INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

PARABOLIC AND ELLIPTIC PARTS IN STANDARD H-CONES OF FUNCTIONS

by

Lucian BEZNEA

PREPRINT SERIES IN MATHEMATICS

No.4/1986

BUCURESTI

llea 23708

PARABOLIC AND ELLIPTIC PARTS IN STANDARD H-CONES OF FUNCTIONS

by
Lucian BEZNEA*)

January 1986

Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

PARABOLIC AND ELLIPTIC PARTS

IN STANDARD H-CONES OF FUNCTIONS

by .

Lucian BEZNEA

Introduction. The aim of this paper is to indicate how to decompose the base space of a standard H-cone of functions in disjoint parts which are parabolic or elliptic (with respect to the H-cone of restrictions). The accepted notions of parabolicity (proposed in [2]) and ellipticity are global ones.

Using increasing families of absorbent sets, the parabolic and elliptic parts are structured (Theorem 3.2).

The decomposition theorems are consequences of a new characterization of the parabolicity (Theorem 2.3).

§1. Preliminaries.

Throughout this paper f will be a standard H-cone of functions on X.

Recall that a subset A of X is called absorbent set (in X) if $A = \{x \in X \mid s(x) = 0\}$ for some $s \in \mathcal{G}$. A subset A of X is absorbent iff $\mathbf{1}_{X \setminus A} \in \mathcal{G}$. Every absorbent set is finely open and naturally closed.

The following remark will not be used further on .

Remark.([2], Theorem 1 and [7], Exercise 7.2.11). Suppose that X is semi-saturated and \mathcal{G} satisfies the natural sheaf property (For these notions see [5].). Then A \leq X is absorbent iff it is a finely open and naturally closed subset of X.

Proof.Let $A_1 = X \cdot A$ and $x \in A$. From Proposition 4.3.12 in [4], it follows that the H-measure $B_{X}^{A_1}$ is supported by $A_1 = b(A_1)$. On the other hand, E_X Theorem 3.6 in [5] implies that $B_{X}^{A_1}$ is carried by the natural boundary of A_1 . Hence $B_{E_X}^{A_1} = 0$, for every $x \in A$ and therefore $A = \{x \in X / B_1^{X \cdot A}(x) = 0\}$. \square

For $M \subseteq X$, we denote by \overline{M}^f the fine closure of M.

The following assertions are direct consequences of the standard H-cone properties and of the quasi-Lindelöf principle for the fine topology (see(2.9) in [1]).

1.1 Remark.([2], Lemma 2.1). If $(A_i)_{i \in I}$ is a family of absorbent sets in X, then :

a) $\bigvee_{i \in I} A_i^f$ and $\bigcap_{i \in I} A_i$ are absorbent sets in X.

b) There exists a sequence
$$(i_n) \subseteq I$$
 such that $\bigcup_i A_i = \bigcup_i A_i$ and $\bigcap_i A_i = \bigcap_i A_i$ and

If M is a nonempty subset of X, we denote by \mathcal{G}_{M} the convex cone of the restrictions to M of the elements of \mathcal{G} . If M is subbasic (i.e. $M\subseteq b(M)$), then \mathcal{G}_{M} is a standard H-cone of functions on M isomorphic with the standard H-cone $B^{M}(\mathcal{G})$ (see [4], Corollary 5.2.6 c)).

From now on, we refer to the (subbasic) set M, understanding that the H-cone of functions on M is \mathcal{G}_{M} .

The fine topology on M (with respect to \mathcal{S}_{M}) is obviously the induced topology on M by the fine topology on X.

1.2 Remark.([2], Lemma 2.2). If A, B are absorbent sets in X, B \subseteq A (i.e. B \subseteq A and B \notin A) and D \subseteq A \subseteq B, then: D is an absorbent set in A \subseteq B iff DUB is an absorbent set in A.

§2. Parabolic and Elliptic Parts. Another Characterization of the Parabolicity.

