INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

ON INDUCTIVE LIMITS OF CERTAIN C*-ALGEBRAS OF THE

FORM C(X) Ø F

by

Cornel PASNICU

PREPRINT SERIES IN MATHEMATICS

No.51/1986

peed 23753

BUCURESTI.

ON INDUCTIVE LIMITS OF CERTAIN C*-ALGEBRAS $\text{OF THE FORM C(X)} \ \, \boldsymbol{\otimes} \ \, \mathbf{F}$

by
Cornel PASNICU*)

September 1986

Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania

ON INDUCTIVE LIMITS OF CERTAIN

C* - ALGEBRAS OF THE FORM C(X) \otimes F

by Cornel PASNICU

The study of inductive limits of C^* -algebras of the form $C(X) \otimes F$ (with F finite-dimensional C^* -algebra) has been suggested by E.G.Effros in [5]. Clearly, for this problem, the structure of the *-homomorphisms between algebras of the above form is important. This question has been considered in [1], [2], [8], [9], [10], [11] and [12].

After some preliminaries in section 1, we consider in section 2 *-homomorphisms Φ : $C(X) \otimes A \rightarrow C(Y) \otimes B$ compatible (2.3.) with a map $\Theta: Y \rightarrow K(X)$ (K(X) the closed subsets of X) which generalize the homomorphisms compatible with a covering considered in [8].

Our results are more precise in the following two situations: $1^{\circ} \cdot \Theta(y) = \frac{-1}{\varphi}(y), \quad \varphi \colon X \rightarrow Y \text{ a continuous surjection;}$ $2^{\circ} \cdot \Theta(y) = \{\varphi(y)\}, \quad \varphi \colon Y \rightarrow X \text{ continuous } (2.7.)$

Given a homomorphism, we find conditions that insure the existence of a 0 as in 1° above with which it is compatible (2.8.). We also improve one of our previous results (Proposition 2.5. in [8]) concerning homomorphisms compatible with a p-fold covering (2.9.).

In section 3 the homomorphisms $C(X) \otimes A + C(Y) \otimes B$ are unital, A, B, are finite-dimensional and the compact spaces X, Y are metrizable (excepting Proposition 3.1.). Our results describe the local structure of such homomorphisms in terms of continuous "quasifields" of finite-dimensional C^* -algebras (3.1. and 3.4.). Using classes of inner equivalent injective homomorphisms between continuous quasifields of finite-dimensional C^* -algebras (see 3.3.) we study the set of classes of inner equivalent homomorphisms (injective homomorphisms) from C(X) to $C(Y) \otimes B$ (3.4.). A similar analysis is done for the set of all *-homomorphisms (injective *-homomorphisms) from $C(X) \otimes A$ to $C(Y) \otimes B$ which are compatible with a given continuous sujective map from X to Y, the fibre of which satisfies a certain continuity property (3.6.).

Section 4 contains the main result of this paper. Consider a system:

c(x₁)
$$\otimes$$
 A₁ $\xrightarrow{\Phi_1}$ c(x₂) \otimes A₂ $\xrightarrow{\Phi_2}$...

with X_k , A_k as in section 3. We give conditions under which the above inductive limit is "trivial", in the sense that it coincides with the tensor product of a commutative C^* -algebra with an A.F.-algebra. The assumptions on the spaces X_k involve the vanishing of certain non-abelian cohomologies (this occurs for X_k contractible, for instance). Moreover, it is required that $\Phi_k(C(X_k) \otimes 1_{A_k}) \subset C(X_{k+1}) \otimes 1_{A_{k+1}}$ (see 4.3.). For such trivial inductive limits we also consider the isomorphism problem (4.4.).

ACKNOWLEDGEMENT

The author is grateful to Serban Strătilă for his suggestions on a first version of the manuscript.

For A and B unital C -algebras, Hom(A,B) (resp. Hom (A,B

will denote the set of all unital *-homomorphisms (resp. all unital injective *-homomorphisms) from A to B endowed with the topology of pointwise convergence. Z(A) denotes the center and U(A) the group of all unitaries of A. Φ , Ψ^{ϵ} Hom(A,B) are called inner equivalent, $\Phi \circ \Psi$, if $\Phi = Adu$ o Ψ for some us U(B). For $M \subset Hom(A,B)$, we denote by M/\circ the corresponding set of classes of inner equivalent *-homomorphisms.

If $\phi: X \to Y$ is a continuous map between compact spaces, we denote by $\phi^*: C(Y) \to C(X)$ the map $\phi^*(f) = f \circ \phi$, $f_{\epsilon}C(Y)$.

Let G be a topological group, G_c the sheaf of germs of continuous G-valued functions on X and $H^1(X,G_c)$ the corresponding cohomology set; for a contractible compact space X, $H^1(X,G_c)$ reduces to the trivial element ([7]).

\$ 2.

Throughout this section X,Y will denote compact spaces and A a finite-dimensional C * -algebra.

