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ON FLOWCHART THEORIES I

. by Gh. §tefé’nescu‘

 to the memory of C. C. ELGOT"

Abstract. We give a calculus for the classes of "deterministic flowchart
schemes with respect to the strong equivalence relation, similar to the calculus of

the classes of polynomials with respect to the reduction of similar terms.



4. Introduction

_A. This paper is an attempt to develop Backus' ideas [6,7], narﬁely to construct

a mathematical theory in which program transformations are allowed, and in which

b3
correctness can be obtained using simple algebraic computations.

As program representation we use flowchart schemes. Many of their ulc;eful
properties are known from [24, 27,:32],:blit with the above aim in mind we prefer
the aigebraic viev\;point of Elgot [17‘, ‘18].- It is well Enown that the opefations of
"structured programming”" are not enough for representing all schemes [25, 26],
essentially due to their one-input/one-exit feature. The basic Elgot's idea in [18] is
to use many-ihput/many—éxit schemes with composition, tuplin-g and iteration as

basic operations. Pictorially, these operations are
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their intended interpretation at the semantical level will be given in Subsection B.
Every scheme can be obtained from the atomic schemes using these operations. - .

We ‘allow the program transformations which respect the strong equivalence

relation in [18].

The - main point of this paper is to give a calculus for the classes of

deterministic flowchart schemes with, respect. to the strong equivalence relation,

essentially similar to the calculus of the classes of polynomials with respect to the :

reduction of similar terms.
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B. For the begining we fix the standard model for the interpretation of
flowchart schemes. This model, proposed in [17] by Elgot, consists in the following.

Fix a set D representing the set of all value-vectors for the registers in a

L m ;

computing device. A program scheme F = ‘1_] is interpreted as a partipl
: : N

function f : [m]%D e [n]®D (in this paper [m] denotes the set }1,...,m} with

the meaning that if program execution begins at line k&[m] of the prografn with
initial value-vector d and if f(k,d) = (j,d") , then d' is the new value-vector when

program halts at line je[n].

The set of all partial functions from [m]xD to [n]xD will be denoted by

»anD(m,n); when D has exactly one element we shall write Pfn, instead of PfﬁD .

The intended interpretation of the above informal operations is the following.
vComEosition: for féanD(m,n), gGanD(n,p) we define f ‘9 € anb(m,p) as -
(f _‘-DQ)(j,d) = q(f(j,d)) , for (j,d) € [m]xD.
Tupling: for fe anD(m,p); gePfng(n,p) we define <f,g>y € Pfap(m+n,p) as
< g>p0,d) = it jelm] then £(j,d) else g(j=m,d)" , for (j,d) € [men]xD.
o . R
Iteration: for f&anD(m,rm-n) we define f GanD(m,n) as

(jr_m’dr)’: where (jr’dr) is the last defined value (i.e. jr>m) in the
ag Do : : : : ; ;
fes ,dE = segugnce: (JO,dU) =(j.d) and fpr k 20, (Jk+l’dk+l) = f(]k,dk);

undefined, .if'such an r does not exists,

- for (j,d)€ [m]xD.

Our basic algebraic structure of strong iteration theories in Section 1 is

obtained having this example in mind.

-
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C. We come back now to the syntactical level in order to obtain a rigurous
definition for flowchart schemes. The usual programs, written as flowchart
schemes,. allow two consecutive generalizations. - The final result is partially
similar with Petri nets [28] (where two kinds of elements appear: transitions and

‘places), and differs from all ré)presentat;ions of flowchart schemes listed in [4,ch.4].

VThe first generalizatioﬁ, appeared in lé70~197.5 in the cr;ntext of the study
of the strong behaviour of progfam'échsmes [18, 24, 271, consist in replacing the
concrete statements from vertices with symbols. More exactly, consider a set =
01‘; double-ranked variables, i.e. every g€ 3, has a number G"in of inputs and

another number « ) -3 similarly,

N
in’ out

. of outputs -another writing is ¢¢ 2, (<

for ‘a sequence e in the free monoid I, € (respectively, eout) denotes the

sum of inputs (respectix)ely, the sum of outputs) of the letters of e.

The second. generalization (which*.- as far és I know - appears only in [14])
considers an- abstract "theory" T , whose'morphi.srrvws T(m,n), myn 20 :aré useéj for
connections between vertices in a flowchart schemes. [For thé.lusual flowchart
schemes this theory is the theory of partial funcfions Pfn, , and the morp‘)lnwisms can
be seen as deterministic transsmisiéns of control betWeen; ver@ices,,without change

Qf memory.] .

The usual flowchart scheme in Figure l.a can be ordered as in Figure 1l.b and

can be briefly represented as in Figure l.c (on the basis of connections).
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Figure 1,

In conclusion, a program scheme

is abstracted to a S -flowchart over T

with m inputs and n outputs, which is defined as a pair F = (l,e), where
e ezﬁ* . is a sequence of its vertices, and

léT(m+eO ,n+ein) : " _gives the connections.

ut

Denote this set by Fl_(m,n). A flowchart theoryis FI_ -, for some S and T
, g T S

This idea of using an abstract theory T for the transmision of data between

vertices'in flowchart schemes is very important, even if the problem of the type of

T is not completly solved. In this paper we pled for the use of strong iteration

theories as support for flowchart theories.

.The next step is to give a precise meaning to the above informal operations on
fléwchart schemes. Sinzﬁ:efevery morphism in T : can be seen:' as “an "empty
flowchart)' composition, tupling and iteration must be defined in T. In Section 2
we shall see how these operations can be naturally extended from T to arbitrary
flowcharts. | e

It remains to clarify the interpretation of a flowchart in a concrete

computation theory. This is given by the Elgot formula (see the begi?w\ing of

Section 6).



6

D. Three advances of the present pacer are worth mentioning here: .

(1) The introduction - in a consfruttive way - of a natural equivalence relation =

on flowchatrs in FEE,' 1+ [Since in the case of usual flowcharts (i.e. Fl Pl = is
9 : L LRI

the strong equivalence relation in [18], we equally call = the strong equivalence

0

rclatio_n.]

- . (2) The use of strong iteration theories as a necessary and sufficient semantical
model for support theories in order to _-*:-”;,nequivalént flowcharts have the same

interpretation.

(3) Our main technical result says that the classes of =-equivalent 5-flowcharts,
over a sfrong iteration theory T is the strong iteration theory freely generated by

adding 3 to-T.

l_et us make some comments on these.

€D) ]'.fl is well known the necessity of'studyin‘g some eqUivalenQe relations on
: prbgrams (18, 27, 35]. Since it-is_undecidible. when two programs are functignally
equivaleﬁt (i.é. when tl{ey define the sarﬁe input~output'par'tial funct‘i)on) for
extvremly poo‘r classes of nonmonadic progfams [27], we must festrict .cﬂn‘selfs Lo
the strong equivalenée relation (ii.e. two prograrﬁé are strongly equivalent if for
each inpuﬁ th‘ey make the same steps in execution). It is known from Elgot's papers’

whb :

(for example [9) that the classes of strongly equivalent flowchart schemes form an

{iterative? algebraic theory, but this result is not constructive. We need a good

flowchart representation and simple computing rules to check directly the

algebraic structure of the classes of strongly equivalent flowchart schemes.