The base space X of the standard H-cone of functions \mathcal{G} is called <u>parabolic</u> ([2], Definition 14) if there exists a strictly increasing family $(A_t)_{t\in[0,1]}$ of absorbent sets in X such that:

(2.1) $\underbrace{ (A_t)_{t\in[0,1]}}_{u>t} \underbrace{ A_t}_{u=A_t} \underbrace{ A_t}_{s}^{f} , \text{ for all } t\in[0,1].$ Particularly we have $A_0 = \emptyset$ and $A_1 = X_0$

If A, B are absorbent sets in X with B \subsetneq A let: $\mathcal{A}_{B,A}$: $\{D \mid D \text{ is absorbent in X, B} \subsetneq D \subsetneq A\}$. We write \mathcal{A}_A instead of $\mathcal{A}_{\emptyset,A}$.

The following definition is of the same type as that given in [8], §1.

The base space X of $\mathcal G$ is called <u>elliptic</u> if $\mathcal A_{\mathbf X} = \phi$.

when we call a (subbasic) subset M of X parabolic or elliptic, we consider it as the base space of the standard H-cone of functions \mathcal{L}_{M}

2.1 Remark. If X'⊆X is a finely dense subset of X then :

- a) The absorbent sets in X° are in bijection, in the natural way, with the absorbent sets in X_{\circ}
- b) X°is parabolic (resp. elliptic) iff X is parabolic (resp. elliptic).
- 2.2 Lemma. a) If X is elliptic and M⊆X is subbasic, then M is elliptic.
- b) Let M be a subbasic subset of X. Then M is elliptic iff for every absorbent set A in X either $M\subseteq A$ or $M\subseteq X\setminus A$.
- c) Let $(M_i)_{i \in I}$ be a family of elliptic subsets of X with $\bigcap_{i \in I} M_i \neq \emptyset$. Then $\bigcup_{i \in I} M_i$ is elliptic.
- d) If $G \subseteq X$ is elliptic and finely open, then: G is a maximal elliptic subset of X iff there exist two absorbent sets in X, A and B, B \subseteq A such that $G=A \setminus B$.

Proof. The assertions a) and b) are clear.

- c) Suppose that $\underset{i \in I}{\longleftarrow} M_i$ is not elliptic and let $A \in \mathcal{H}_X$ such that $\underset{i \in I}{\longleftarrow} M_i \cap A \neq \emptyset$ and $\underset{i \in I}{\longleftarrow} M_i \not \subset A$. Hence there exists $i_0 \in I$ with $M_i \cap A \neq \emptyset$, therefore $M_i \subset A$ by assertion b). The hypothesis $\underset{i \in I}{\longleftarrow} M_i \neq \emptyset$ implies now that $\underset{i \in I}{\longleftarrow} M_i \subset A$, which gives a contradiction.
- d) From b) easily results that A B is a maximal elliptic subset of X if A and B are absorbent and A B is elliptic.

Let G be a maximal elliptic finely open subset of X. We take: $A:=\bigcap \left\{ \text{C / C is absorbent, } \text{G}\subseteq \text{C} \right\}$

and

$$B := \bigcup_{i=1}^{d} \{ C \mid G \text{ is absorbent, } C \subseteq (X \setminus G) \cap A \}.$$

Obviously $G\subseteq A \setminus B$ and G being elliptic, again assertion b) implies that $\mathcal{A}_{B,A} = \emptyset$ hence $G = A \setminus B$ from the maximality of $G \cdot \Box$

- 2.3 Theorem. If \mathcal{G} is a standard H-cone of functions on X, the following statements are equivalent:
- a) X is parabolic.
- b) X has no finely open elliptic subsets.
- c) For every pair (A,B) of absorbent sets in X with BÇA, we have $\mathcal{A}_{B,A} \neq \phi$.

<u>Proof.</u> From Remark 1.2 and Lemma 2.2 c) and d) we already know that $b) \langle = \rangle c$.

"a) \Rightarrow b)" Let $(A_t)_{t \in [0,1]}$ be the family which describes the parabolicity of X and suppose that there exists a finely open elliptic subset G of X, $G \neq \emptyset$. If we define $t_0 = \inf \left\{ t \in [0,1] / G \cap A_t \neq \emptyset \right\}$, then Lemma 2.2 b) implies that $G \subseteq A_t$ A_t , which contradicts (2.1).