2.1. Consider $A=\bigoplus_{i\in I}A_i$, where I is a finite set and each Λ_i is a finite discrete factor.

Denote $K(X):=\{F\mid F \text{ is a non-empty closed (i.e.}$ compact) subset of $X\}$. Consider $\Phi\in Hom(C(X)\otimes A, C(Y)\otimes B)$, where

B is a unital C*-algebra. For any ye Y, let $X_{y,\Phi} \in K(X)$ be such that $\{g \in C(X) \mid g \mid X_{y,\Phi} = 0\}$ is the kernel of the unital *-homomorphism:

$$C(X)$$
 $3g \rightarrow \Phi(g \otimes 1_A)(y) \epsilon B$

Then, for each ye Y, X, Φ ϵ K(X) is determined by the condition:

$$||\Phi(g \otimes 1_A)(y)|| = ||g|X_{y,\Phi}||, g \in C(X).$$

In a similar way one sees that for any ye Y and i ϵ I there is a unique closed subset $X_{y,\Phi}^i$ of X such that:

$$||\Phi(f_{i})(y)|| = ||f_{i}|X_{y,\Phi}^{i}||, f_{i} \in C(X) \otimes A_{i}.$$

Note that $X_{y,\Phi}^{i}$ can be the empty set. Clearly:

$$X_{y,\bar{\phi}} = \bigcup_{i \in I} X_{y,\bar{\phi}}^{i}$$

(1)
$$||\Phi(f)(y)|| = \max_{i \in I} ||f_i|X_{y,\Phi}^i||$$

(2)
$$|| \Phi(f)(y) || \leq || f| X_{y, \Phi} ||$$

since:

$$||\Phi(f)(y)|| = ||\Sigma\Phi(f)(y)|| = \max_{i \in I} ||\Phi(f)(y)|| = \sum_{i \in I} ||\Phi(f)(y)|| =$$

$$= \max_{\substack{i \in I}} ||f_i| X_{y,\Phi}^i|| \leq \max_{\substack{i \in I}} ||f_i| X_{y,\Phi}^i|| = ||f| X_{y,\Phi}^i||.$$

Moreover:

(3) Φ is injective \Leftrightarrow U $X_{y,\Phi}^{i}=X$ for any is 1. Indeed, by (1) we have:

$$||\Phi(f)|| = \max_{i \in I} ||f_i| \bigcup_{y \in Y} X_{y,\Phi}^i||$$

and each $\bigcup_{y \in Y} X_{y, \Phi}^{1}$ is closed.

2.3. Consider a map $0:Y\to K(X)$. We say that a *-homomorphism Φ E Hom $(C(X)\boxtimes A, C(Y)\gg B)$, where B is any unital C*-algebra, is $\underline{0}$ -compatible if:

(1)
$$X_{y,\Phi} \subset \Theta(y)$$
, $y \in Y$.

This is equivalent to:

(2)
$$||\Phi(f)(y)|| < ||f|_{\Theta(y)}||$$
, $f \in C(X) \otimes A$, $y \in Y$.

Indeed, (1) \Rightarrow (2) by 2.2.(2). Conversely, for any $g \in C(X)$ and $y \in Y$ we have $||g|X_{y,\Phi}|| = ||\Phi(g \otimes 1_A)(y)|| \le ||g|\Theta(y)||$ and since $X_{y,\Phi}$ is closed in X it follows that $X_{y,\Phi} \subset \Theta(y)$.

The above argument also shows that $X_{y,\Phi}$ is the smallest non-empty closed subset F of X such that $||\Phi(f)(y)|| \le ||f||_F ||f$ for any $f \in C(X) \otimes A$.

2.4. Consider Φ ϵ , $\operatorname{Hom}(C(X) \otimes A$, $C(Y) \otimes B)$, where $A = \bigoplus_{i \in I} A_i$, is a finite set and each A_i is a finite discrete factor, and a map $\Theta: Y \rightarrow K(X)$. Then, the following are equivalent:

(1)
$$||\Phi(f)(y)|| = ||f|\Theta(y)||$$
, $f \in C(X) \otimes A$, $y \in Y$.

(2)
$$X_{y,\Phi}^{\dagger} = \Theta(y), y \in Y, i \in I$$
.

Indeed (2) \Rightarrow (1) by 2.2.(1). Conversely, for every $i \in I$ and $y \in Y$, we have $||f_i|X_{y,\Phi}^i||=||\Phi(f_i)(y)||=||f_i|\Theta(y)||$, $f_i \in C(X)\otimes A_i$, and since each $X_{y,\Phi}^i$ is closed in X, we deduce . $X_{y,\Phi}^i = \Theta(y)$.

 $\frac{2.5. \text{ Suppose moreover that } \left(\Theta(y) \right)_{y \ \epsilon \ Y} \text{is a partition}}{\text{of X and that } \Phi \text{ is compatible with } \Theta. \text{ Then the following are}}$ equivalent:

- (1) Φ is injective
- (2) $| | \Phi(f)(y) | | = | | f | \Theta(y) | |$, $f \in C(X) \otimes A$, $y \in Y$.

Indeed, (2) => (1) by 2.2.(3) and 2.4. Conversely, suppose there are i ϵ I, y ϵ Y such that:

$$X_{y_0,\Phi}^{\dagger_0} \subseteq \Theta(y_0)$$

Since Φ is compatible with Θ , we have $X_{y,\Phi}^{i}\subset\Theta(y)$, $y\in Y$. Then, using 2.2.(3) and the fact that $(\Theta(y))_{y\in Y}$ is a partition of X, one has:

$$X = \bigcup_{y \in Y} X_{y,\Phi}^{i \circ} \subseteq \bigcup_{y \in Y} \Theta(y) = X$$

a contradiction. Hence $X_{y,\Phi}^i = \Theta(y)$, $y \in Y$, $i \in I$, and the conclusion is obtained using again 2.4.

(1)
$$\operatorname{tr}(\Phi(g \otimes 1_A)(y)) \in \operatorname{n-co} g(\Theta(y)), g \in C(X), y \in Y$$

where tr denotes the usual trace on Mn.