Beside the flowchart representation in Subsection C it is irhperative to .use an
equivalence relation containing the following two basic relations (the pictures from

[30] are also useful).



¢

(i) F=+F' iff F can be obtained from F by adding some unaccessible
vertices.
Example. F2-»F1, with F1 and F2 from Figure 2. & :

>

(s) F—=3F' iff F' can be obtained from F by identifying some vertices with
the same label and whose output connections are equal after identification (or F

can be obtained from F' by partially unfolding some vertices).

=

Example. F2-= F3, with F2 and F3 from Figure 2. &

Nonexample. There is no F  with only one g-vertex such that Fo4 2 F;

particularly, F& *~F3 (F4 and F3 are those from Figure 2). a

Figure 2.

Our equivalence relation = is the congruence relation generated by = U —>.
Theorem 4.1 gives a gbo_d and constructive characterization for this relation and
Corollary 6.3 says that = is a generalization of the strong equivalence relation in
the abstract context of Fla .

2T

In conclusion, we belive that in the deterministic case the basic flowchart

theory is that of the classes of =-equivalent flowcharts.
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(2) We need a semantical model in which ?;E-eguiva!erwt flowcharts have the
same interpretation. Such model pmveé to be the strong iteration tfw;a-ﬂ,r“ies (see
their axioms in Section 1). The sﬁronq iteratioﬁ theories (as well as if.erai;ion
theories in [11, 20; see 21, for their name] and theories with iterate in [13, 14]) are
genm‘-a!izétionsof both point_éd iterative theories in [10] and rational theories in [31.
The new axir;m (I4s) is QEM Its necessity for our aim (Z-equivalent flowcharts
have the same interpretation) is prdved in S‘ection 7, while its sufficiency is
contained in the proof of our main theorem (Theorem 6.1).: In conclusion, we take

for the support theory a strong iteration theory.

(3) We can now try do describe the algebraic structure of Fig T/?”:? , when T is

“n 3

a strong iteration theory.. The axioms (C1), (C2), (T1), (T2), (10p), (12) and (I3p) in

Section 1 hold even in Fl,, .. ‘The left side of the equation.in (T3) (respectively, in
5 “is

: (T4), (I1) is —» (respectively, -—3-) equival_eht with the right side. A technical

analysis of (I4s), based on the characterization theorem for = (Theorem 4.1), i
complethes the: pictures FEZ,T/E is a strong it‘.e;‘atioh _theory,. foo.

Moreover, the property that i&”ﬂeqﬁiv‘alent flowcharts have At'hé same
iz}terpretation' in all strong ihterétion theories anld the Qniversalvity property (like in
[9, 14]) show that F;z’T/?fg is the‘stl‘qng iteration tiwleaory freely generated by

adding 2, to the strong iteration theory T.

The first proof of the main result in this paper appeared in [33]. A partial
similar result was obtained for. the nondeterministic case in [34] using as support
theory a matrix theory. In order to have a uniform representation for usual

flowcharts we still represent morphisms in Pfn, also as matrices over 10,13.
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E. In Section 1 strong iteration theories are introduced. Section 2 gives the
b‘asic definitions 0|;1 ‘flowchar{:s;. "The basic cong‘z‘ue‘a‘nce_1“eiati0n = is"dafined in
Section 3, using as support theory .T a paraiteration theory; it is shown that
F"l:}:’-r/ﬁ is a paréiteration theory. A characterization theorem for. == is giveh in
Section Qg*l this is used in the next section to prove that FE&S;;T,%ES a strong iteration
theory, if T-is so. The: méin theorem is proved in Section 6 (using all the above
results). Section 7 gives a comparison of different types of theories. Some final

remarks are given in Section 8.



1. STRONG ITERATION THEORIES

First of all we will define strong iteration theories. For the sake of simplicity
we work in the nonsorted case, but all the results in this paper hold for sorted

theories, too. v

An algebraic theory T in[29, 17, 1] is given by : a famil«yﬁof morphisms T(m,n),

m,'n 20 [when T is known in confext we allow the notation f:m~ypn, instead of
f& T(m,n)];’ two binary operations: composition e and tupling <, > ; and some
distinguished = morphisms 1.€ T(n,n), O e T(0,n), and xiné; T(].,n),. for iel[nl
Moreover ¢ and <,» have to verify the following six axioms. With the

composition T has to be a category; this means that

(Cl) f«(gh) = (fag)’hv, for. fames N, g =»p ar{q_ h': P~ q;.

(CZ.) f‘ln =fis ln{f s forafsm --f'>a» n.
_ For axiomatizing the tupling we need tv;/b’axioms for its extension to an -arbitrary
number of morphisms -

CPLY < agshdd s << o), R, fqr feszamm —-«5a-q; g n->q and h:p m;\»q,

(T2): > S > <D Pefeand <O=D1, for ’f : ‘rh. 1,

and two others for the unique source spliting of an arbitrary ‘morphism into

components,
(T3) fiz'xi”.<fl,....,fn>,for fpeesf 2 1-3n,  andi€[nk

(T4) <xrr{-f,.°.,xr?ﬂ~f> Zf, for f:m—»n.

A preiteration theory. T in[11] is an algebraic theory in which an iteration
+ : ; l
: T(m,m+n) =% T(m,n), for m,n>0.

is defined.
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Let us agree on the following: 1 _+0'“and 0 _+1 denotes <x seni X
- myn m b m

m-+n m+n

el 7o m+n>; the sum of fE&T(p,m) and g&Tlg,n) is

and respectively <x

E e ER R o o ) S o. (\m - ‘ 29t © NS EAT :
defined by f+g= <f(lm+0n), Q(Um’ln»’ 5. denoctes <Dm+ln, lm10n>, every
partial function ye Pfa (m,n) can be seen as a morphism Yt in an arbitrary
preiteration theory T (the interpretation of the nowhere defined function’
“'?j“"m,n :[m] —e$[n] is e On)’ but we agree to dropp the index.

Before the main definition we denote three axioms for iteration.
(10) (1"(ln+g))+ = f+g , for f:m—smen, g:n —#ps
(I3) g(f(g+lp))+ = (gf)* , for f:m->ntp, g:n-%m;

. (14) if f(y+1 )=yg then f" =yg", for fem-3m+p, g:n~n+p and a
e y p

" function .y s [m]=>[n].

DEFINITION 1.1. A preiteration theory is a strong iteration .theory if the

iteration fulfils the following five axioms:

(I0p), which is (10) only for g of' the _form‘ Bl or ‘ln+0r;
(Il)‘ f(f%?ln> = o .f_or fim —> men;

(12) (f(<‘1m‘,].m> + ln)f: okl .for f:me—gp memn;
'(Iép), which is (I3) only for g of the form ln+0q;

(I4s), which is (I4) only for surjective functions vy. [

Comment 1.2. As we will see in Corollary 1.10 and Proposition 1.12 the

'res-trictions in (10), (I3) and (J4) was imposed only since we want an axiomatic
system which can be easily verified.