"c) \Rightarrow a)" One can suppose that f is generated by a bounded potential kernel V which is absolutely continuous with respect to a finite measure f on X. This is possible because the natural extension f of f on the base set f is saturated hence f is generated in this way (see f ; we use also Remark 2.1).

First, let us show that:

(2.2) for every $\beta \in (0, \mu V(X))$ there exists $A \in \mathcal{A}_X$ s.t. $\mu V(A) = \beta$.

If \mathcal{A} is a class of absorbent sets in X, we define: $\beta \mathcal{A} := \left\{ B \in \mathcal{A} \middle| \mu V(B) \leq \beta \right\}$

and

 $\mathcal{A}:=\left\{\mathrm{B}\mathcal{E}\mathcal{A}/\ \mu\mathrm{V}(\mathrm{B})\right\}\beta\right\}.$ Hypothesis c) implies that at least one of the sets $\beta\mathcal{A}_{\mathrm{X}}$ and \mathcal{A}_{X} is nonempty. Suppose that $\beta\mathcal{A}_{\mathrm{X}}\neq\emptyset$. Using Remark 1.1, the set $\beta\mathcal{A}_{\mathrm{X}}$ results inductively ordered, hence by Zorn's lemma there exists

a maximal absorbent set $A \in_{\beta} \mathcal{A}_{X}$. Suppose that $\mu V(A) < \beta$. We have

 $\mathcal{A}_{A,X} \neq \emptyset$ and $\beta \mathcal{A}_{A,X} = \emptyset$, from the maximality of A in $\beta \mathcal{A}_{X}$. Therefore $\mathcal{A}_{A,X} \neq \emptyset$ and we can choose a minimal element A' of $\mathcal{A}_{A,X}$. We obtain $\mathcal{A}_{A,A'} = \emptyset$, contradicting the hypothesis c). Hence $\mu_{V(A)} = \beta$.

From this moment we can reproduce the proof of Theorem 3.7 in [2]. More precisely, for every dyadic rational number $t \in [0,1]$, an absorbent set (in X) A_t can be constructed by induction and using (2.2), such that:

(2.3) $\mu V(A_t) = t \cdot \mu V(X) \text{ and if } s < t \text{ then } A_s \not\subseteq A_t \text{.}$ The desired family $(A_t)_{t \in [0,1]}$ which verifies (2.1) is obtained extending the construction of A_t for every $t \in [0,1]$, such that (2.3) remains valid. \square

A direct consequence of the above theorem is the following: 2.4 Corollary. a) If X is parabolic and $G \subseteq X$ is finely open, then G is parabolic.

- b) Let $(M_i)_{i \in I}$ be a family of parabolic (subbasic) subsets of X. Then $\bigcup_{i \in I} M_i$ is parabolic.
- c) If G_1 , G_2 are finely open subsets of X such that G_1 is parabolic and G_2 is elliptic, then $G_1 \cap G_2 = \emptyset$.

§3. Decomposition Theorems. Examples.

We can formulate the following decomposition theorem: 3.1 Theorem. Let $\mathcal G$ be standard H-cone of functions on X and P be the greatest finely open parabolic subset of X. Denoting by E the union of all open elliptic subsets of X, we have: $X = P \cup E^f$ and $P \cap E = \emptyset$. Proof. Obviously, from Corollary 2.4 there exists the greatest finely

open parabolic subset P of X and P \cap E = ϕ . If D is a finely open subset of X, D $\not\subset$ P, then from Theorem 2.3 there exists a finely open elliptic subset of D , hence D \cap E \neq ϕ and the proof is finished. \Box

If J is a totally ordered set, we denote by $\mathcal{J}(J)$ the set of all ideals of J (i.e. $I \in \mathcal{J}(J)$ iff $I \subseteq J$ and $j \le i$, $i \in I$ implies $j \in I$).

We present now the structure of the parabolic and elliptic parts, using absorbent sets.