Proof: For any y $_{\epsilon}$ Y, consider the unital finite-dimensional *-representation C(X) \otimes A 3 f \rightarrow Φ (f)(y) $_{\epsilon}$ M $_{n}$. Since this is a direct sum of irreducible *-representations, it follows that for any \times $_{\epsilon}$ X $_{y}$, $_{\Phi}$ there is a unital *-representation Π $_{x}$, y of A such that:

(2)
$$\Phi(f)(y) = \bigoplus_{x \in X_{y,\Phi}} \Pi_{x,y}(f(x)) \in M_n$$

for all f \mathcal{E} C(X) \otimes A. In particular, in this case, each X , $_{\gamma}$ is a finite set.

Suppose that Φ is 0-compatible. Using the above discussion, for g $^{\epsilon}$ C(X) and y $^{\epsilon}$ Y we get:

$$tr(\Phi(g \otimes 1_A)(y)) = \sum_{x \in X_{y,\Phi}} g(x) \cdot dim \Pi_{x,y} =$$

$$= n \cdot (\sum_{x \in X_{y,\Phi}} g(x) \cdot n^{-1} \cdot dim \Pi_{x,y}) \in n \cdot co g(\Theta(y))$$

$$\times \varepsilon X_{y,\Phi}$$

since $X_{y,\Phi} \subset \Theta(y)$ and Φ being unital, Σ n⁻¹ dim $\Pi_{x,y} = 1$.

Conversely, assume (1) and suppose there is $y_0 \in Y$ such that $X_{y_0,\Phi} \not= \Theta(y_0)$. Then there is $x_0 \in X_{y_0,\Phi} \setminus \Theta(y_0)$ and $g_0 \in C(X)$ such that $g_0(x_0)=1$ and $g_0 \mid \Theta(y_0) \cup (X_{y_0,\Phi} \setminus \{x_0\})=0$.

Using (1) and (2) we have:

$$tr(\Phi(g_0 \otimes 1_A)(y_0)) = \sum_{x \in X_{y_0, \Phi}} g_0(x) \cdot dim \Pi_{x, y_0} =$$

= dim
$$\pi_{\times_0, Y_0} \{0\} = n \cdot co g_0(\Theta(y_0))$$

a contradiction.

(1)
$$\Phi(g \otimes 1_{\Delta}) = g \circ \phi \otimes 1_{B}, g \in C(X)$$
.

Indeed, since $X_{y,\Phi} = \{ \phi(y) \}$, we have $\Phi(g \boxtimes 1_A)(y) = \Pi_{\phi(y),y}(g(\phi(y)).1_A) = g(\phi(y)).1_B$, for any $g \in C(X)$ and $y \in Y$. Conversely, if (1) holds then for any $g \in C(X)$ and $y \in Y$ we have $||g| |X_{y,\Phi}|| = ||\Phi(g \boxtimes 1_A)(y)|| = ||g(\phi(y))||$ and since each $X_{y,\Phi}$ is closed, $X_{y,\Phi} = \{ \phi(y) \}$.

On the other hand let B be a finite-dimensional $C^*-\text{algebra and } \phi: X \to Y \quad \text{a continuous surjective map. A *-homomorphism}$ $\Phi: C(X) \otimes A \to C(Y) \otimes B \quad \text{is said to be} \quad \phi \quad \text{-compatible if:}$

$$\Phi(g \circ \varphi \otimes 1_{\Delta}) = g \otimes 1_{B}, g \in C(Y).$$

If Φ is injective, then ϕ is uniquely determined by Φ since we can use 2.5.; we have that $(X_{y,\tilde{\Phi}})_{y\in Y}$ is a partition of X and $\phi^{-1}(y)=X_{y,\tilde{\Phi}},$ yeY.

Let B, Φ be as in Proposition 2.6. and consider the map $\Theta: Y \to K(X)$ given by $\Theta(y) := \overline{\phi}^1(y)$, $y \in Y$, where $\phi: X \to Y$ is a continuous surjection. In this situation the following assertions are equivalent:

- (3) Φ is ϕ -compatible
- (4) $tr(\Phi(g \circ \phi \otimes 1_A)(y)) = n \cdot g(y), g \in C(Y), y \in Y$.

(tr denotes the usual trace on M_n).

(2) => (3). For any geC(Y) and yeY we have:

$$\Phi(g \circ \phi \otimes 1_{A})(y) = \bigoplus_{x,y} (g(\phi(x)) \cdot 1_{A}) = g(y) \cdot 1_{B}$$

$$\times \varepsilon X_{y,\Phi}$$

since $X_{y,\Phi} \subset \phi^{-1}(y)$ (we use the notation and remarks made in the proof of Proposition 2.6.).

- (3) = (4) is obvious.
- $(4) = (2) \text{ By assumption, for any } g \in C(Y) \text{ and } y \in Y \text{ we have } n \cdot g(y) = \sum_{x \in X_{y,\Phi}} g(\phi(x)) \cdot \dim \Pi_{x,y} = \sum_{t \in \phi(X_{y,\Phi})} c_y(t)g(t),$ where each $c_y(t) > 0$. Now fix $y_0 \in Y$, suppose there is $t_0 \in \phi(X_{y_0,\Phi}) \setminus \{y_0\}$ and let $g_0 \in C(Y)$ be such that $g_0(t_0) = 1, g_0 \mid \{y_0\} \cup (\phi(X_{y_0,\Phi}) \setminus \{t_0\}) = 0$

=0; then g=g_0 and y=y_0 will contradict the above form of assumption (4). Hence $\phi(X_{y,\Phi})=\{y\}$, yeY.

2.8. The following proposition gives sufficient conditions for a homomorphism Φ to be compatible with some good $\phi.$

Proposition. Let B be a finite-dimensional C*-algebra and consider $\Phi \in Hom(C(X) \boxtimes A, C(Y) \boxtimes B)$. Assume that the cardinality of $X_{y,\Phi}$ is locally constant on Y and $(X_{y,\Phi})_{y \in Y}$ is a partition of X. Then the map $\Phi : X \to Y, \Phi(X_{y,\Phi}) = \{y\}$, yeY is a covering map and Φ is Φ -compatible.

