INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

A NOTE ON THE CLASSES (BCP) $_{\theta}$

by

Bebe PRUNARU

PREPRINT SERIES IN MATHEMATICS

No.48/1986

BUCURESTI Med 23751

A NOTE ON THE CLASSES (BCP)

by

Bebe PRUNARU*)

: September 1986

^{*)} Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

B. Prunaru

1.

Let $\mathcal H$ be a separable, infinite dimensional, complex Hilbert space and let $\mathcal L(\mathcal H)$ denote the algebra of all bounded, linear operators on $\mathcal H$.

The purpose of this note is to give a new proof of the fact that $(BCP)_{\mathbb{C}}^{C}(A_{\mathcal{H}_{0}})$ for all $0\leq \mathbb{C}(1)$ (see below the terminology). Our proof (see Theorem 1) does not involve the more sophisticated techniques of ([1], Chapter VIII) and it uses systematically the minimal coisometric dilation of a given contraction.

The notation and terminology employed herein agree with that in [1]. Nevertheless, we begin by reviewing some useful definitions from the theory of dual algebras.

If $T\in L(\mathcal{H})$, then $\sigma_e(T)$ denotes the essential (Calkin) spectrum of T. It is well-known that $L(\mathcal{H})$ is the dual space of the Banach space (7C) of trace-class operators on \mathcal{H} equipped with the trace-norm. The duality is implemented by the bilinear form

$$\langle T, L \rangle = tr(TL), \qquad T \in \mathcal{L}(\mathcal{H}), \qquad L \in (\mathcal{H})$$

A subalgebra $\mathcal A$ of $\mathcal L(\mathcal H)$ that contains $1_{\mathcal H}$ and is closed in the weak-* topology on $\mathcal L(\mathcal H)$ is called a dual algebra. It follows from general principles (cf. [3]) that if $\mathcal A$ is a dual algebra, then $\mathcal A$ can be identified with the dual space of $\mathcal Q_{\mathcal A}=(\mathcal C)/\mathcal A_{\mathcal A}$, where $\mathcal A$ denotes the preannihilator of $\mathcal A$ in ($\mathcal C$), under the pairing

(T,[I])=tr(TL), TEA, [L]E QA

It is also easy to see (cf[3]) that the weak* topology that accrues to $\mathbb A$ by virtue of being the dual space of $\Omega_{\mathbb A}$ is identical with the relative weak* topology that $\mathbb A$ inherits as a subspace of $\mathbb L(\mathbb H)$.

If x and y are vectors from \mathcal{H} , then the rank-one operator $x \otimes y$, defined as usual by $(x \otimes y)(z) = (z,y)x$, $z \in \mathcal{H}$, belongs to $(\columnt{\columntum{$\mathbb{Z}$}} c)$ and satisfies $tr(x \otimes y) = (x,y)$. Thus, if $\columnt{\columntum{$\mathbb{Z}$}} c)$ is a dual algebra, then $[x \otimes y] \in \mathcal{Q}_{\columnt{\columntum{\mathbb{Z}}}}$.

Let $A \in \mathcal{L}$ (H) be a dual algebra and let n be any cardinal number such that $1 \le n \le \mathcal{R}_e$. Then A is said to have property (A_n) provided every n x n system of simultaneous equations of the form

$$[L_{ij}] = [x_i \otimes y_j]$$
, $0 \le i, j \le n$

(where $\{[L_{ij}]\}$ are arbitrary but fixed elements from $\mathbb{Q}_{\mathcal{A}}$) has a solution $\{x_i\}_{0\leq i\leq n'}$ $\{y_i\}_{0\leq i\leq n'}$ consisting of a pair of sequences of vectors from \mathcal{H} .

The following definitions, introduced in [1], involve properties that dual algebras may have that are related to the properties (A_n) .

