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MESH INDEPENDENCE FOR GALERKIN APPROACH

USING THE CHOLESKI FACTORS OF GRAMMIAN OF
BASTS AS PRECONDITIONERS

by

*
Dumitru ADAM )

Abstract. Preconditioning the discrete system obtained by
the Galerkin method for a bounded elliptic linear:problem by
the Choleski factors of the Gram matrix of basis we obtain an
mesh independent spectral condition number. Moreover, the
rate of convergencé for the mu]tigfid algorithm with Richardson

relaxation for the preconditioned system is also mesh indepen-

dent.

1. Introduction. Let 1’be an real separable Hilbert

space, R an invertible linear operator on it and letirﬂki,'
k=0,l,2,... an including finite dimension subspaces sequénce i
}}, where every subspace-l{k is considered be spanned by a linear
independent fami'lygqfk\jﬂ,nk'\ in % .

Given fxéy; for the follewing probilem in H:

(Lol

using the Galerkin method corresponding to?!k ~ el to. find
ukéyk such that the reziduum fxlﬁﬁUk be orthogonal onto }ik v
we obtain the discrete approximation system in the real space

R, iR, = dimt, =n:
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1.2 ALY

whgre the matrix Ak aﬁd the vector Ei héve the entries afj=
=§R¢j,4>i> and (%i)j=<fx,¢i> ' i,j=l,nk . We consider in
the following that the inner product ih ){% is same as in H
and the real spaceﬁR I ié'equipped‘with the: Euclidean inner

produgt denoted by the subscript k . Moréover, we look (1.2)
as a operator equatiéﬁ oﬁTRk. The condition number ofAk is

defined by

T

cond(Aki = “Ak“k “A;_Hk

where we denote by “Ak“k the spectral norm of Ak..

It is known that the condition number for the boundary value
probléms in the Sobolev spaces grows exponeﬁtially For the
nodal bésis of finite element. Particularly, Yserentant
shows ([57) that, Qhen: Yis the Sobolev space 1l () or a clo-
sed subspace of it; L is a plane bounded domain ; # is the
Riesz representatién of:a bilinear fgrm corresponding to a
 eIliptic boundary value probiem with H the solution space;
GHk is the space of finite element functions pieéewise linear
on a triangulation of{ﬁ. aﬁd continuous..on:it; the hierarchi;
cal bases is used, i.e,§>i=¢g_l/ j=i;nk_l; el ) then
the condition number grows quadratically with the nuiber of
levels k, for the preconditioned diécrete matrix With thé
Choleski factors of the matrix C, with the entries

SR e e 4 - .
bij—<4 14?0 i3 e, and Eooet otherwise, i.e.:
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where (> and ol are the constants of boundness and ellipticity

and kl’k2 are constants what contains the influence of the finite

element spaces. By'L;X is denoted the inverse of the transpose of

~

Ly s whereV€§'are the Choleski factors: CkakLi.
In this paper we generalize this result obtaining mesh
independent conaition number for the preconditioned discreté.matrix
with the Choleski factors of the Gram matrix of basis and some pro=
perty for the mulﬁigrid fate of convergence,
| Now, notting tﬁat the entries of the solution vector
; - .

inithe given basis, U, being the discrete approximation solution of

of the problem (1.2) are the.coefficients of the function Y

(1.1), we define the bijection operator jk onTRk'onto‘Hk by

3 .k . .‘, . : ¥
{153 j ei=@ﬂ . j=l,nk,

: j ': 1 : 1 ‘f: i ¢ { :’k"‘
wbere iek\ 7 l,nkl {5 the natural ~basis oFf rka Hence, U, =] uk
and for every vector injkk we denote the corresponding function’
in)}k, by the operator jk,‘suppriming the overbare.