Proof. Fix y&Y. The assumptions imply that there are

neN and UEV(y') such that $X_y:=X_{y,\Phi}$ has exactly n elements for all yeU. Say $X_y,=\{z_1(y'),\ldots,z_n(y')\}$ and let $V'=V'_p \in V(z_p(y'))$, $p=1,2,\ldots,n$, with $V'_p \cap V'_q=\emptyset$ for $p\neq q$.

Now, for fixed ps{1,2,...,n} we claim there is $W \in V(y')$, $W \subset V$ such that $X_y \cap V_p' \neq \emptyset$ for any ysW. Indeed, in the contrary case there is a net $(y_i)_{i \in I}$ in V which converges to y' such that $X_y \cap V_p' = \emptyset$. But for $g \in C(X)$, $g(z_p(y')) = 1$, supp $g \subset V_p'$ we have:

$$1 = |g(z_{p}(y'))| \le |g|X_{y}, \quad | = |\phi(g \otimes 1_{A})(y')| =$$

$$= \lim_{i} |\phi(g \otimes 1_{A})(y_{i})| = \lim_{i} |g|X_{y_{i}} = 0$$

a contradiction which proves the claim. Therefore we can choose $V \in V(y')$, $V \subset U$, such that $X_y \cap V_p' \neq \emptyset$, $y \in V$, $p=1,2,\ldots,n$.

We prove that ϕ is continuous. Indeed, if a net $(x_j)_{j \in J} \text{ in } X \text{ converges to } x \in X \text{ but } \phi(x_j) \not + \phi(x), \text{ then, } X \text{ being compact, we may suppose that } \phi(x_j) \not + y_0 \not + \phi(x).$

For
$$g \in C(X)$$
, $g(x)=1$, $g(X_{y_0}=0)$ we have:
$$0=||g(X_{y_0})||=||\Phi(g \otimes 1_A)(y_0)||=\lim_{j \to \infty} |\Phi(g \otimes 1_A)(\Phi(x_j))|=$$

$$=\lim_{j \to \infty} ||g(X_{\varphi(x_j)})|| \ge \lim_{j \to \infty} |g(x_j)|=|g(x_j)|=1$$

a contradiction.

For each yeV, let $\mathbb{Z}_p(y)$ be the unique element of $X_y \cap V_p^*$, $p=1,2,\ldots,n$. Each map $\mathbb{Z}_p: V \to V_p:=\mathbb{Z}_p(V)$ is a bijection since

 $\varphi \circ z_p = \mathrm{id}_V; \text{ note that } V_p = \varphi^{-1}(V) \cap V_p^* \in V(z_p(y^*)). \text{ Moreover, each } z_p \text{ is continuous. Indeed, if a net } (y_k)_{k \in K} \text{ in } V \text{ converges to } \widetilde{y} \in V \text{ and } z_p(y_k) \not \to z_p(\widetilde{y}), \text{ we may consider } z_p(y_k) \to \widetilde{x} \text{ for some } \widetilde{x} \in V_p \subset V_p^* = V_p^*, \ \widetilde{x} \neq z_p(\widetilde{y}) \text{ and we have } \widetilde{y} = \lim_k y_k = \lim_k \varphi(z_p(y_k)) = \varphi(\widetilde{x}), \text{ that is } x \in \varphi^{-1}(\widetilde{y}) \cap V_p^* = X_{\widetilde{y}} \cap V_p^* \text{ hence } \widetilde{x} = z_p(\widetilde{y}), \text{ a contradiction.}$

Thus each $\phi_p=\phi|_{V_p}:V_p\!\!\to\!\!V$ is a homeomorphism with inverse z . Hence ϕ is a covering map.

Since $X_y = \phi^{-1}(y)$, yeY, it follows from 2.7. that Φ is ϕ -compatible.

2.9. The next proposition gives the structure of homomorphisms compatible with a finite covering, which improves the result in ([8], Proposition 2.5.) by replacing the absolute retract assumption with contractibility and by using a shorter argument.

Proposition. Let $\Phi: X \to Y$ be a p-fold covering map $(p \in N)$, where X,Y are compact metric spaces and assume Y is contractible. Then there is a partition $(U_i)_{i=1}^p$ of X into clopen sets and there exist homeomorphisms $z_i:Y \to U_i$ satisfying $\Phi: Z_i = id_Y (1 < i < p)$ such that: if $\Phi: C(X) \otimes A \to C(Y) \otimes B$ is a $\Phi: C(Y) \otimes B$ is a $A \to C(Y) \otimes B$ is a

$$\Phi(f)(y) = Adu(y) \begin{pmatrix} p \\ \theta \\ k=1 \end{pmatrix} \Psi_{k}(f(z_{k}(y)))$$

for all $f \in C(X) \otimes A$ and $y \in Y$.

Proof: Since Y is simply connected, there is a homeomorphism $H: X \rightarrow Y \times \{1, 2, ..., p\}$ such that the diagram:

commutes, where ψ is the canonical projection. For each $1 \le i \le p$ we define: $U_i = H^{-1}(Y \times \{i\})$, the homeomorphism $h_i : Y \to Y \times \{i\}$ given by $h_i(y) = (y,i)$, $y \in Y$ and $z_i : Y \to U_i$, $z_i := H^{-1} \circ h_i$.