The axiom (I0) says that the iteration has a "uniform behaviour" with respect to
thp-last n variables of f:m «;«)» m+n (hence these Iaét variables can be seen és

parameters). By (I1), the iteration gives a "canonical" solution for the Elgot
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recursive system x = f<x,lﬁ>. In this context, the axioms (I2) and (I}p) show that
the canonical solution of a system cah;':\fj'e expresses in terms of the canonical
solutionsof its components in a way similar to the Causo subsﬁitution method for
solving linear systems (Pmpf;sition 1.9, below). The last axiom expresses the
preserving of tf'.we lcanonica} solution when we rename the variables, not necessérély

in an injective way, but in a consistent way, i.e. if two variables have the same

rename then the right side of their equations are the same after renaming. Il

Essentially, the diference between strong iteration theories, iteration thecries
in [21] and theories with iterate in [13] consists in the power of the'axioms of type

(I4). In theories with iterate it is used

(14t), which is (14) only for transpositions vy = sg ;

and it follows that (I4) holds for arbitrary bijective functions. In iteration theories
it is used the following equational axiom, stronger than (I4t),
(I4p), which is (14s) applied only if there are h: n - m+p and
YyreeesY oy ¢ [m]=—[m] with y;y =y, ¥i€[ml, such that

m L) e
gi= h(y+lp) and f = <Xy yh(yl“p)’f”’ X myh(ym+1p)>. :

Examples and_nonexamples. It is well known that all "natural  iteration":

theories fulfil all the axioms (10), (I1), (12), (I3) and (I4) listed above. Particularly,
all w-continuous theories in [2], rational theories in [3], pointed iterative theories
in [10], and metric iteration theories in [36] are strong iteration theories; also the

- iteration defined in a partially additive category in-[5] fulfils these axioms.

-~ The following three examples of ws-continuous (hence rational) theories are

very important ones.



Example 1.4. (basic exam le) Pfn with the operations from Subsection B of
=Xample 1.4 p D _ ] :

(u_(:‘,‘.‘;» b Sende of [a1)

Introduction is a strong iteration theory; particularly, Pfr is the initial¥strong
iteration theory. [When D has at least two elements ?MD is not ideal, hence is
not a pointed iterative theory.] O

»

Example 1.5. Let $2 be a ranked aphabet; the theory Clg,

CTﬂ(m,n) = «{m—tupies of partial $L-trees with leaves labeled in -ix?,...,xg §%

3 N?l
with the first order substitution (trees for leaves)‘[{ilas composition, the natural

tupling, and the iteration given by Kleene's fix point theorem is a strong iteration

theory.

The subtheory Rﬂ' of rational §e.-trees in CTSL (i.e. of trees obtained by
unfolding the usual, finite §2-flowchart schemes [23]) is a strong iteration theory.
[t follows from [20] that Ry, is even the strong iteration theory freely generated

by -0

Example 1.6. The theory generéted by the relations over a set D and denoted
by F{eiD (more exactly, the morphisms in RgalD(m,n) are the relations between

[m]xD and [n]xD, also represented as matrices of relations over D) 'With the
composition of relations, the tupling given by <[f], [P = [;] and the iteration

‘ g}\/en by Bt gl =R al, e [f1% = L [flu [f]2 U... g ifan

féReED(m,m), g(»;»ReiD(m,n)‘ is a strong iteration theory. U

Example 1.7. The theory FE,)M T/;; of the classes of strongly equivalent
; 9

e

‘flowcharts over a strong iteration theory T is a strong iteration theory (Theorem

5.1); particularly Fl_ Pfn /= is the strong iteration theory freely generated be 3I.
9 . 5 -

2%

[When Qﬂin =1 ;2 Noecll tHe theories Ry1 and‘ FES},E’W /E:'Z are isomorphic; the last

theory has the advantage of consisting only in elements of finite structure.] &
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‘Nonexample 1.8. For 32 with only two elements: 1. €%2(1,0) and gef2(1,2)

Esik proved in [22] that the quotient of RQ by the congruence generated by

/\ -
C
Py i

is an iteration theory which is not a strong iteration theory. Lj

More about the comparison of different types of theories and about the
necessity of'stronq iteration theories will be said in Section 7. In the remainder of
this section we will prove that the restrictions in (I0p), (I3p) and (I4s) are

superfluous.

While strong iteration theories, iteration hc‘oueo, and theories with iterate
differ by their axioms of type (14), in the presented axiomatic system there is

another new part. The "pairing" axiom in [13, 21]

\ - i -+ + ( o +
(9; <ol - ek ,ln+p>),ig1\.g<f ,1n+p>) .

for f:m-»-minep and g:n —~men+p,

is replaced by two simpler ones (12) and (I3p). Before proving this we spec 1fy a

technique for obtaining new identities.

(TECH) Suppose (15) and, (I4t) hold in T. Given a system f: m'mm-l-ﬂ-’rp‘,
g Nep MENHD compute with (P) the f-component and the g-componei 1t of its .
solution <f,g> el f <h',lp>, respectively h, where h= (g(f' ,lm-_p>)+. For the
permuted system <g(fs ol ) f(s 1 )> again with (P) compute the g-component
and- the f-component of its solution. Identify ti.'w;a f-component (respectively, the
g-component) of the solutions of the gi;/en s?stem and the permuted system. The

conclusion is: these two identities hold in T. O



- PROPOSITION 1.9. Suppose that we have a preiteration theory T in which
(10p), (11) and (14t) hold; then the pairing axiom (P) holds in T iff (I12) and (Dp) hold

s T

Proof. (a) Suppose that (P) holds in T. (TECH) for the g-component of the
system <g((]m:4~lm+0p), f(lm+0m+l > provides (I3); and for the f-component of
the system <f, lm+0rmp> provides (12).

(b) SQppose that (I2) and (I3p) hold in T. It can be proved that

(<) (<f,g>(l 40 5l )) T 1p>> fcn*' f Mm-m+p and g: n-mp.
Indeed, with (I3p) we have

(1,+0) (<f,g>(lm+0n+lp))+ = -((1m+[]n)<f',.g>)+ L ;
now (&) follows by 'using (),

; : : +
-(<f,g>(lm+0n+lp))+ = <f,g>(lm+0n+l_p) <f+,..‘,_1p> = <fF, o<f ,1p>>.

e, .
Using (I4t) and (I3p) it follows that (I3) holds for g ofvform U +} . Indeed, for

feriqes q+p we have

(0,+1)(f(0, e )) = (0,+1 )dq (s £(0 ol p)(s:%-lp)f

B N : It -+
= (1q+or) (sq f(lq+0rflp)) = ((lq+0r)_sqf). - ((0P+1q)f) .

A similar computation as in (&), but with (I3) for g = Um'+1n leads to

»(fﬁ) (<f?g>(0m+ln+p))+ = <f+<g+,1p>, g, for f:m-»ntp and g: n=~‘%ﬂ%p’.