Suppose $\mathcal{A}(\mathcal{L}(\mathcal{H}))$ is a dual algebra and θ is a nonnegative real number. Then $\mathcal{X}_{\theta}(\mathcal{A})$ denotes the set of all [L] in $\Omega_{\mathcal{A}}$ such that there exist sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ in \mathcal{H} satisfying the following conditions:

$$\begin{array}{c} \text{d)} \ \lim_{i} \sup (\|[\mathbf{x}_{i} \ \mathbf{x} \ \mathbf{y}_{i}] - [\mathbf{L}]\|) \leq \theta \\ \\ \text{(3)} \|\mathbf{x}_{i}\| \leq 1, \|\mathbf{y}_{i}\| \leq 1, \ 1 \leq i < \infty \end{array}$$

and

Suppose now that $0 \le 0 \le \sqrt{2}$. Then a dual algebra () is said to have property $X_0 = \sqrt{2}$ if the closed absolutely convex hull of

the set $\mathcal{X}_{\mathcal{C}}(A)$ contains the closed ball B_0 , of radius \mathcal{Y} centered at the origin in Ω_{A} . It was proved (see [1], Theorem 3.7) that if $A \subset L(\mathcal{U})$ is a dual algebra that have property X_0 , for some $0 \leq G < \mathcal{Y}$, then A has property $(A_{\mathcal{W}})$.

Let $\mathbb D$ be the open unit disc in $\mathbb C$ and let $\mathbb T=\mathfrak d$ $\mathbb D$.

A set Λ CD is said to be dominating for $\mathbb T$ if almost every point of $\mathbb T$ is a nontangential limit of a sequence of points from Λ .

The spaces $\operatorname{H}^p=\operatorname{H}^p(\mathbb{T})$, $1{\leq}p{\leq}{\varnothing}$ are the usual function spaces.

If $\mathrm{Tel}(\mathbb{H})$ is an absolutely continuous contraction, we denote by \mathbb{A}_{T} the dual algebra generated by T in $\mathbb{L}(\mathbb{H})$ and we write $\Omega_{\mathrm{T}}=\Omega_{\mathbb{A}_{\mathrm{T}}}$.

For such T, the Sz.-Nagy-Foiaş functional calculus $\mathcal{O}_{\mathbb{T}}$ is a weak continuous, norm decreasing algebra homomorphism of \mathbb{H}^∞ into $\mathcal{L}(\mathcal{H})$ (cf [4]). The class $\mathbb{A}=\mathbb{A}(\mathcal{H})$ is defined to be the set of all absolutely continuous contractions $\mathbb{T}\in\mathcal{L}(\mathcal{H})$, for which $\mathcal{O}_{\mathbb{T}}$ is an isometry. If $\mathbb{T}\in\mathbb{A}$, then one knows (cf [3]) that $\mathcal{O}_{\mathbb{T}}$ is a weak homeomorphis between \mathbb{H}^∞ and $\mathbb{A}_{\mathbb{T}}$.

If TEA and $\lambda\in\mathbb{D}$, then there exists an element $\mathbb{C}(\lambda)\in\mathbb{Q}_T$ such that

$$\langle f(T), [C\lambda] \rangle = f(\lambda), f \in H^{\infty}.$$

For any cardinal number n satisfying lénéte, the class \mathbb{A}_n consists of all those T in A for which the dual algebra \mathbb{A}_T has property (\mathbb{A}_n) .

We close this introductory section by defining an important class of operators, introduced in [2]. If T is any contraction in $\mathcal{L}(\mathcal{H})$ and $\mathcal{M}\in\mathbb{D}$, let us write $\mathcal{T}_{\mathcal{M}}$ for the Möbius transform

$$T_{\mu} = (T - \mu I) (I - \overline{\mu} T)^{-1}$$

Then for each $0 \le 0 \le 1$, the class (BCP) is defined to consist of all completely nonunitary contractions T in $\mathcal{L}(\mathcal{H})$ for which the set

$$\{\mu \in \mathbb{D}: \inf_{\Theta} ((T_{\mu}^* T_{\mu})^{1/2}) \leq \theta \text{ or } \inf_{\Theta} ((T_{\mu} T_{\mu}^*)^{1/2}) \leq \Theta \}$$

is dominating for T . Let us denote

$$L_{\theta} = \{ \mu \in \mathbb{D} : \inf_{\theta} ((T_{\mu}^{*}T_{\mu})^{1/2}) \leq \theta \}$$

and

$$R_{\theta} = \{ \mu \in \mathbb{D} : \inf_{e} ((T_{\mu}.T_{\mu}^{*})^{1/2}) \leq \theta \}$$

so TE(BCP) for some 0<041 if and only if Lg(T) URg(T) is dominating for $\mathbb T$.