Using Proposition 2.4. from [8] and the fact that Y is connected, we find *-homomorphisms $\Psi_1, \ldots, \Psi: A \rightarrow B$, a proper open covering $(V_i)_{i \in I}$ of Y(see [7], p.17) and $u_i \in C(V_i, U(B))$ such that:

$$\Phi(f)(y) = Adu_{i}(y) \begin{pmatrix} p \\ \theta \\ k=1 \end{pmatrix} \Psi_{k}(f(z_{k}(y)))$$

for $f \in C(X) \otimes A$, $y \in V_1$, is I. (The set of Ψ 's in [8], 2.4. depends on the local neighborhood but they can be chosen canonical [4], that is in a finite set, so that this locally constant choice of the Ψ 's is actually constant). The continuous maps $g_{ij}:V_1 \cap V_j \rightarrow G:=$ the topological group of all unitaries of the relative commutant of $\bigoplus_{k=1}^{p} (\Psi_k(A))$ in B, defined by $\bigoplus_{k=1}^{p} (Y):=u_1(Y)^*u_j(Y)$, $Y \in V_1 \cap V_j$, $Y \in V_1 \cap V_1$, $Y \in V_1$, $Y \in V_2$, $Y \in V_3$, $Y \in V_4$, $Y \in V_3$, $Y \in V_4$, $Y \in$

It is easy to verify that:

$$\Phi(f)(y) = Ad u(y) \begin{pmatrix} p \\ \oplus \\ k=1 \end{pmatrix} \Psi_k(f(z_k(y))),$$

fec(X) ⊗ A, yeY.

\$3.

Throughout this section X,Y will denote compact metric spaces (excepting Proposition 3.1.) and A,B finite-dimensional C^* -algebras.

In this section we give a local description of homomorphisms from $C(X) \otimes A$ to $C(Y) \otimes B$ by considering separately the cases X=point and A=E. We also consider certain classes of inner equivalent homomorphisms.

3.1. Proposition.Consider $\Phi \in Hom(A,C(Y) \otimes B)$, where Y is a compact space. For every y'sY there exist $V \in V(y^*)$, $\Psi \in Hom(A,B)$ and $U \in C(V,U(B))$ such that:

$$\Phi(a) = Ad u(y)(\Psi(a)), a \in A, y \in V.$$

For every yeY, consider the unital finite-dimensional *-representation A 3 a $\rightarrow \Phi$ (a) (y) ϵ M₁. Since this is a direct sum of irreducible *-representations, it follows that (\exists) p₁(y) ϵ {0,1,2,...} and u'(y) ϵ U(1) such that:

$$\Phi(a)(y) = Ad u'(y) \left(\begin{array}{c} n \\ \oplus a_i \otimes 1_{p_i(y)} \end{array} \right)$$

Since for any i, the map $Y3y \rightarrow tr(\Phi(1_{k_1})(y)) =$ =k, . p, $(y) \in \{0,1,2,\ldots,\}$ is continuous (here tr denotes usual trace on M_1), (\exists) $V' \in V(y')$ and (\exists) $\widetilde{\Psi} \in Hom(A,B)$ such that:

$$\Phi(a)(y) = Ad u'(y)(\widetilde{\Psi}(a)), a \in A, y \in V'.$$

We denote G:=U(B), $S:=U(\widetilde{\Psi}(A)^{C})$ (here $\widetilde{\Psi}(A)^{C}$ is the relative commutant of $\widetilde{\Psi}(A)$ in B), $G/S:=\{gS \mid g\epsilon G\}$ and $\Pi: G \rightarrow G/S$ the canonical map. G/S will be embedded into the topological space $\operatorname{Hom}(\Psi(A),B)$ by the formula $\Pi(g)(\widetilde{\Psi}(a)) = Adg(\widetilde{\Psi}(a))$, geG, aeA. It follows that we can define a continuous map $\Theta: V^* \to G/S$ by $\Theta(y)(\widetilde{\Psi}(a)) = \Phi(a)(y)$, yeV', aeA. Since S is a closed subgroup of the Lie group G, π has smooth local sections. Thus, there is $\widetilde{V} \in V(y^*)$, $\widetilde{V} \subset V$ and $\widetilde{u} \in C(\widetilde{V}, G)$ such that the diagram:

commutes, which ends the proof.

3.2. We consider on K(X) the topology given by the Pompeiu-Hausdorff metric d, defined by:

$$d(F,G):=\max(\sup_{x \in F} d(x,G), \sup_{y \in G} d(F,y))$$

by F(X) the set of all finite non-empty subsets of X. Then $F(X) \subset K(X)$ is endowed with the induced topology.

The proof of the following lemma is elementary and will be omitted.

Lemma. Let W be a metric space and a map $\Theta:W\to F(X)$. The following assertions are equivalent:

- (1) ΘεC(W, F(X))
- (2) the map $W3 \text{ w} \rightarrow ||f|_{\Theta(w)}||_{\varepsilon R}$ is continuous for every $f\varepsilon C(X)$.
- $\frac{3.3. \text{ Let T be a compact space and for each } \text{teT let}}{\text{E(t) be a C*-algebra. We say that } \left(\left(\text{E(t)}\right)_{\text{teT}}, \Gamma\right) \text{ is a } \frac{\text{continuous}}{\text{continuous}}}{\text{quasifield of C*-algebras}} \text{ if } \Gamma \text{ is a continuity structure for T and the } \left(\text{E(t)}\right) \text{ in the sense of J.N.G.Fell ([6]), i.e.: every aer is a map defined on T such that a(t)eE(t) for any teT and}$
 - (1) Γ is a *-algebra under the pointwise operations
 - (2) $\{a(t) | a \in \Gamma\} = E(t), t \in T$
 - (3) for any asr, the map T 3 t \Rightarrow | |a(t) | |sR is continuous.

Any continuous field of C^* -algebras ([3]) is a continuous quasifield.