For f, g asin(P), using in turn (12), (), (I0p) and (F) we have

PSR AR - +
<o “.(<f’g>(lm'*Om'ln+px‘1mpon4 N N >(<1m+n’1m+n>+lp))

Bl ot
= (<f,g>(1_m+0m+ln p)(] +0 41m+n+p>)

: ; + + +
= <(f(1m+0m-ump)) ; g(lmmm.u_mp) <<f(1m+om+1n+p>) ; 1mm+p> >

-+ + +
= (Kf", g<f ,J.m_p>_>(om+1n+p))

+ + + : + +
= <f7 <(g<f ,1n+p>) ’,1p>’ (g<f ,1mp>) >

This proves (P). U
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COROLLARY 1.10. Suppose that (I0p), (11), (12), (I3p) and (I4t) hold in a

preiteration theory T; then (I0) and (I3) hold in T.

(FECHD). ~Fop - frm-smsn  and g:n-¥p, this technique applied to the

f-compoenent of the system <f(1 Op}, q(0 1.)> extends (I0p) (in other

+ +
m+n m+n p

context this was proved in [21]). For f: m-—+n+p and g:n-+m the technique

(EE i g-component of t s +1 %
_.(TECH) applied to the g-comps nent of the system <f(0mi- n+p)’ g(lm+ On+p>>
extends (I3p). [

In a slightly different form the following identities are known from [20, 14].

COROLLARY 1.11. In a theory with iterate the following hold.

(a) <f, g(Om-’.- 2

o+ o+ ‘
1+p)> = ,ln+0p> <g+,lp>, for f: m-—»m+n+p, g:n -:z;.n+p;"

- (b) <'I°(lm+0n+1p), g(0m+1n+p)>+ =< ™S, for fimes m+p and g: n-pn+p;

3 (fsq : )+>)+a

- 4+ P Gy
() g <ln’ (t<g ,ln+q>sn) 2= (g<1rn+n m+n

for g:m-sminsq, f:q ;;»m--}»mq. :
(Therefore (a), (b) and (c) hold in a strong iteration theofy, too.)

Proof. For(c:) use (TECH) for the g-component of <1"‘,g>s(jwrn o

PROPOSITION 1.12. The axiom (I4) holds in a strong iteration theory.

Proof. The first step is to prove that (I4) holds for arbitrary injective functions
y. Using (I4) for bijections, we can suppose that these injections have the
particular form L Oq“ Consequently, let f:r-»r+ep, g:req-+reqep be such that

0 1 )= (] nce g = -0 _+ ! si : he ire
f(].lg Oq4 lp) = <'l’r+0q)g’ hence . g = <f(J_P+ Uq' 1p), g>. Using (P) we have the desired

identity <11‘*‘Oq>9+ e
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For the second step, suppose that f(y+1p) =yg, for . f:m-pmep, gsn-snep
and a function y. Take a decomposition of y d: YV where "y is a
; surjective function and Y is an injective function; take two functions u : T =R
such that uy, = 11‘ and v:n-sr such that Y= 1F; and set f'= yig{wlp). It
follows that f(ysé-lp) =y f' and uf'(ysyiJr l_p) = ¥;9- From the first identity and (I4s)
we have f = ysf‘+. - From the second one we have f’(yi+lp): yig(vyi+lp):

-

uf(yoyi\[yi»n-lp) = uf(y+lp) = uyg = YiYs hence by the first step we obtain ' = ¥i9 -

Consequently, ' = ysyig+ =yg"



2. Flowechart theories

As it was shown in Subsection € of Introduction for a flowehart theory Flg, T
;i oo §
(see its definition there) we need a double-ranked set of variables for atomic

flowcharts and a "theory" which aqives morphisms for connedions. In this section T
o] |

is supposed to be a preiteration theory.

We will use some standard notation : a flowchart Fé& HS’ T(m',n) ise. F = (he),
< g 4§

where eg T and l(&T(rmueout,n-vem) 3 q denotes € ; and <i,t> is the spliting

of | into the input i:m - n+ein and the transfer t: eout“%’ mem.

'—-m_._._m = 1..'\ ;S o e D wee g
’ X >0 {
| LA Y=l !
Ve | 3

l i Aes] , f

Xi=x=~] 4
‘ T x% 1 |
| & : ’
{ LS . |
kd- e 1

over a concrete theory T is a mixture of concrete and abstract elements. Here is
an example of a unusual flowchart (see Figure 3). The flowchart is F = &

&
where i,tc&%ﬁfnc 2(1,2) (here ¢ denotes the set of natural numbers) are
1,:; 0 S

i(1,(¢,y)="if x =0 then (1,(1,1)) else (2,(x,1))," MV (x,y) e ws

t(1,(x,y)="if x<1 then (1,(x,y)) else (2,(x-1,y))," M (x,y) € . T



The operations on flowcharts {informally defined in Subsection A of Introducti-

on) have the following exact definitions.

DEFINITION 2.2 (basic operations on flowcharts),

Composition: for F :mesn, F':n-pp we define F-F': Mm=yp as

BR! - (<1(i'+1q)(1p+sg,), tL+0 410> ee).

% q
Tupling: for F:m-pp, F'en-dp, using x= lp+q+0q‘ and. xi= lp+0q+lq, we_

define <F ,F> : m+n-3p as
SEAED = (e, i, Exatie o pel)l
Iteration: for F :m=pm+n we define F¥ : m—n as

Blheg <1*,1mq>, g fE

Comment 2.3. The complications in the definitions of iteration of flowchart
schemes in [19, 4], or more recently in [12], are due to the fact that it was not used
a support theory, with a defined iteration. In a slightly different form the present

definition of iteration appeared in [14]. m
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3.A flowchart eguivalence

Here, and in Section 4, we will suppose that T is a paraiteration theory, i.e. a

preiteration theory in which iteration fulfils the r)dmwwie) axiom (I0). This axiom

- Is necessary for the com patibility of iteration with the equivalence relation
= (to be defined below).

s

The basic equivalence relation == can be introduced as the equivalence

- : ¢ = i S e :
relation generated by the natural relations e sy =% In Subsection D of

Introduction. Roughly sp akmq, two flowcharts are =- Uqulvaient if they make the
same steps in execution. The following claim (which holds true, see Corollary 6.3)

gives some hints for the understanding of this notion.

CLAIM 3:1.. When T =Pfn  and Tipy = i, VMge3 , two flowcharts are

=-equivalent if féthey unfold the same tree (i.e. = is the strong equivalence in [181).[]

: ASE i SEe '
We now give the exact definitions of ~-» and > in the abstract context of

Fly T Before this, we need some notation ¢

v

For a string eef¥, (el dpnotes its length and el’””e[e| its letters. For

& -
denote by PSM‘.,,(P,G') the set of all partial furu,;onSrfrom Liet]l to [ie']

\M*

e,e'ey
which preserves J.etters, iie. if f(k):j thon e :e'j 3 clearly P’Strz‘, is a

3 ~sorted algebraic theory. Every partial function yePStr_ (e,e")  has two'

%

naturally "block" extensions to inputs and to outputs denoted by

y. and respectively, y =>e!

s o, wpp!,
ins SRt

Sie =
in out out out

[In fact, the in-extension is the unique functor from P*Sﬁ:r:,ﬁ to Pfn, given by
: 3
e
€ —~% €. and ! '
in

@%’ O(S s similarly, with

+ 1 + 0,
‘"ekml)in (e.k)in wl<+l“°e e )in

the out-extension.] Str denotes the 37 -sotred algebraic subtheory of PStr

o

which consists of all totally defined functions.