: Let’Pk be the orthogonal projection operator correspondiné to~Hk.
For every kjl we consider the following discretization diagram
o e : . k-1, .
Des g P Prgr Jpge Tpene Ty )

o ool

gt Lo y T da oy
. -4
(®,) i -
e s

: T Fei
where jk’jk~l’1i—l are the adjoint linear operators of jk, jk“l de-
fined by
(1.4) —<u,, 3V

< jkukr G]Qk k7’ J i Z



- analogously for k-1 level =~ and an full rank linear operator

k

5

defined on ﬁlknl intoﬁ%k, by.
(1.5) g1t U . k=1g

e o @
for every UﬁJHk, T ;i iR

This diagram produces for every linear operator_ﬂ on?}

the linear operator Ak on R, defined by

k

(1.6) . iR k

where R, is the linear operator-pf —? 0P ohe B o discrete approxi-

oo ettt k
mation of . When jk is defined by (1.3), then the matrix represen—
tation ot A - ih the natural basis is the Galirkin matrix and then

‘exists a pair of the"intergrid trénsfer operators (Ii—l’ fi—l

) de-
termined by the representation of the b e basis in 1+k such that

the diagram (&) is commutative

k 1

(1.7) P % IkPi

Moreover, the Nicolaides variational relation holds (see Iy )
5 k
(18 , S =1 A Ik
Now, let fx and Jl be the Riesz representations of an

pounded linear functional f on W and res?ective of an bouﬂded

elliptic bilinear form on M, i.e. there exist « and (> suech that

(309 | acu,v)l & p s W

’)_ =
Gl:10) L b e , for every 4,V e,



Then (1.1) is equivalent with the following problem: giveri" fe tO

find ue M such that for every ve ¥~ holds:

(Ll L) a (¢,N)=£(V)
We note that for every Ek’ ﬁ}?TRk we have on level k:

api V) =g VY Al Yy

where with the our convention U k=3kﬂﬁfyk; andlthe discrete problem
.on(@Kk (502 ) correqunds to the discrete préblem on qfk:jlkuk:fi’
where'f§=lifx, and}}k being invertible operator bn Q%k because
AL 0¥ bolds one

We mention the following result.due to [1T : if one of
the hypothesis is fullfied: i) there exists .are uniform equivalence
relation of’}'&k - and?Rk - norms: .

e 155D, T, e, Uik I

ii) the‘family ﬁ?i{j=l,nk X is drthoﬁormale in ¥}, then the condi-
rtion number of  the discretizéd matrix is mesh‘independent:‘
:qond(Ak)é_C, where C not depend of level k . But, when Y is an.~
or 4included into Sobolev spacé\%m(&), m%l, éndrﬁk is an finite ele-
ment subspace of it, theﬁ i) -is not found with Ci independenﬁ of l=
because a such uniform equivalence relation hold with thﬂ)—norm

and ii) . is no practical medality to. be used.

2. Mesh independeht preconditioning. The discretization

diagram ., permits to consider the following linear operator oﬁTQk

defined by:



L
@0 C aah
where'jk e the adjoint ©f Kk detined by (1.4).

'2,;: ;emme. The matrix representation of the lineaf

gperator Gk in the natural basis ofTRk is the Gram matrix cerrespon—

ding to the family{$¥? 3§ =1,n 1.
k K

Proof. Let c?j’ i,j:l,nk the entries of the matrix

representation of Gk; because

this entries are the Gram matrix-of the considered familyﬂentries.
For to simplify the notations we use a common notation
both the linear operator on’l'P-\k and their matrix rep?esentation iﬁ
the natural basis.
Now, correspondingvto Choleski factorization into low
and upper diagonal matrix, let following factorization inﬁ?k of £he
linear operator Gk .

5 *
Gk—LkLk

(2.2
Where Lkﬂgkéka has: 4 lewdiagonal  matrix representation in the
natural basis and Li dis their adjoint. A immediate consequence oOf
thie factorization iss for every Jf;mk’ we have:

k

=120

e *
(2+3) Ny = 1 g kukuk

o

A llgee e = kel s
because hukﬂ =dita d£>:<3k3 uk’“k)k



:’f s
u =
Gl Uy =K I G Uiy
D '
N 0yl

AR A
(2.4) Akuszk e : where
A o) iR
: A ~1=%
(2.6) g e

.-. 3 = A = ;
and i, is solution of (1.2) iff uk=L§uk is solution of (2.4).