As it was shown in [2] (see also [1], Chapter VIII). $(BCP)_{\Theta} \text{ operators belong in the class } \mathbb{A}_{\aleph_{\Theta}}. \text{ In the next section, we shall give a more direct proof of the fact that for every } \mathbb{T} \in (BCP)_{\Theta}, \\ \mathbb{A}_{T} \text{ has property } \mathbb{X}_{\Theta+\xi,\Lambda}, \text{ where } 0 < \xi < 1-\Theta \text{ . This enables one to show, } \\ \text{using the above quoted result } ([1], \text{ Theorem 3.7), that } (BCP)_{\Theta} \cap \mathbb{A}_{\aleph_{\Theta}}.$

2.

The main result of this section is the following

Theorem 1

Suppose $T \in A$ and $0 \le \emptyset \le 1$. If $\mu \in D$ satisfies $\inf \sigma_e((T_\mu^*T_\mu)^{1/2}) \le \emptyset, \text{ and } 0 \le \emptyset \le 1 - \emptyset, \text{ then there exists a sequence}$ $(y_n)_{n=1}^\infty$ of vectors from the unit ball of $\mathbb R^n$ satisfying the following conditions:

a)
$$\| [c_{\mu}] - [y_n \otimes y_n] \| \le 0 + \varepsilon, \quad (\forall) n \in \mathbb{N}$$

and

b) (H)
$$z \in \mathcal{H}$$
, $\lim_{n \to \infty} (\|[y_n \otimes z]\| + \|[z \otimes y_n]\|) = 0$.

Proof

Since $T\in A$, it is easy to see that $T\not\in A$ and that for all x,y in $b\in A$ we have:

1)
$$\| [C_{\mu}] - [x \otimes y] \|_{Q_{\mathbf{T}}} = \| [C_{0}] - [x \otimes y] \|_{Q_{\mathbf{T}\mu}}$$

and

2)
$$\| [x \otimes y] \|_{\Omega_{\mathbf{T}}} = \| [x \otimes y] \|_{\Omega_{\mathbf{T}}}$$
.

These comments show that we may assume that $\mu=0$. Since $\inf \nabla_e ((T_\mu^* T_\mu)^{1/2}) \leq \theta$, it follows easily from the spectral theorem that we may choose an orthonormal sequence $(x_n)_{n=1}^\infty$ in $\mathcal H$ such that $\|Tx_n\| \leq \theta + \xi$ for all $n \geqslant 1$.

Let $V \in \mathcal{L}(K)$ be the minimal isometric dilation of T^* . The space K may be decomposed as a direct sum $K = \ell^2(F) \oplus R$, where F, R are Hilbert spaces and $\ell^2(F)$ is the space of square summable sequences (indexed by Z^+) in K. With respect to this decomposition, we have $V = V_1 \oplus U$, where V_1 is a unilateral shift and U is an absolutely continuous unitary operator. We also have $T = V^*$ (see [4], Chapters 2 and 3).

Let us consider the orthogonal projection P of \ltimes onto Ker $\text{V}^{\frac{1}{2}}$. Then we have

$$||Px_n||^2 = ||x_n||^2 - ||VV^*x_n||^2 = 1 - ||Tx_n||^2 > 1 - (\theta + \xi)^2$$

Let $z_n = \frac{Px_n}{\|Px_n\|}$ and $y_n = P_K z_n$, where P_K denotes the orthogonal projection of K onto K. We show that $(y_n)_{n=1}^\infty$ satisfies a) and b).

First of all, let us remark that

$$\|y_{n}\|^{2} = \frac{\|P_{\delta}(Px_{n})\|^{2}}{\|Px_{n}\|^{2}} > \frac{\|(P_{\delta}(Px_{n}, x_{n}))\|^{2}}{\|Px_{n}\|^{2}} = \|Px_{n}\|^{2} > 1 - (\theta + \xi)^{2} = \xi^{2}$$

hence

we have:

$$\|y_n - z_n\|^2 = 1 - \|y_n\|^2 \le (\theta + \xi)^2$$
.