) 3
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DEFINITION 3.2 (basic relation —%),The flowchart F is sirulated via y in F'

(also denoted: F w;;i;n ), i yt:-';:Stry(e,e") and

N e

Kfl' ntYind = Yt Yout

Example 3.3. Take T =Pfn, with its morphisms represented as matrices over

{O,l} ; denote by lm the identity m=x m matrix and by Om = the zero mxn
. ! ; $

matrix. Two generic examples of simulations are the following.

3.3.a (case when y is an injective function).The following

‘ - ¢ -
T} - mf|A, f B B, ‘]
miA|lB , 1F . 3
B i 5 e () D D = B -
te T [191 Oleg ievJ B 1 12 i
& LA A = 1 N
. e

e i 3 - S '
e s e el other words,
S0 By 2 2 :

is a simglatio’n iff
iff Fl can be obtained from F by adding an inaccessible

oy |

[ =
ey Oy, et

- part €'

it

3.3.b (case when vy is a surjective function), The reader is invited to extend the

following particular example in order to obtain exemples of simulations via

arbitrary surjective functions. The following.

n .
n ‘*A‘ ,‘ B ] i
b m|AjB
Po= ells@. 4D D Celdileny =P
1
i 11 12 1 bl - D
el C, Dy 59 1“3}
A, B U B, A B
is a simulation iff C‘x D“ . U 1‘)12 = 1¢ pl ,where U isthe natural



3 :: . . b . 7
extension to matrices of the Boolean union in §0,1}. In other words, F‘l is

gl

i
=

i Frait F‘l can be obtained frem F by making two copies of

simulated via

i
21
i
}

-
<

fe)
<

==

its vertices and sharing their internal connexions, i.e. by a partially unfolding of its

- S i
vertices., L.

>

= These examples show that we can take as the exact de‘fi_nitionfgf’cr wl«-;v and -ws-a}s'g
in the abstract context of F‘EZ',T’ the restrictions of the simulation == to
injective functions y ' and respectiveiyﬂ to surjective functions y. Since
-G 2. w-l-;» (Lemma 4.2.a below) it follows that «5-‘; U <2 and —» generate the

same equivalence relation ; in this section we prefer to work with =,

LEMMA 3.4. Suppose that the support theory is a paraiteration theory. If

F-m;% FloandF ¥ F', 5 then we have (when the operations make sense)

Yl
® 'o <
(a) F Fl m-:-n-e;-ﬁ- F F'15
| el = 3 { oo [53 eoed @
(b) <F,F> o P <FLE;
(€) F'omy F*,
)
- Proof. Routine computations. For (¢), we need (I0). G

The simulation - is a reflexive and transitive relation, but not a symmetrical

one. Denote ma--l by ~=§-=-

DEFINITION 3.5. We say that F -is equivalent with F' (written E=F)if (F.F)

“is in the transitive closure of = U . L]

Since -4 , 4= are reflexive and transitive relations we have the followine
() : i

characterization?



o
f Beereare B oo F oo iyiy e . such that
. : 17 5 n) J’ :)
= i '} :
Flomd Foodgome Foi0oF ey o FY
S e g Vel

PROPOSITION 3.6. If the support theory is a paraiteration theory, then the

equivalence relation £ is compatible with the composition, the tupling and the

iteration (hence it is a congruence).

Proof. Since —» , - are Ieflewve relations we can suppose that two chains of
simulations for £ have the same length n. The proof now directly follows from

Lemma 3.4. []

THEOREM 3.7. If T is a paraiteration theory, then HZ' T/::; s . a
; i e

paraiteration theory.

Proof. By Propo,xtxon 3.6 the opexauons are well defined in, Fl T/.. . Since
every f@ T(m,n) may be seen as the "empty" flowchart (f)\) & rle(m n)
(A denotes the empty string) we can take as special morphisms ‘1n y Dn dnd ><k in

the corresponding morphisms in T.

Flg
ey
An eaéy computation shows that (C1), (C2), (T1) and (T2) hold in FIET , hence
, e ’
in E"E /w » too. The following computation ‘'shows that (T3) and (T4) hold in

HIST/‘Z* » hence FEE,T/E is an algebraic tﬁeory,

For (T3) we have to show that

o i GULEE g P e

et ><'§ denotes 1 oo Jteent] 34...40 ms then the right side is (<1kxk, thx l,...,
1 q q q

tmxm>§ e The following computation shows that F'< can be simulated via

-0 prentd et o i X, ST
e e e :

4 k) (1 it 0 14l (tetD ) = <1kxk, gk
q q

£

= (11 +0 9 Soot] ™ Heatl o )i x'/, tlxl,m, g
e

e
out & out out



This proves (T3).

For (T4) we have to show that

m M= = s A
G s o OB T Wipr e,

il m
k : : e ; :

ot 2notes + 0, ol o e r en - the  left  side

LaL X denotes _IA“ + D(k_])q L + O(m-mlc:)q’ then ‘ tl left side is
S

ol lxl,m,xm 1xm, txl,o.,,tx >, e The following verification shows that

Sl m ) :

m

¥ m o :
S B

I

mF> can be simulated via <le,”.gle> 'in e

il My il m
<x 1 X TpmeeX X ,tx' s Lt (ln +'»<lq’j‘“"’lq>>

:<xn£ i,‘...,xTni,t,“.,t} SO WO e

= = e 4>) e

ol e Eoh
This proves (T4).

The following computation completes the proof,. by verifying the parameter

axiom (I0). For F:m-pm+n and F':n ~p  we have,

m-+p g q

(F(lerF'))+ = (<J.(lm+i'+.'[.q)(l _H;Ci!»), t‘(Om-»lerU -plq,)> .
' <i+(i'+]q)(lp+sg,), 1

prarg”? &%)

= (eli<i ,lmq>(1‘+1q)(lp+sgi)y t'(lp+[)q,,_lq')>, el = Fq;—..‘ £



4. A characterization theorem for the flowechart equivalence

et & denotes the restriction of = to bijective functions y (when F%F' we

3 Tt 3 : - e B Sicagr
say that [ is isomorphic with F"); then & G =)~ N <= N <~ . We say that

- : . . . < < . - o 8 . C“
the flowchart F is minimal if there isno F'= F with {e'|<jel. The relations <&
i ; b i B ' S
and 4= are reductions (when F —=p F' or F <4—F' we have le'| <iel).
The following characterization theorem says that two flowcharts are

= -equivalent iff in two steps (firstly, identifying vertices and secondly, deleting

inaccessible vertices) they can be reduced to the same flowchart.

o

THEOREM 4.1. = el B
Lo inri g
X w‘i‘ vrnr-% =3
iy ] yes yes yes yes
S e
m—— yes yes- - no ' no
: i
- yes yes yes yes
e yes yes yes yes

Table 1. Is x:ySy.x ?

A complete picture of the cemmuting relations is given in Table 1 but for our’
aim (i.e. for a proof of Theorem 4.1) besides obvious commutations, we need only

the commutations from the following lemma.

