e s)

|w|=min ¢3(g,w) . (we2 Voo (9.4)

géG

with a similar proof (replacing arcs by vertices). Finally, corre-
sponding to example 7.1, we can give now ‘

_»gmqﬂc 9, 1. Let &= (V1) be as iﬂ example 7.1. Then I

€G, but for M= (v 1,v2),

={ 7,,\/*,J
M= (v 1,V3)»J “(r,s) we have ¢3 O,{u1} =

(go,{ﬂz} =« 7:}goi, SOl Al)eids ot ook e (since w={{w1},
(m,3.81).

We omit the similar treatment of the extension to the case
when r, s are replaced by dlSJOlﬂ‘ subsets R and S of V, and the
sets of pairwise (internally) vertex-disjoint r-s- pgtho are re-
placed by sets of pairwise vertex-disjoint R~S—paths, i.e., paths
starting in R and ending in S (related to [1], proposition 8.3 or
9], p.-454). Also, we omit the similar treatment of wndirected
graphs J=(V,E) (related to [1], theorem 8.4 and propositions 8;5,
8.6). '

10. DIRECTED CUT COVERINGS AND PACKINGS IN DIRECTED GRAPHS
Let us recall (see e.g. [9], theorem 18) the

"Lucchesi~-Younger theorem". Let 4=(V,U) be a directed graph.

Then the minimum cardimality of a directed cut covering is equal

to the maximum cardinality of a set of pairwise disjoint directed

>0
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We recall that, by definition, a directed cut is a set of

arcs of the form Sﬁ(v‘), where @#V'#V and 6+(V'):@, and a directed

cut covering is a set U' of arcs intersecting all directed cuts.

We can write the above theorem in the form (2.25), by choos-

.G=the collection of all dlrected cut ccverlngs g, (et

W=the collection of all sets w of pairwise ,
disjoint directed cuts. (10.2)

Now, let ' '

A=\_/c(=M) c U, B=C\¢ c2® , g (10.3)
CEC

‘where C denotes the collection of all directed cuts c=5—(V'), and

let p be the incidence defined, for each u(=a)e\ Jc and e(=b)ec,
CEC

by (2.44) of example 2. 2 Then, (2.42) and (2.43) are satisfied,

and the A-covers coincide with the directed cut coverings, while

the B-packings are the sets of pairwise disjoint directed euts.

Thus, since the min-max equality (2.25) is now the Lucchesi~Younger
theorem, from theorems 2.l 2.2 and corcollary 2.1 we obtain the
following results for a directed graph 3=(V,U):

Theorem 10.1. We have (2.34) (so the Lucchesi-Younger theorem

coincides with the Lagrangian duality equa ey .32, with ¢= ¢3

and . for anv minimum cardinality dJ”PCt“d cut covering g and any

maximum cardinality set W of pairwise disjoint ulrected cuts,

edch arc qu belongs to exactly one directed cut cewb and each

directed cut cewb contains exactly one arc ueg i henco the number

of incidences between g and wb A8 (235,

Corollary 10.1. a). Given any minimum cardinalitv directed

cut ceovering o= Uy /e ..,u I, for each u, cg one can select a direc

ted cut c, CC containing u ; 1n such a way thgt Wb {c1,...,cq} is

a maximum CdldLﬂllltY set of rairwise disjoint directed cuts.

. b) Given any maximum cardinality set wo={c1,...,c rof i

arc u, , in such a way that go

MLQP disjoint d]lOCLtJ GUts), fromicach o rwb one can Lo]e(t an

il s o R cardinality
S q

L)
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} Moreover, there holds now ' . l‘
Theorem 10.2. For G and ¢, of (10 T 3) , we have }

i

: [w}=min ¢,(g,w) : (weZ o (10.4)
g€G , » !

Preof, e proof is similar to that of theorem 7.2, replacing

v, éH(r,o) Dy c.€C. :
A result corre sponding to theorem 4.2 need not hold, even

for yeG, as shown by '

Exanple 10.1. Let Vv, Vs Vy } U= {v }, and let
s 2 Vi3
N= 1 The - = ) ;
O?MS-V,\]). Then 9.2 UFG, but for c1 (v Vo ? } ({j} CC, c, {\/1x2,1
' _v1v3}:6 ({v,, 3})GC we have ¢, {c N=¢, c} =%3=|g l "
A1) s not satisfied (since V«Luc },Lc },(73} :

Remark 10.1. It has been L’)TlJL(,i ured b‘t Rdmonds and Giles

(see e.9. |9}, p.476) that the "polar" min-max equality to the

Lucchesi-Younger theorem holds, i.e., that in any directed graph,

the miniram cardimality of a directed cut is equal o the maximnunm -

nunber of pairwise disjoint directed cut coverings. Let us note

that if the Lagrangian duality equality (2.34) could be shown,
then it would he itself a valid min-max equality (1.9} (thoughy,

a priori, not an all-cardinality min-max equality (2.28)) ;cand ik
would lend a sut);x*)rt to the above conjecture (2.25) (see theorem :
1-.2 a)), choosing G and W in the-cbvious vay, A=U, B=the set of all
directed cut covers (CZU)’ , and 'provjﬁq an analog of lemma 8.1.

One can treat similarly other equ alities (2.?5) e.g. Edmonds'

disjoint branching theorein (see e.g. [9], theorem 17), Schrijver's

thecrem on strong connectors (see e.d. [9], theozem 2408 setc.
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