2.1. Theorem. The spectral condition number of the

: N
preconditioned Galerkin matrix Ay is mesh .independent
: A -
(2:7) cond(Ak) £ E:
, o4
indeed, the following estimations hold:

: s f
(2.8) 120 P 127 e/

Proof. If (2.8) holds, then we obtain immediate (2.7).

Using (2.5), (2.3) and (1.12) we have; for every I}kkaeﬂQk:

2\ - % = - 5
|<BL LY Ty o To b 4 \= 1Ry By W) =L@y v )

L Ghuh vl = R LTl VLVl

This implies the first inequality din (2.8). For the last, let:



“ A.]; U \ "QL kl k k “2 “X (Ak Lk k)”

k ~l -1
\&(T2, Ty by 3 Ak L, Uy )|

ERY

o~

\<&k5 Ay Gk'J%AilLkak>{

It

e
S\ Ty BT Ty |

i~
i Li R Fe e

~

/,

from (L.7), (La10)and 23, Then , .for every aﬁng

(A5 : =
I\ A l‘k“ l\uk“K and by thi; we have proved the theorem.

2.1, Remark. The preconditioned system verifies the
Nicolaides variational relations

Akl D oA lee
(297 = Iy = ) Ak_l~Ik AT
where the "preconditioned" transfer. operators are defined by

Ak % k _-% Ak=1 =1 k=1
{2+ 10} Lo b e T i R

°

and this is easy to see Erom  (1,8) and (Z2.5) .

The next lemma offers an important tool in multigrid

estimations.

2.2. Lemma, For every aﬁfﬁk'hélds

(2:131) “Qi—lﬁk“kmfg“ak“k&

o

e, and for every linear operator b, , on?&k_l:

{
]



Ak Ak-1
| Ty-1P

(2}12) k=1 x-1T% uké“Dk—l“k-l

Proof. Firstly we observe that

% l k 1 l

(3k)~l{(3k1£-ﬂ(quﬁk— dy fk} S
T B3 Gy Ek g Py T
= Lk(jk) = Pq Oy lLk

where we are used the commutativity of the diagram ka restricted

N k-1 : ; :
to}}k“.Ik-l 2171 " and the both representations of the Gram ope
=l k"'l e . = (:;‘bl
rator Gk—l_Jk—lj =L k 1° With this, for every uk”Rk,
Ak- lu Ak=1. =
I kuk 1 <Ik 1T Uik

o k "l ""'l & =
=@ Y B Bt

i _l . 2
=Py 1 T Ly
L3 Ty By T2 T Ty Tyl

& *. =1 - = =2
=L L) "Ly e Ty By = Ul

Hence (2.11) holds. Now, for every i, V,&R,

bl P Akl A
‘< el dek7k\“\4 kollx Upelp k>k 1|

é“Dk—lﬂk—lﬁ%i lﬂk”k 1 I k—lgk“k—l

é“Dk—lﬂk—lﬂakﬂngkﬂk

that proves (2.12).gﬁ



¢ ‘ T

3. Multigrid convergence. As described in the classi

cal literature of multigrid, one iteration of the two-qgrid algc
rithm for (2.4) consist in_a smoothing step followed by a coarse-

grid comection ([3] ,14})):

A
i) smoothing step: given Qi ; compute

R % AN2R v . A A
u]ll+l= 2 Nl K i =
J oD Bl et gl
PV A A A
S Sy
whereuK Uk’ let uk uk 3

ii) ccarse grid correction step: compute

AHL ¥4 Ak A=l Ak-1 A¥ A
B ity Lk By

This algorithm defines the linear iteration operator onﬁRk

: A A A I\'D
(3.1) Mk—(Ik-—BkAk)Rk

where Ik is the identity onﬁRk and

AN A A A
Sl =l ke
(32} By =T 1AL 1Ty
~ AA

z : A
We suppose that (L is a bilinear symmetric form, hence Ak is symme

tric and positive operator onﬁak and in this case we consider the
Richardson relaxation process as smoother, i.e,

¥ : .
(3.4) - DkZQka , Wwith wk:l/@ for every ky1

A Asge
For nonsymmetric problems considering Dk=w§A§ we

obtain same type estimations (see [11).