Thus, we obtain

$$\begin{split} &\|[\mathbf{c}_{o}] - [\mathbf{y}_{n} \otimes \mathbf{y}_{n}]\|_{\mathcal{Q}_{\mathsf{T}}} = \|[\mathbf{c}_{o}] - [\mathbf{P}_{\mathcal{K}} \mathbf{z}_{n} \otimes \mathbf{P}_{\mathcal{K}} \mathbf{z}_{n}]\|_{\mathcal{Q}_{\mathsf{V}}^{*}} = \\ &= \|[\mathbf{z}_{n} \otimes \mathbf{z}_{n}] - [\mathbf{P}_{\mathcal{K}} \mathbf{z}_{n} \otimes \mathbf{z}_{n}]\|_{\mathcal{Q}_{\mathsf{V}}^{*}} \leq \|\mathbf{y}_{n} - \mathbf{z}_{n}\| \leq \theta + \xi \end{split}$$

for all n/1, hence $(y_n)_{n=1}^{\infty}$ satisfies a).

Let $x\in \mathcal{H}$ and write $x=x^1\oplus x^2$, where $x^1\in \mathcal{C}^2(\mathcal{F})$ and $x^2\in \mathcal{R}$. Then we have

$$\begin{split} &\|[\mathbf{x} \otimes \mathbf{y}_n]\|_{\mathcal{Q}_{\mathbf{V}^{\frac{1}{N}}}} = \\ &= \sup_{\mathbf{f} \in \mathbb{H}^{2n}} |(\mathbf{f}(\mathbf{V}^{\frac{1}{N}}) \mathbf{x}, \mathbf{y}_n)| = \sup_{\mathbf{f} \in \mathbb{H}^{2n}} |(\mathbf{f}(\mathbf{V}^{\frac{1}{N}}) \mathbf{x}^1, \mathbf{z}_n)| = \\ &\|\mathbf{f}\|_{\mathbf{h}} \leq 1 \\ &= \|[\mathbf{x}^1 \otimes \mathbf{z}_n]\|_{\mathcal{Q}_{\mathbf{V}^{\frac{1}{N}}}}. \end{split}$$

Since $z_n \to 0$ and $V_1^* \in C_0$, this last term tends to 0 (cf [1], Proposition 6.5).

Now, let us show that $\|\|y_n \otimes x\|\| \to 0$ as $n \to \infty$. First, we remark that for every $f \in H^\infty$ and for all n > 1,

$$(f(T)y_{n}, x) = (y_{n}, f(T^{*})x) = (P_{H}z_{n}, f(T^{*})x) =$$

$$= (z_{n}, f(T^{*})x) = ((I - VV^{*})x_{n}', f(T^{*})x) =$$

$$= ((I - T^{*}T)x_{n}', f(T^{*})x) = (D_{T}^{2}x_{n}', f(T^{*})x),$$

where $D_T = (I - T^*T)^{1/2}$, $f(z) = \overline{f(\overline{z})}$, $f \in H^{\infty}$, $X_D = \frac{X_D}{\|PX_D\|}$

Suppose now that the sequence $\{\|[y_n \otimes x]\|_{n=1}^\infty \}$ does not converge to 0. Then one may find a subsequence $(n_j)_{j=1}^\infty$ and a sequence $(g_j)_{j=1}^\infty$ in the unit sphere of $(g_j)_{j=1}^\infty$ of and such that

$$\begin{cases} = \inf \{ (g_j(T)y_{n_j}, x) \} \end{cases} 0$$

(see the proof of [3], Lemma 4.5).