3.2 Theorem. Let \mathcal{G} be a standard H-cone of functions on X and P_a be the greatest parabolic absorbent set in X. If $P_a \neq X$, there exists a totally ordered set J, at most countable, such that:

a) For every $j \in J$, there exists a pair (B_j, C_j) of absorbent sets

with: $P_a \subseteq B_j \subsetneq C_j$, $E_j := C_j \setminus B_j$ is a (maximal) elliptic finely open subset of X and $i < j <= C_i \subseteq B_j$.

b) For every $I \in \mathcal{J}(J)$, let us define $B_I := \bigcup_{j \in I} C_j$, $C_I := \bigcup_{j \in J \setminus I} B_j$ and $P_I := C_I \setminus B_I$ (particularly $P_{\phi} = P_a$ and $P_J = X \setminus \bigcup_{j \in J \setminus I} C_j / j \in J$). Then P_I is parabolic if it is nonempty.

- c) (E $_{j}$) $_{j}\in J$ is the family of maximal elliptic finely open subsets of X.
- d) E and P having the meaning of the above theorem, we have:

$$(3.1) E = \bigcup \{ E_j / j \in J \}$$

and

$$(3.2) \qquad P \subseteq \bigcup \left\{ P_{\mathbf{I}} \cup P_{\mathbf{I}}^{*} \middle/ \mathbf{I} \in \mathcal{J}(\mathbf{J}) \right\} ,$$

where for every $I \in \mathcal{J}(J)$, P_I^* denotes the totally thim set $\overline{\bigcup_{j \in I} C_j}$ e) If J is a totally ordered set such that a) and c) are satisfied and if moreover $\mathcal{J}(J)$ is at most countable then

$$\overline{P}^{f} = \overline{\bigcup}^{f} \left\{ P_{T} / I \in \overline{J}(J) \right\}$$

Proof. From Corollary 2.4 b) and Remark 2.1 b), there exists the greatest parabolic absorbent set in $X_{\rm s}$ denoted $P_{\rm a}$.

Let \mathcal{F} be the set of families $(B_j, C_j)_{j \in J}$, where J is a totally ordered set such that, for every $j \in J$, B_j and C_j are absorbent sets in X with $P_a \subseteq B_j \subseteq C_j$, $\mathcal{A}_{B_j, C_j} = \emptyset$ and $i < j < = > C_i \subseteq B_j$. Theorem 2.3 and $P_a \neq X$ imply that \mathcal{F} is nonempty. The inclusion (with order) between the totally ordered sets induces an order on \mathcal{F} . This order relation is inductive and let $(B_j, C_j)_{j \in J}$ be a maximal element of \mathcal{F} . Assertion b) is a consequence of the maximality, using again Theorem 2.3.

Let D be a finely open elliptic subset of X and suppose that $D \not = \bigcup_{j \in J} E_j. \text{ Hence by Lemma 2.2 b) } D \cap \bigcup_{j \in J} E_j = \emptyset. \text{ If we define } I_o = \{j \in J \ / \ D \cap C_j = \emptyset\} \text{ then } I_o \in J(J) \text{ and } D \subseteq P_I_o. \text{ Therefore, } P_I_o \text{ is not parabolic and this contradicts b). So that assertion c) and (3.1) are proved. Let us remark that under the conditions of a) we have ; b) (=>c).$

(3.2) is an obvious consequence of (3.1). As in the proof of Corollary 4.4 in [2] ,one can verify that P_I^* is a totally thin set, for every $I \in \mathcal{J}(J)$.

We can suppose that X is saturated, hence the fine interior of any semi-polar set is empty. From (3.2) results now easily that assertion e) is valid.

3.3 Remark. a) It is possible that J should not be well ordered (see Example 2 below), in contrast with the well ordered family of absorbent sets generated in [6].

b) Not all the sets P_{I} , I $\in \mathcal{I}(J)$ are necessarily empty (see Example 3).

In the following examples, the standard H-cone of functions on X will be the cone of positive superharmonic functions on a P-harmonic space (X, V) with countable base (in the sense of [7]),

with $1 \in \mathcal{U}(X)$ (see [4], page 113).

Examples. 1. Let X=(-1,1) and for any open set U of X let $\mathcal{V}(U)$ be the set of lower semicontinuous, lower finite numerical functions u on U such that : $u|_{(-1,0] \cap U}$ is locally increasing (see [7], Theorem 2.1.2) and $u|_{(0,1) \cap U}$ is hyperharmonic for the Laplace equation. Obviously we have : $P_a=(-1,0]$ and E=(0,1).