LEMMA 4.2. In E’:E'y T the following commutaﬁons hold.
2 2

(@)= g e Ly @) el 2

“eo
e

fosdiey g 0 S o e
(@) ¢+t & . 43 : (&) #==n—c .
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Proof of Theorem 4.1 assuming Lemma 4.2. Since ey by 4 GNd e gre

reflexive, ‘transitive relations and by Lemma’ 4.2 (the points (@), (&%) we have

T 1 > o .
e e S S S o Q;‘,, -4 it follows that the congruence = can be written as

t:d

F=F' iff 3n20 suchthat F Q"

je it g ; e - s i
where g SR . From Lemma 4.2 easily follows that O e = O e

qzwi% .and @3‘-4@5‘—- are included in ¢ » hence ¢ is transitive. This proves the

nonobvious inclusion = < Q . U

For a generic flowchart F = (<i,t>,e) and je[fel] we shall denote by tj the
cofnponent ok cor‘-responding to the outputs of e), nainsly tJ = (X'e)’)out toEen
a function yr:,sét'i(e e"), Kerly) = %(],P) E),k(j [ieﬂ and y(}) - y(k)} denotes its

kernel and Im(y) denotes its range.

Remark 4.3. Suppose we are given - F:m-=+n and a surjective function

ye Strz(e,e') such that
() (j;k) € Ker(y) implies t_j(ln+yin) =t (1 +y; )

then - there exists a unigue il such = that F‘-ﬁ)}-‘r F, namely
Pl -kl kY ) e"), where veStr.(e,e) is an arbitrary left inverse of y
s ool 30 :
(i.e. vy = ]e).
Conversely, if Fe—%F' for a (not necessary surjective) function y, then vy

fulfils (&) for F. (1

.Remark 4.4. Suppose we are given F:m-»n and an injective function

yéﬁh‘}:(e',e) such that

Olt) ! (l +(y y)m) (]‘mi.yout) L,

((ﬁ) (1' +Y
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s
-,

where y "€ PStr.(e,e') is the partial function defined only on Im(y) and such that
5 :

-1 : i g :
/ =1 ,3 then there exists a unique F! stich” that: " Floy F namel
eI >4 i y )

= Ny o

m,. i A
m }nut n

Conversely, if F~%F' for an injective function y, then fulfils (p) for F. .
y v _ J y Y

Lemma 4.5. (a) If Fu%;;,,rv’ Fw;»;?F'”, and there exists y&%S'i:ry(e’,e'?) such that
Y. =yl then B! ‘”;/‘_;‘,”ﬂ?".

(b)-If F! ~~§ﬁ* FoiE “}7-”- F, and there exists y"'e::":?“’éﬁ*i;(e”,e') such that y = y"y!,

then F" “;};“’f b

)e

Proof. (a) Let veg Strsi(e',e) be such that’ vy'=1,; then I'=(1_+v .

i 2y
1 (1n+y in). Hence

1‘(ln*"y"in) = (1m+vout)m'n+yin) = (']"rTf"(\/>/)(JL1€”.)IH = <]'zﬂ+y"0ut)l"'

(b) Dual. [

Proof of Lemma 4.2. Since (a®), (c°) directly follows from (a), respectively (c)

“we have to prove only the commutations (a), (b‘i), (c) and (d).

(a) The first inclusion is obvious. For the second one suppose Fu-;agf F'; then by
emark 4.3 it foll hat  (j,k)€ implies t.(1 +y. )= o -
Remark 4.3 it fohows that (j,k)€ Ker(y) implies t}(ln ym) tk(]_n+ym) Take a
decorﬁposition Yemiy 5 , Where = is a surjective function and Yi is an injective
function. Since Ker(y) = Ker(ys) and yiyi—1 =1 the above implication holds for

Yg s too. Remark 4.3 shows that Y Qgeneratesa simulation for F and by

Lemma 4.5, Y; also gives a simulation.

(b) Suppdse that o= F! '-;iT’F*F‘@j;-;" £l It is easy to find two injections
e' '{‘;,‘"‘ . ;TF‘%" e" in Sﬁr2 , such that ‘z'y' = z"y" =z y and y'"ly' y”-ly" = ymly (the

notation is that in Remark 4.4). The function Yy generates a simulation for F



K

because it fulfils the (@)- condmon in Remark 4.4 : indeed, y' and y" fulfil the

(p)-condition for F 3 hence B

\

(1m-’ry0ut)l = (1”1+2"0Ut)<1m* ) ] (1 _* (yn n) )

= (1 (2l ) 1 Gy, )

out

Z o ' -1
}7"‘(1m+Z'QUt)(lm+y'out) 1 <1n+(yt y >in><ln+(y” y”)in)

= 0y T+ 6710,

out

In addition, by Lemma 4.5, z' and z" are (cbviously 'injective) simulations.

(c) Suppose that F! ‘{‘j'r F'""";%',“‘?*F",. Using an isomorphic representation of F' we

may suppose that y' “has the particular form le%Ov . Sebph (<iuer +(1 o0 )m),

(De+18 )Outt‘(ln+(>f"+le )in>’ e"e.);  then a routine  computation shows that

: S Tl [
" Fl = } f, —4__ % f:‘ﬁe
Y +_le. e e. : g £

(d) Suﬁpose thial IF T B o2l ey o be the least equivalence relation in
g : ; (o : >
[lel] containing Ker(y") and Ker(y"). We shall use the following constructive
definition

: [ there is a sequence of elements in liel] denoted j:nl,...,nr:k
jeek Qff - ;

such that (ns,ns+1) € Ker(y") U Ker(y"™), for s<r.
The relation &, as well as Ker(y) and Ker(y") does not identify elements
jskelle]]l with ej 4 e, hence it has a representation o= Ker(y), for a surjective

function ye¢ S-i:rx(e,el). Let e -;r%» el "x;r;" e" be the induced surjections in Str

5

; that' fulfil y/ = y"z" = y. -We shall show that vy, generates a simulation for F,
L {.5‘\? e

nameiy that it fulfils¥(x)- condztlon in Remark 4.3: indeed, we know that

(k)€ Ker(y") implies t.(1 +y". )=t (1 +y'. ) and similarly for y"; these, the fact
‘ JERRL S kn"Yin : ) -

that (j,k) € Ker(y) implies that there exist J=0yyeensn =k with

(ns’ne+1) € Ker(y') U Ker(y"), for s<r, and the equalities yizli—eyltolt = v legd to

the desired relaffion: tj(ln‘tyir? = tk(ln+yin)’ for (j,k) € Ker(y).
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Yo

~In addition, by Lemma 4.5, z' and 2" are (obviously surjective) simulations. )

S

COROLLARY 4.6. Two equivalent minimal flowcharts are isomorphic. |

COROLLARY'Q.‘/‘, A flowchart F is minimal iff (F<>F' or el

implies F2 F'. Lj
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L=

9« Flc /: preserves strong iteration theory-structure of T

2uy |

THEOREM Sali  Ife T s a strong iteration theory, then E'"L,;T/-ﬁ is a strong

s

iteration theory.