Using the fact that $\|D_T * T^{*n} x\|_{n=1}^{\infty}$ converges to 0, we fix a positive integer N such that $\|D_T * T^{*n} x\| \le \delta$. Then one may write, as in the above mentioned proof

$$g_{j}(z) = p_{j}(z) + z^{N}m_{j}(z), \quad z \in \mathbb{D}$$

where p_j , $m_j \in H^{\infty}$, $\|p_j\|_{\infty} \to 0$ as $j \to \infty$ and $\|m_j\|_{\infty} \le 3$, for all j. Thus, we obtain

$$\begin{aligned} &\delta \leqslant |\left(\mathbf{g}_{j}\left(\mathbf{T}\right)\mathbf{y}_{\mathbf{n}_{j}},\mathbf{x}\right)| \leqslant |\left(\mathbf{p}_{j}\left(\mathbf{T}\right)\mathbf{y}_{\mathbf{n}_{j}},\mathbf{x}\right)| + \\ &+ |\left(\mathbf{m}_{j}\left(\mathbf{T}\right)\mathbf{T}^{\mathbf{N}}\mathbf{y}_{\mathbf{n}_{j}},\mathbf{x}\right)| \leqslant |\left(\mathbf{p}_{j}\right)\left\|\mathbf{y}\right\|\mathbf{x}\| + |\left(\mathbf{p}_{T}\mathbf{x}\mathbf{T}^{\mathbf{x}\mathbf{N}}\mathbf{x}\right)\|\|\mathbf{m}_{j}\|\|_{\infty} \\ &\leqslant |\left(\mathbf{p}_{j}\right)\left\|\mathbf{x}\right\| + \frac{\delta}{2} \text{, which is impossible for } j \end{aligned}$$

sufficiently large. The proof is complete.

Theorem 1 enables to us to give a new proof of the following known result:

Theorem 2 ([1], Theorem 5.2). Suppose $0 \le \theta \le 1$ and $T \in (BCP)_{\theta}$. Then $T \in A_{X_{\theta}}$

Proof

Fix $T \in (BCP)_{0}$ and take 0 < 2 < 1-0. First, we show that $T \in A$. Indeed, for each $\mu \in L_{0}(T) \cup R_{0}(T)$ one can find a vector y_{μ} in the unit ball of $\mathcal H$ such that

$$|f(\mu)-(f(T)y_{\mu},y_{\mu})| \leq (\theta+\xi) ||f||_{\mathfrak{S}} \quad \text{for all f in H^{∞}.}$$

The vector yperf, with the above mentioned properties can be constructed by the same techniques as in the proof of Theorem 1

Taking the supremum as μ varies over the dominating set L0UR0 , we obtain

$$(1-\theta-\xi)\|f\|_{\infty} \le \|f(T)\|$$
 (#) $f \in H^{\infty}$

$$(1-\theta-\xi)\|f\|_{\infty}^{n} \leq \|f(T)\|^{n}$$
.

Taking n-th roots and then letting n tend to infinity yelds ((f) \(\frac{1}{2} \) hence TeA. Now, if $\mu \in L_{\odot}$, then it follows from Theorem 1 that $[C\mu] \in \mathcal{K}_{G+C}(A_T).$ The dual case $\mu \in R_{\odot}$ is similar, hence, for all $\mu \in L_{\odot}(R_{\odot}), \text{ we have } \Gamma(\mu] \in \mathcal{K}_{\odot+C}(A_T).$ Since the set $L_{\odot}(T) \cup R_{\odot}(T)$ is dominating for T, it follows from ([1], Prop.1.21) that $\overline{aco} \in \Gamma(\mu]$; $\mu \in L_{\odot}(T) \cup R_{\odot}(T) \in (Q_T)_1, \text{ hence } A_T \text{ has property } X_{\odot+C}, 1 \text{ and consequently } TeA_{\infty} (Cf.[1], Theorem 3.7).$

References

- 1. H.Bercovici, C.Foiaş and C.Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series in Math.No.56, A.M.S. Providence, 1985.
- functions with applications to the class A . J.Operator Theory, 14(1985), 351-389.
- 3. S.Brown, B.Chevreau and C.Pearcy, Contractions with rich spectrum have invariant subspaces, J.Operator Theory 1(1979), 123-136.
- 4. B.Sz.-Nagy and C.Foiaş. Harmonic analysis of operators on Hilbert space, North Holland, Amsterdam, 1970.

Bebe Prunaru
Department of Mathematics
INCREST
Bd.Păcii 220, 79622 Bucharest, ROMANIA.