Let $E_i = \left(\left(E_i(t) \right)_{t \in T}, \; \Gamma_i \right), \; i = 1, 2, \; \text{be two continuous}$ quasifields of C*-algebras. We say that $\Psi = \left(\Psi_t \right)_{t \in T}$ is a homomorphism from E_1 to E_2 if: 1^O every Ψ_t is a *-homomorphism of C*-algebras from $E_1(t)$ to $E_2(t)$; $2^O\Psi$ takes Γ_1 into Γ_2 (if we consider quasifields of unital C*-algebras, each Ψ_t is assumed unital). We say that Ψ is injective if each Ψ_t is injective.

We denote by ${\rm Hom}(E_1,\,E_2)$ (resp. ${\rm Hom}_1(E_1,\,E_2)$) the set of all homomorphisms (resp.injective homomorphisms) from E_1 to E_2 .

In the unital case we say that $\Psi^{(i)}=(\Psi^{(i)}_t)_{t\in T}^{\epsilon}$ ϵ Hom (E_1, E_2) , i=1,2, are inner equivalent, written $\Psi^{(1)}\sim\Psi^{(2)}$, if there is $u\in \Gamma_2$ such that $u(t)\in U(E_2(t))$ and $\Psi^{(1)}_t=\mathrm{Ad}\ u(t)\circ\Psi^{(2)}_t$ for any $t\in T$.

 $\frac{3.4. \text{ Let B be a C}^*\text{-algebra, } \underline{B} \underline{\wedge} \underline{M}_{n_1} \underline{\oplus} \underline{M}_{n_2} \underline{\oplus} \dots \underline{\oplus} \underline{M}_{n_k},}{n_1 = n_1 + n_2 + \dots + n_k, } F_n(X) := \{F \varepsilon F(X) \mid F \text{ has at most n elements} \}.$

For any $\Theta \in \mathbb{C}(Y, F_n(X))$ consider $E_{\Theta}(y) := \mathbb{C}(\Theta(y))$, $y \in Y$ (each $\Theta(y)$ is a discrete topological space) and $\Gamma_{\Theta} := \{Y \mid y \neq f \mid_{\Theta(y)} \in E_{\Theta}(y) \mid_{f \in \mathbb{C}(X)}\}$. Using Lemma 3.2. we see that $E(\Theta) := ((E_{\Theta}(y))_{y \in Y}, F_{\Theta})$ is a continuous quasifield of C^* -algebras.

Let $C:=Hom(C(X), C(Y) \otimes B), C_{i}:=Hom_{i}(C(X), C(Y) \otimes B)$ and let F be the constant continuous field on Y, of fibre B. We define a map:

$$F : C \rightarrow U \operatorname{Hom}_{i} (E(\Theta), F)$$

 $\Theta \in C(Y, F_{n}(X))$

by:

$$F(\Phi) := (\Psi_{y,\Phi})_{y \in Y}$$

where $\Psi_{y,\Phi}(f|_{X_{y,\Phi}}):=\Phi(f)(y)$ for $f \in C(X)$, $y \in Y$ and $X_{\Phi}: Y \ni Y \mapsto X_{y,\Phi} \in F_n(X)$.

 $\bigcup_{\Theta \in C(Y, F_n(X))} (Hom_{\mathbb{C}}(E(\Theta), F)/\sim)$

Moreover, Frestricts to a bijection of C_i onto $\bigcup_{\theta \in \widetilde{C}(Y,F_n(X))} \text{Hom}_i(E(\theta),F)$ which induces a bijection of C_i/\sim onto

 $\bigcup_{\Theta \in \widetilde{\mathbb{C}}(Y, F_n(X))} (Hom_{\widetilde{\mathbb{C}}(Y, F_n(X))} (E(\Theta), F) / \sim), \text{ where } \widetilde{\mathbb{C}}(Y, F_n(X)) := \{f \in \mathbb{C}(Y, F_n(X)) \mid e \in \widetilde{\mathbb{C}}(Y, F_n(X)) \}$

 $\bigcup_{y \in Y} f(y) = X$

Proof: Consider $F(\Phi_i) = (\Psi^{(i)}_{y,\Phi_i})_{y \in Y}$, i=1,2, with

 $F(\Phi_1) = F(\Phi_2), \text{ that is } \Psi^{(1)} = \Psi^{(2)}, X_{y,\Phi_1} = X_{y,\Phi_2} \text{ for any}$

yeY. Then $\Phi_1(f)(y) = \Psi^{(1)}(f|X_{y,\Phi_1}) = \Psi^{(2)}(f|X_{y,\Phi_2}) = \Psi^{(2)}(f|X_{y,\Phi_2}) = \Phi_2(f)(y)$ for $f \in C(X)$, $y \in Y$, hence F is injective.

For the surjectivity of F consider $\Psi=(\Psi_y)_{y\in Y}$ ε Hom, $(E(\Theta),F)$, where $\Theta\varepsilon C(Y,F_n(X))$ and define $\Phi\varepsilon C$ by $\Phi(f)(y):=\Psi_y(f|\Theta(y))$, $f\varepsilon C(X)$, $y\varepsilon Y$. Using the definition of $X_{y,\Phi}(y\varepsilon Y)$ and the fact that each Ψ_y is injective, we have $||f|_{X_{y,\Phi}}||=||\Phi(f)(y)||=||f|\Theta(y)||$, $y\varepsilon Y$, which implies

 $X_{y,\tilde{\Phi}} = \Theta(y)$ for any yeY. It follows that $F(\tilde{\Phi}) = \Psi$.

Finally, using 2.2(3) it follows that $F(C_i) = \bigcup_{\Theta \in C(Y, F_n(X))} Hom_i(E(\Theta), F)$.