Proof. By Theorem 8 H /w» is a paraiteration theory. It remains to
verify that the axioms (11), (12), (Up) and (I4s) in Sactzun 1 hold in FE /w

For (I1) we have to show that
F<F1 >=FY, for F:m—pmen:

The left side. is: (A, ee), where: A= < I (Ki<i ’1n+q>’ln+0q> + }q)(].n+sg),
t(<i+,1 >(1 +0 +1 )>. The following computation shows that F<F’J,r,]_' > can be:
2 el Ml Al ; : n

simulated via <1 ,1 > in F".
e e

Bl sl i >):(1<i+, o gl >) =0 Wi et s
Mo dig N+ eout .ebut n+q

‘This proves (I1).

The following two axioms hold even in Fl For (12) suppose that

s

“F s m=tm+m+n; then,

Seficit Sl Sttt R

Tt a
m-+n+q i o R o) n+q

Pt - LS e @ea.r S

= ( I (<lm,1m>+1n+q) <<l<<1m7"‘rn>+ln+q n+q

For (I3) suppose that F : m-#n+p, f&€T(n,m); then

: + e
f (_F(f—;-lp)) = ((f+IGOUt) 1(f+1 )<(1(h1 q)) 1p+q>’ 8),

= ((f+1 ) l<(fi)+71 >$ e) £ (f F)+.
®out P+q :

.For the last axiom (I4s) we have to show that: if F:m-=m+p, F':n-—rn+p and

the surjection’ y : [m]-+[n] are such Lhatlr(y i ) yF‘ b yF.‘+°§M

We shall use Theorem 4.1. Without loss of generality we can suppose that F' is

©

a minimal flowehart. It fellows that yF' is minimal too [suppose there is F" with
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[e"l¢le'l and (yF! -m% Fill S an yF‘«%%w F"; using a w s [n]=+[m] such that
wy :.1 and Lem:ﬁd 31.&:3 it follows thzat (Rl b %; YYIENET e arw_;; wF'™),
-but -cf. Corollary 4.7- this is c‘rmiicuy to the minimality of F‘]‘ By Theorem 4.1
the equivalence F(y+lp)£§yF’ now can be replaced with two simulations, i.e. there
exists F1 such that |

._ 8 1550 o
.F‘(y-!-lp) u‘*?f‘" -':r’m\;ﬂ-)f_.

The -second simulatioﬁ shows that it = yi‘(l p-rvin); hence F! = yF?, where
2= (<i'(ln+p+vm), t']‘> ) By usmg Lemma 3.4.a for yF? :{-«--»‘ yF' and a w such
tfwat wy = ln » we obtain F? = wyF? fémw wyk! =l usmg Lemma 3.4.c this gives
F2¥ <l |
Now (I4s) will be proved‘if we will show that
F(y+1p) »5—»‘.-* yF* implies F* m&-—}yF’T

The hypothesis leads to the identity I(y+lp+u ) = (y+u )12. Take the 1*es”t1‘i'<_:tion

of this xdentxty to the inputs and apply (I4s) in Tscit follows that (1(1 7 +um))+ =
I3 C’i‘m &r

yi? qug this fact, the'implication easily follows, namely

i >(] oY ):l<(10mop+ul s lp+u > |

3 o .24 ; . : 2 2% : :
= l(y+lp. uin)<l ; p+q2> = (lm+uogt)(y+lezom)l ity lp+q2>"

The proof of the theorem is now completed. N



6. The main result

LAty l 2 2 5 A s £

For the begifing we have to define the interpretation of a % -flowchart over T

‘in an arbitrary strong iteration theory Q. The formula is known (for example [4]),
and is similar with the Elgot representation of "normal descriptions” in[17].

Firstly, we have to interprete the variables using a rank-preserving function
9 =

=% =0 (e, @ @)e Qg , ¢ ); secondly, the morphisms in T have to be
>3 3 -0’ out Y I

interprheted using a strong iteration theory morphism @t T-»Q (namely, this is-
given by a family of functions "ﬁf.'rmn 2 T(m,n) ~+Q(m,n) which pPreserves ln’ On?
>:in, composition, tupling, and iteration); then the interpretation of F = (Ki,t>,e) is :

T 00 = @) <1, (200 PplesT>,

% » X o . ; X > . ] .
where (i/): : 1 ~% Q is the monoid extension of ‘\-1'»:; , considering Q as a monoid

with, the sum of morphisms.

Example 2.1 continued. Some interpretations for the flowehart in Example 2.1

are given in Table 2, varying e,pg and keeping fix Q=T = Ejfnwz and ¢ = ‘1T°' a

Lf}:‘(q) i the‘cox‘xi"ésponding inter‘p.reta.tion
(ly(xyy)) s (ly(x’}"“x)) : : ; (l,(X,)’)) 4 (ls(l;XD)
(Ly(x,y)) == (1,(x,y+x)) : (1,(x,y)) =2 (1,01, 1+x(x+1)/2))
(1,0¢,y)) =% (i,(x-t—l,y)) (1,(x,y)) =» "if x=0 then (1,(1,1)) else undefined"

Table 2. Some interpretations of the unusual flowchart from

Examplé 2.1 in its support theory.

Clearly, strong iteration theories with the above morphisms form a category. -

~ We can now state our main theorem.



THEORENMG.] . E:.B.%, r/-m is the coproduct of T ‘and the theory freely

@

generated by I in the category of strong iteration theories.

is a

Proof. The difficult part of the proof (namely, to show that H"”;/

e e '7

;E};

strong iteration theory) was shown in Theorem 5.1. It remains to prove the .

universality property. More exactly, we shall show that the disjoint union = Q7T

can (injectively) be embedded in H.S‘T/':: by a rank-prese rving function
\ :/ =

123;24 - FE;Z‘,T/:‘ and a stmng iteration theory morphism Iy T«-%s»H?:’T/:: such-

.

that for every strong iteration theory . Q, every rank-preserving function

$. X~ Q, and every strong iteration theory morphism (?T:T e (B there exists a

(1% ‘H; &

unique strong iteration Lneory morphism (? HZ T/ ~» Q such that IZ { = i

and I x‘J _e{r

In the interpretation of (<i,t§,e) :m-$n in Q ‘we agree to omit the writing of

- e R S LT
¢ and to replace Px ‘(e)C{ﬁT(t) with a and as’ with b.

(1) At this point we will prove that two = -equivalent flowcharts have the same
interpretation in Q, hence c.'éﬁ; is well-defined on Fiz T/’m’ . For this, it is enough
% & ‘7 o & .

: ; : 2 : o A~ L8 *
i X e e : VY S et o) - . =
to proxe_, that F y«} Rty m-~+n implies ¢ &) ¢ (= Since (%3 (e)y L

m‘{%—« (e") and i(] 5y =G Ly

Y . Out)l' it follows easily that b(ym+ln) = il By

Proposition 1.12, (I4) holds in Q5 this leads to b" = yb'*. Consequent,_ly,

B et e #
7 (F) = iK1 ,b™> = i<y, b™> = el o> = .