=

3.1. Lemma. For the preconditioned system (2.4)

the following smoothing and approximétion properties holds

A :
o | AR 1 &Pg (), where
) g (¥)=3/[8 (V+1/2)] and
Al A
(37) i A, —Bk“k L2/

. A v
Proof., Withi)jﬁjzl,nk the eigenvaluesof A, and ¢ de-

noting the spectral radius, we obtain

1A, %in kim?ix[hj (= s =8 By

Vi 2
( = sup Lx(l-x)1 £ pg@)
Uk 0¢x£1

because Oédk)ji 1 from (2.8). The last inequality is given in [3].

Now, by (2.8) and (2.12),

Now we to able.to give the convergence result of the

same type as in [37.

s Théorem pf_cqnyergence (two—grid-algorithm). Let
§ fixed in (0,1) interval. Then there exists Yo denending only %

such that for every vy v
A 1 <’
(3.8) i ) & 2 ————g () “g {1

i.e. the. rate of convergence for the two-grid algorithm of the

preconditioned system is bounded by a mesh independent constant.



o

Proof: Tt ie suffice to.choise ¥, such that

g(QO)4§Ef%-. Then by the monotony of g and by lemma 3.1, for every
O~ZQO £
A RN A ‘r‘\ 2(3,
B Lla =Bl Rl £ SR 00454 5

Now, let'£2?2. With the finnecr levél mﬁ and coarser
level }%O we can define inla similar way as for two-grid algorithm,
the multigrid algorithm changing thé exact solver on coarse level
k,k=l,...£—l an multigrid al@orithm with'the finner gfid k. Lick

~ and‘f fixed. Tﬁe multigrid iteration operator is defined by the
followiﬂg recursion ([43):

2 “lA =il o . AO

Ml (Il—I 5 IlAl)

Mg sl

(3.9)
l,\ n ¢ 1 . . :
Mk+l el ke kAka—i—lAk-{—]_Rk.ill k~l,..@,i" 1

5 _ :
K :
Notting with Mty the two-grid iteration operator on (kL) o ey

we obtain

A B ndataaiee 2
(3.10) Ml ity N i e

R bR
With ;o{g(Q)

L '
Ggf = g(°)>>“Mk+l“k+l from theorem 3.1,
we obtain

\\Ak+1\ apei Wk” k

from (3.10) via (2.12). (2.8) and (3.5). Inlll e proved the

following theorem :
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3.2. Theorem of convergence (multigrid. algorithm). If

G&%-&Q(l, then for every 1 71 theré exists Qo depending only. !

such that for every .V V4

ol w1, 672 <2

i.e. the multigrid algorithm for the preconditioned system conver-
ges with the rate of convergence mesh independent, where % L thel

solution of the equation
Bl £ )= S = Ty =
@2 eyl =T S = 0

solution which dies in (0.1) interval,
Here. & is tho smallest integer: for which g (g S
o : : = O 3@ \

. We turn out to initial problem (1.2) considering for it the two-qrid li-
near iteration operator M '

W3S M =(Ik—BkA

k 1) Ry

Ll =1 el
where Bk—Ik__lA_k_lIk and R

k™ Tk~ %k PrP
It is easy to verify that :for Dk=G;l, where Gk.is the Gram matrix,
we obtain the following connexion between the initial and precondi-

tioned two-grid iteration operators:
: A
(3.14) M, =L

Because the Grammian is a symmetric and positive definite matrix

we can introduce the "Gk~enérgy" inner product and the correspon-

ding norm angk”

G,

el
=lTy Ul

Denoting bY%ﬂMkm the induced operator norm by this norm, we obtai

the interesting result ¢



i -
I ¥l Lo M, L
“\MQMZ sup Um&thﬁﬁw = "m k kyﬂi
ey k%O N e “W kmk
A
\ M \I )‘ 2 :
= o k i ,h&k“k
L kvknk

Hence the following lemma holds:

3.2. Lemma. For any bounded and, elliptic problem

we can construct an two-grid algorithm for his Gale rkin discreti-
sations using an adequaterrel axation: process, isleh Ehat the rate

of convergenceis mesh independent; i.e. chossing the relaxation

by Rk =9, G kl v where Gkbis the Crammian of Ehcrfinite olencnt

basis, and @k=l/@ we have‘,

o) L=l ¢ 28 g3y

Eor every‘ﬁ?QOand v, given by the theorem-B.l.ﬂ

4, Eigenvalue problem. We define the linear operator

A
onqgk ontoéﬁk, jk by

4 )
: ; . A.
Then, the preconditioned Galerkin matrix Ak is obtained by:

. o
(4.2) 2 lh e

A .
where gk is the adjoint of 7=



e

4.1. Theorem. The "preconditioned" discretization diagram

IS

De is a commutative diagram
. o s ’\k
GRS e

: o :

where the linear transformation J.  is a unitary transformation
-

1R

)
N 2

= 23

of ‘%ﬁ onto
(&
/\.}
(4.4) e

with e=k=1, k such that for~every linearIOPerator.ﬁ,on W& there
exists a unique lihear operator %6: oniﬂlafullfiing the following
propextiecs:

i) The matrix representation in ‘the natural basis of %ﬁ

is.the preconditioned Galerkin matrix.

ii) The Nicolaides variational relation holds:

e

iii) The W, - discrete approximation operator}EeéP ﬁf%, of &

and the preconditioned Galerkin matrix have game spectrum, i.e.

(4.6) Thg) = § (&)

: A
i) )e&g(At) iEE igs a solution of the following eigen-

value problem
(4.7) Aeut‘::\?‘\,Gau

where A, is the Galerkin matrix and Gu is the Ergmmian of the

\%— basis.
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; (o ‘ ‘
Proof. Because&jk is a commutative diagram then (ﬁ;@%
Al

A A
QBQ)A495) and i) hold as we proved before. By Mﬂ A}=Jak€Jﬁl, i.e.

= ;
A and ﬁv are similar operators, hence they are same spectrum.

A )“ 5 - -
.Now, because )G =0 =T -A, )L, we obtain: AG_u_=A u qef

e peg e e e e
Nooa il 5 e Ly
A 4 =)i_ with U =I' G what proves ™),
e e e e e’e i

Remark. Let Qul

st kS

be an orthonormal eigenvectors system
for the symmetric positive linear operator'%k, Then the correspoﬁ—
ding‘“k = eigenfunétions system of}%k {ﬁi{ > isnugorthonormal be-
cause ﬁi—d;l i . i=l,nk and the corresponding eigenvectors system
of the eigenvalue problem(ﬁ@ﬁﬁé% g Gk—energy inner product
(ﬁiﬁi, k k> <Gk K iﬁk . Moreover,

the spectrum of the Galerkin matrix coincides with the spectrum

X - s £ i A j B =
orthonormal because {uy U575

of ﬁhe?#k - discrete approximation operator ;%k_iff the Grammian
GP is the ddentity operater.
e @

4.1. Lemma. The two-grid algorithms on.}lrk andﬁRk descri-

bed by the linear iteration operators

Nobise—n(y =P -] 1B S
T ﬂk b (1k_<‘»k,”,k>

N g
and respectively by Mk from (3.1) are equivalente in the sense

that their have same rate of convergence.

Proof. It easy to observe that the similarity relation

holds:
(4.9)

and this proves lemma.?
?
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B comments. Hor the hierarchical finite element ba-.

ses we can split the Gram matrix on level k in

i
2 i
(1"5."‘1. { E&(—i
2 2 sl o e
G\i 2 §
X o
B, LD
}

Yl A

where‘Dk 1 is a diagonal matrix when the new functions introduced
. ; : Thens

in “the W%k - basis havé disjoint supports .There exists the following

recurence between the Choleski factors

t
6l
L;{-g_' | O
Lk‘_ e T :
| with
\
{

Fean. et

PRl o

: 5 __ﬁi G-—-]_B
Beoibs o Up by e 0

Because D, is a diagonal matrix and Br-1 is a sparse

matrix, we can compute by recirence the Choleski factors using the

last relations.

Now, we remark that we no'used any regularity proper-
ty of the continuous problem and approximation of finite element

property in our considerations.
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