 $\frac{3.5. \text{ Remark. Consider the continuous map } \phi : T \to T}{\text{given by } \phi(y) := y^2, \text{ } y \in T(:=\{y \in C \mid |y|=1\}). \text{ Define } \Theta \in C(T, F_1(T)) \text{ by } \Theta(y) := \{\phi(y)\} = \{y^2\}, \text{ } y \in T \text{ and two continuous maps } f,g: T \to C \text{ by } f(y) = 1, \text{ } g(y) = y, \text{ } y \in T.$

Jua 23753

Then $f \in \Gamma_{\Theta}$ and $g \cdot f \not \in \Gamma_{\Theta}$, thus $((E_{\Theta}(y))_{y \in \Gamma}, \Gamma_{\Theta})$ is not a continuous field of C*-algebras (see [3], 10.1.9.).

3.6. Let $\phi: X \to Y$ be a continuous surjective map such that $\phi^{-1}(y)$ is a finite subset of X for any $y \in Y$ and the map:

$$Y_3y \rightarrow \varphi^{-1}(y) \in F(X)$$

is continuous. This condition is satisfied if, for instance, ϕ is a covering map with a finite fibre.

Denote by $C(\phi)$ the set of all ϕ -compatible *-homo-morphisms from $C(X) \boxtimes A$ to $C(Y) \boxtimes B$ and by $C_i(\phi)$ the set $C(\phi) \cap Hom_i(C(X) \boxtimes A, C(Y) \boxtimes B)$.

Let $E:=((E(y))_{y\in Y},\Gamma)$ be the continuous field of C^* -algebras given by $E(y):=C(\phi^{-1}(y))\otimes A$, $y\in Y,\Gamma:=$ $:=\{Y_3y\to f|\phi^{-1}(y)\in E(y)|f\in C(X)\otimes A\}$ (To see that E is indeed a continuous field use Lemma 3.2. and standard partition of unity arguments). Let F be the constant continuous field on Y, of fibre B. Define a map $G:C(\phi)\to Hom(E,F)$ by $G(\phi):=(\Psi_y)_{y\in Y}$ where $\Psi_y(f|\phi^{-1}(y)):=\Phi(f)(y)$, $f\in C(X)\otimes A$, $y\in Y$.

Using 2.5. we easily obtain the following:

Proposition. The map G is a bijection which induces a bijection from $\mathbb{C}(\phi)/\sim$ onto $\mathrm{Hom}(E,F)/\sim$.

Moreover G maps $C_i(\phi)$ onto $\mathrm{Hom}_i(E,F)$ and induces a bijection from $C_i(\phi)/\sim$ onto $\mathrm{Hom}_i(E,F)/\sim$.

84.

In this section we prove our main result concerning the stability under inductive limits of C*-algebras of the form $C(X) \otimes A$ and isomorphisms of such C*-algebras.

4.1. We first clarify the local structure of 0-compatible homomorphisms with $\Theta(y) = \{\phi(y)\}$ where $\phi: Y \to X$ is continuous.

Proposition. Let X,Y be compact spaces, A,B finite-dimensional C*-algebras, $\phi:Y\to X$ a continuous map and consider $\Phi \in Hom(C(X)\boxtimes A, C(Y)\boxtimes B)$ such that:

$$\Phi(g \otimes 1_A) = g \circ \phi \otimes 1_B, g \in C(X)$$
.

Then, for each y'sY there exist a neighborhood V of y'a continuous map $u:V\to U(B)$ and a *-homomorphism $\Psi \epsilon \ \text{Hom}(A,B)$ such that:

$$\Phi(f)(y) = Ad u(y)(\Psi(f(\varphi(y))))$$

for $f \in C(X) \otimes A$, y $\in V$.

Proof: Fix $V \in V(y^*)$, $\Psi \in Hom(A,B)$ and $u \in C(V,U(B))$ given by Proposition 3.1. for the homomorphism $A3a \rightarrow \Phi(1_{C(X)} \otimes a) \in C(Y) \otimes B$. Then, for any $g \in C(X)$, $a \in A$ and $g \in V$ we have:

$$\Phi(g \otimes a)(y) = (\Phi(g \otimes 1_A)(y)) \cdot (\Phi(1_{C(X)} \otimes a)(y)) =$$

$$= ((g \circ \phi)(y).1_B).(Ad u(y)(\Psi(a))) =$$

=Ad
$$u(y)(\Psi(g \otimes a(\phi(y))))$$

which completes the proof.

4.2. In the situation of the above proposition suppose that Y is connected. Then there are YeHom(A,B), a proper

open covering $(U_i)_{i \in I}$ of Y and $u_i \in C(U_i, U(B))$ such that:

$$\Phi(f)(y) = Adu_{i}(y)(\Psi(f(\phi(y))))$$

for $f \in C(X) \otimes A$, $y \in U_1$, $i \in I$. For $y \in Y$, denote by $(\Phi(C(X) \otimes A)(y))^c$ the relative commutant of $\Phi(C(X) \otimes A)(y)$ in B. Since for any Y_1 , $Y_2 \in Y$ there is a (inner) *-automorphism of B (depending on Y_1 and Y_2) which maps $\Phi(C(X) \otimes A)(Y_1)$ onto $\Phi(C(X) \otimes A)(Y_2)$, $(\Phi(C(X) \otimes A)(Y_1))^c$ and $(\Phi(C(X) \otimes A)(Y_2))^c$ are *-isomorphic and hence:

$$U((\phi(C(X)\otimes A)(y_1))^c) \underline{\sim} U((\phi(C(X)\otimes A)(y_2))^c), y_1, y_2 \epsilon Y$$

(as topological groups). Assume also that the cohomology set $H^1(Y,U((\Phi(C(X) \boxtimes A)(y))^C)_c) \quad \text{is reduced to the distinguished}$ element for some yeY (and hence for all yeY).