2. Let X=(-1,1) and $F\subseteq X$ be a closed set of X such that $X\setminus F$ is dense in X. Then, following [9] (see also [7], Exercice 3.1.17), there exists a Bauer space on X (which contains the constants) such that the absorbent sets (different from ϕ and X) are exactly the intervals (-1,X] with $x\in F$. One can verify that we have obtained a \mathfrak{P} -Bauer space. We denote by J the set of all left extremities J of the components (J,J^*) of the open set $X\setminus F$. If we take $E_j=(J,J^*]\cap X$ for every $J\in J$, the family $(E_j)_{j\in J}$ satisfies the conditions a) and c) of Theorem 3.2. Obviously $P_T=\emptyset$, for every $I\in \mathcal{J}(J)$.

A suitable choice of the closed set F proves Remark 3.3 a). 3. Let X be the topological subspace of \mathbb{R}^2

 $(-1,1)\times\{0\}\cup\{0\}\times(0,1).$

For every open set U of X, we denote by V(U) the set of all lower semicontinuous, lower finite numerical functions u on U such that $(x\mapsto u(x,0))$ is hyperharmonic for the structure introduced in Example 2 and $(y\mapsto u(0,y))$ is locally increasing (where these two functions are defined). We use the notations of the above example, with $X_1=(-1,1)$ and suppose that $0 \le \sup F$. If $A \subseteq X_1$ is a nonempty absorbent set in X_1 then $A \times \{0\}$ is absorbent in X and if $x \in F$, x > 0 then $(-1,x] \times \{0\} \cup \{0\} \times X_2$ is also absorbent in X, where X_2 denotes the interval (0,1). Let us fix a nonvoid ideal $I \in \mathcal{J}(J)$ such that $0 \le \sup I_0$. Then we can take $B_1 := (-1,J] \times \{0\}$, $C_1 := ((-1,J] \cap X_1) \times \{0\}$

if $j \in I_o$ and $B_j := (-\ell, j] \times \{0\} \cup \{0\} \times X_2$, $C_j := ((-\ell, j^\circ] \cap X_1) \times \{0\} \cup \{0\} \times X_2$ if $j \in J \setminus I_o$. These are the absorbent sets which give the decomposition of X_o , with P_a empty and $P_I = \{0\} \times X_2$ nonempty. In particular, if we take $F = \{\frac{1}{2}\} \cup \{\frac{1}{2} \pm \frac{1}{n} / n \in \mathbb{N}, n \geqslant 3\}$ and $I_o = \{-f\} \cup \{\frac{1}{2} - \frac{1}{n} / n \in \mathbb{N}, n \geqslant 3\}$, then $P = P_{I_o}$ and $E = X \setminus \{P \cup \{(\frac{1}{2}, 0)\}\}$.

References

- [1] H.Ben Saad, K.Janßen: Topologie fine et mesure de référence.

 J.Reine Angew.Math.360 (1985),153-159.
- [2] H.Ben Saad, K.Janßen: A characterization of parabolic potential theory.Math.Ann.272(1985),281-289.
- [3] Ch.Berg: Quelques propiétés de la topologie fine dans la théorie du potentiel et des processus standard. Bull.Sc. Math. 95(1971), 27-31.
- [4] N.Boboc, Gh.Bucur, A.Cornea: Order and convexity in potential theory: H-cones. Lecture Notes in Math. \$53, Berlin-Heidelberg-New York: Springer 1981.
- [5] N.Boboc, Gh.Bucur: Natural localization and natural sheaf property in standard H-cones of functions.I, II.Rev.Roum.Math.Pures Appl. 30(1985),1-21,193-213.
- [6] C.Constantinescu: Harmonic spaces. Absorbent sets and balayage.

 Rev. Roum. Math. Pures Appl. 11 (1966), 887-910.
- [7] C.Constantinescu, A.Cornea: Potential theory on harmonic spaces.

 Berlin-Heidelberg-New York: Springer 1972.
- [8] B.Fuglede: Invariant characterization of the fine topology in potential theory.Math.Ann.241(1979),187-192.
- [9] J.Král, J.Lukeš, I.Netuka: Elliptic points in one-dimensional harmonic spaces. Comment. Math. Univ. Carolinae 12, 3(1971), 453-483.