@) et pr:Fisz}%FiZ T/*': denotes the canonical projection; then the
3} ol _

: a
=3 e T Y 'Q £ 5 ] o Y E ! . ¥ Y R OUt
embaddmgs IE'\ g _are: lﬁ; _.IZ pr, where IZ oy M:E'};,T is Iz(ﬁ) = (oain )
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and IT = I'vepr, where I's: T—Fl, 1 is I'y (*") = (f &), All the flowcharts in the
: ; Zigh
range of I:g:m I+ are nonisomorphic, minimal flowcharts, hence by Corollary 4.6

they are nonequivalent. Therefore I L IT is really an embedding. In addition

e = P oand I\,,-t‘ﬂ =@ .
. 2 2

I

~

The remainder of the proof is similar to those from [9, 14] and is sketched here

only for the sake of completeness.

(2.a) At this point we will show that Y Is a strong iteration theory morphism,
i.e. it preserves the operations.

For composition, take F : m-sn, F'¢:n-»p; then

({‘ (FFY = 1(L'+lp)(1p+sg.) <lp, (a(1‘+lq)(lp+sg.), a‘(lp«r-O +1q.)>sg+q i

: 4
. . 5 ?
Using Corollary 1.1l.a the iterated part is <b(1 +isT), bYO +1 »T =
, g
bt mr 1q+o ><b, 1% hence ' )

4 e Sl T -
g (.F*F')'z» x(ﬂ+1q)(1p+sg.) <, b+1'33 b1, b
= 4 . ; e e
- 1<1'<1p,b” >, b"x'<.1p,b"‘ >’> = (o (F)pg (F9.

For tupling, take F:m-pp, F':n -+ D3 using' Corollary 1.11.b and the notations

e lp+q+0q' = 1p+0q+lq, we have

A ",
; C{/Yu(<.F,F">): <ix, i<l ,(<ax,a'x'>sg+q)*>
| ='<ix,iv>c><1p,b“‘,b'+ <C((F"), (r')>

For iteration take F :m-»m+n; using (I1) and Corollary 1.11.c we have

#

¢ (F™) = i<i ’l_n+q><1n’(a<l ’ln+q>sn) > = (l<lm+n’ = (¢ F)*

s

- (2.b) At this point we will show that the extension Lﬁ' is unique. Clearly, it is

enough to show that an arbitrary’ F = (<i,t>,e) : m~»n car be represented as

F =il <, (1;‘: (e) IT(tsﬂ)ﬁ“B. -



“To - show this we - remark that ‘% eVl (tfq)) out e )(sq~+~l..q), e

Shs q g

t>,e); hence the right part is equal to (i,?‘«»)((ln st L) = (<L) = F,

s . £
The proof of the theorem is now completed. i

COROLLARY: 6.2 (Ld“fﬂ of usual flowcharts), Fihpf /,.N. is the strong

iteration theory freely generated by . ]

COROLLARY 6.3. Suppose that Q‘m-_ 1, Mgex); then two & ~flowcharts

over Pfn, are T -equivalent xff they unfold the same tree.

Proof. It is known from [20] that the theory of rational 3i-trees in [23],

denoted by ?\:L,w the 1temhon thr,ory freely generated by 3. Since Ré. is also a

L\/

strong Nerat!m theory'is the strong iteration theory freely LPn“rahd by 3. Using

Comliary 6.2 we check ‘that Rw« and Fls ")f
2,

says that the natural interpretation ((/ Hé’; Pfn_ /_,u 2, which extend the

/_,: are isomorphic theories; this

function Gd""j’ /ij/t/ \\ out and the unique mmphlsm Q}‘Z’Pf +PIn. -’PRX is an

out

isomorphism. Now the corollury is proved using the ohservaﬂon that ‘1)‘15# is the

unfolding of Howchansq i:f



7. A comparison of different types of theories

A lack of the iterative theories in [17] consists in the definiton of iteration only
for.ideal morphisms. This was remedied in pointed iterative thém‘ies in [10] by
extending the iteration to a totally defined operation. However, a pointed
iterative theory still have to fulfil two very restrictive conditions: firstly, it must
be an "ideal" theory (and @W‘WD is not ideal‘, when D has at least two elemeﬁts);
se::fondly, the Elgot iteration quation must have a unique solution for each ideal
morphism (thi’s is a very strong cbnditi'on, indeed: it implies that (I4) holds if 'y is

replaced by an arbitrary morphism, as far as f, g are assumed ideal).

All types of ordered theories, for example rational theories in [3], az‘é not fitted
since they are not pure algebraic objects.

All the above problems are overcorﬁe : in strong iteration them":ies
iteration thoeries, and theories with i.té_}‘.atff:; as a whole, they are pure algebra'ic
objects and they have a total itération which fulfils 3 few natural axi-cms; It
rerﬁains to corﬁpare among these theories. " The comparison Will_‘be done by
studying the transformations of flowchart schemés which preserves interﬁretatidn_s

in all theories of a given type.

Firstly, we look at'thevusual flowcharts. T.heoriess with iterate are too; weak (it
seems £hat only the permiltaticm of vertices respect the above ment.ionated
condition). Iteration theories are good theeries and satisfy the above condition for
~all transformations which respect the strong equivalence (in -fact this was the

reason for their consideration).

Secondly, we pass to the generalized flowcharts in FLT and to the

%

generalization of the strong equivalence in this context. We have the following
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PROPOSITION 7.1. Suppose that (1,1) £ . If strongly equivalent flowcharts
in Flg T have the same interpretation in T, then (I4) holds in T.
Wy
Proof. Take f, g, y asin (I4) and &S (1,1). Clearly, the following is a
simulation

F = (<0 +1
p

oL r
m’ fsiw>’ ¢) "“37“?“” (<Up+}’9 QSE% gH=F .

e

The interpretations of F, F' in T when ,s.és,;g,(a) = lle’;l(l,_l) and Q{T =1y are f,

respectively yg+; hence the condition (14) holds in T. [l

Consequently, the support theory must be a strong iteration theory. While this

is clear, the us_fulness of iteration theories come from the following

bt

Fact 7.2. Suppose that.the support theory satisfies
(p) if fsm—s m+p, g:n-sn+p and y:[ml=+[n] are such that f(y+lp)-x yg,
then there exist he&T( n,m+p) and yl"“’yr.n': [m] =+[m] with yiy =¥, ¥ i €[m],

e - : e
such that f = <x 1 yh(yl-;-lp)yms X myh(ym+]_p)> and g=qgly+ 1p);

then two = -equivalent flowcharts have the same interpretation in all iteration

theories.

Hint for proof. Use (p) for a finer analysis than (1) in the proof of Theorem 6.1. 1 -

The above condition (p) holds when the support theory is (a "syntactical" theory)
CT_},@, RX ; or Pfn,, but does not holds when the support theory is (a "semantical
Z

theory) P’an' with D having at least two elements.
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8. Final remarks

(a) WE'}MF—: at the theoretical level we have a calculus for the classes of étr'm,\giy
equivalent flowchart schemes, esséntiai}y similar to the calculus of poiy‘iym:)mialsy at
the practical level the situation is much worse, namely we have not a good and
powerful representationvof finite partial functions in Pfn_ similar to the Arabian

representation of natural numbers.

(b) When the algebraic structure for support theories’in the deterministic case
will be unanimous accepted, I propose -to be called Elgot theory; moreover I

propose strong iteration theories as a candidate to this notion.
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