Proposition Φ~φ*⊗Ψ.

Proof: Define continuous maps $g_{ij}:U_i\cap U_j\to G$, where G is the unitary group of the relative commutant of $\Psi(A)$ in B, by $g_{ij}(y)=u_i(y)^*u_j(y)$, $y\in U_i\cap U_j$, $i,y\in I$.

Since g_{jj} , $g_{jk} = g_{ik}$ on $U_i \cap U_j \cap U_k$, $\{U_i, g_{ij}\}_{i \in I}$ defines an element in $H^1(Y, G_c)$. As $H^1(Y, G_c)$ is trivial, we may assume that for any iel there is a continuous map $v_i : U_i \to G$ such that $g_{ij}(y) = v_i(y)v_j(y)^*$, $y \in U_i \cap U_j$, i, jel. Define $u : Y \to U(B)$ by $u(y) := u_i(y)v_i(y)$, yell Since $u_i(y)v_i(y) = u_j(y)v_j(y)$ for $y \in U_i \cap U_j$, i, jel, the map u is well-defined and continuous, and we have $\Phi = Ad$ u or Φ

where for each k, X_k is a compact space, A_k is a finite-dimensional C^* -algebra, Φ is an isometric *-homomorphism such that:

$$\Phi_k(g \otimes 1_{A_k})_* = g \circ \Phi_k \otimes 1_{A_{k+1}}, g \in C(X_k)$$

with $\varphi_k: X_{k+1} \to X_k$ a surjective continuous map. Let $X:=\lim_{k \to \infty} (X_k, \varphi_k)$

Assume that for any $k\geq 2$, X_k is connected and $H^1(X_k,\ U((\Phi_{k+1}(C(X_{k-1})\otimes A_{k-1})(x))^C)_C)$ is reduced to the distinguished element for some $x\in X_k$ (and hence for all $x\in X_k$). Here $(\Phi_{k-1}(C(X_{k-1})\otimes A_{k-1})(x))^C$ is the relative commutant of $\Phi_{k-1}(C(X_{k-1})\otimes A_{k-1})(x)$ in A_k .

We thus obtain the following:

Theorem. The C*-algebra lim $(C(X_k) \otimes A_k, \Phi_k)$ is *-isomorphic to the (spatial) C*-tensor product $C(X) \otimes A$.

4.4. The isomorphism problem for the above considered inductive limits can be settled in certain cases by using the following result. We give a proof for the sake of the completeness.

Proposition. Let X,Y be compact spaces and A,B unital C*-algebras with trivial centers. Then $C(X) \otimes A \sim C(Y) \otimes B$ if and only if X and Y are homeomorphic and $A \sim B$.

Proof: Suppose that $\Phi: C(X) \otimes A \to C(Y) \otimes B$ is a *-isomorphism. Since Φ maps $Z(C(X) \otimes A)$ onto $Z(C(Y) \otimes B)$, $C(X) \circ C(Y)$, i.e. X and Y are homeomorphic.

Let m be a maximal ideal in C(X) and let χ be the corresponding character of C(X). We consider the surjective *-homomorphism $X \otimes id_A : C(X) \otimes A \rightarrow \mathbb{C} \otimes A$. Since $\ker(X \otimes id_A) = m \otimes A$, we have $A \sim \mathbb{C} \otimes A \sim C(X) \otimes A / m \otimes A$. But $\Phi(m \otimes 1) = m' \otimes 1_B$ with m'a maximal ideal in C(Y), since Φ maps $C(X) \otimes 1_A$ (= $Z(C(X) \otimes A)$) onto $C(Y) \otimes 1_B$ (= $Z(C(Y) \otimes B)$). We have $A \sim C(X) \otimes A / m \otimes A \sim \Phi$ ($C(X) \otimes A$)/ $\Phi(m \otimes A) = C(Y) \otimes B / m' \otimes B \sim B$, which completes the proof.

REFERENCES

C*-algebras", Preprint.

[1]

M. Dădârlat: "On homomorphisms of certain

[2]	M. Dădârlat: "Inductive limits of C^-algebras
n per engles per engles	related to some coverings", Preprint.
[3]	J.Dixmier: "Les C*-algebras et leurs représenta-
	tions", Gauthier-Villars, Paris, 1964.
[4]	E.G. Effros: "Dimensions and C*-algebras", CBMS 46, AMS, 1981.
[5]	E.G. Effros: "On the structure of C*-algebras: Some old and some new problems" in "Operator Algebras and Applications" Proc. Symp.Pure Math. vol.38 part 1(pp.19-34), Amer.Math.Soc., Providence, R.I., 1982.
[6]	J.M.G.Fell: "The structure of algebras of operator fields"; Acta Math.106(1961), 233-280.
[7]	F. Hirzebruch: "Topological Methods in Algebraic Geometry "Springer, Berlin-Heidelberg-N.Y., 1966.
[8]	C.Pasnicu: "On certain inductive limit C*-algebras Indiana Univ.Math.J., vol.35 (1986), 269-288.
[9]	C. Pasnicu: "Tensor products of Bunce-Deddens algebras" Proceedings of the tenth Operator Theory Conference, Bucharest, 1985, to appear in Birkhäuser Verlag.
[10]	K.Thomsen: "Inductive limits of homogeneous C*-algebras", Preprint.
[11]	K.Thomsen: "On the diagonalization of matrices over $C(X)$ ", Preprint.
[12]	K.Thomsen: "Approximately trivial homogeneous C*-algebras",

Preprint.