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PROJECTIVE GROUP REPRESENTATIONS.AND

GEOMETRIC STRUCTURES

>

by

“itMircea MARTIN

INTRODUCTION

Let E be a smooth finite dimensional real vector bundle
with the typical fibre V. Assume that F is a finite group.and
let T be a projective representation of P in:V.:bet Gl1) be

the subgrodp of GL(V) defined by
G(T)={a€GL(V):a1(x)a~1?T(x); zER ),

Following the usual terminéiogy in fibre bundles theory [4]
we. shall say that the bundle E has‘a>G(f)+structure ifvthere
exists é smooth atlas {(hi,Vi):iEi}-for E such that ‘the ﬁransi-.
tion functions {gij:i,jel}'of this atlas haﬁe_their values in
G{t). |

Oﬁr main objective in the present papef is to giwve a
~unified tratment of aii these'structureé.'The simplest.éxamples
arise in-connection with the projective representations of the.
cyclic group of order two. More precisely ksee Section 1 below)
" in this case one obtains product or complex structures.

| Althoughout different objects have to be studied in the g

different concrete‘caées, our hoﬁe is.thdt thewptesént approach

will make it evident that some general results follow from the



same algebraic manipulations.ﬁ}i

The presentation is somewhat expository and the paper =
is organized as follows.

The first section begins by recalling the notion of 8
twofoooycle for a group and continues with the construction of
the convolution ‘algebra aesocjated with a two-cocycle. A number
of examples with a geometrical significance -is also dr%cussed

The second part analyses the derivations in a unital
and associetive algebra over a convolut}on algebra.: Thig. sec-
tion containes the main teohnical results of the paoer.

The third and final section deals with a geometrical ques-
tion. To be more specific, let ns suppose that E is a smooth
vector bundle endowed with a G(I)—structure. The problem ig

"that of an exlec1t deocrlptlon of all llnear connections on

-B Wthh preserve in an -appropriate sense the glven G(t)~structure.

1. CONVOLUTION ALGEBRAS

We begin by recalllng a few basic fact concerning two-
—cocycles and convolution algebras. The reader NhO wants to get
cgihisteorical perspectlve and a deeper 1n51ght into these topics -

should refer for example to [3], [5] or [9].

Toe s Supposevthet P ois a fixed finite group,tnoted multi-
"plicatively, and ler R* be -the multiplicative group. of all
nonzero real numbers: .

By a.two—cocylce for F with values in R* we shall mean
a map m of FxF into R* such .that

©

ety m(x,e)=m(e,x)=1 ; XEF,

(5.2) m(x,y)m(xy,z)=m(x,yz)mly,z); X o o BTy



where e denotes the identity of F.

" Under pointwise multiplication the set ZZ(F) of all
‘R*-~valued two-cocvcles for F becomes an abelian group. Its
identity is the two-cocycle m defined by mo(x,y)=1 (x,yeF);

2

Given m and m Y dn (F),'they are said to be cohomologous,

mzm' in symbols, if there exists a map kof Finto: R* such that

(a3) m (x,y) =m(x,y) k() k (xy) k() i X, VEF.

1.2. Assume that m is a fixed two-cocycle for F. Let C(F)
be the real vector space of all real -valued functions on F. For

'f and g in C(F) one defines an element’ fxg of C(F) by

(1.4) . fxg(x)= ] f(xy)gly Dmlxy,y ) ¢  xeF.

yeF

From (a1 and (ﬂ.2) it follows easily that, uhder>the opération
(1.4) as multiplication, C(F) becomes a real-unitél and asso-
ciative algebra, denoted by C(F,m} and referreaito as the'con—
volution algebfa assOciatedeith.m. |

Let ué’mention thaﬁ C(F,mo) is.thé ﬁsual feai“groﬁp al—-
gebra corresponding to F. it.is'also easy tp_prove that 1if m
and m' are coﬁbmologous, then‘the aigebras:C(F,m) and‘C(F,m')
are isomorphic.

For any x in F one defines the element e in C(F,m) by
X

(1.5) e (x)=1; e (y)=0  (yeF, y#x).

The set {ex:xeF} is a linear basis of C(F,m) and the equation

(1.4) leads to the relations -

(1.6) e *e =m({x,y)e : X iV EF.



The basis {eX:xEF} will be called the canonical basis of

C AR m) .

1.3 We.might . mention that the algebra C(F,m) together

with the map
_TO:F <. C(F4m) , To(x)=ex : (el

has the following ﬁniversal property: if A i's an associative
real algebra with unit 1 aﬁd T is a map of F into ‘A such that

thlealel=1, :

(11) t(x)T(y)=mix,y)Tlxy);  x;yeF,
‘then there exists a mor?hism of real aigebras X2 C(P,m) -+ -A-and
one,only, such that T=XTO.

‘We make now a briéf'digression. Throughout in what follows,
_ by é C(F,m)~algebra we shall mean a real unital and associative
algebra A together with a morphism of,real‘algebrés A:C(F,m) >
AL -The map A is . referred to agthe structural'morphism of A .
The next two examples are basic for our purposes.-

a) Suppose- that vV isva'finite dimensional reai vector
space, m is a fixed tWo~cocycle»in ZZ(F), and let Eﬁd(v) be
the algebra of-all endomorphiéms of V. We fécall that by a
projective representation of F ih'V, with the ﬁultiplier m,
‘one means a map T of F into End(V) such that

()t lal=ls , » | .

(ii) t(x)T(y)=m(x,y)T(Xy) ; x,yeF,
where 1V is the "identity hap of V.

From the universal ﬁroperty of C{F,m) described above it
is eclecar thag there'is a natural correspondence betweenlthe

projective representations of F in V, with the multiplier m,



and the C(F,m)-algebra structwvres on End (V).

b) Assume now that E is a smooth finite dimensional real
vector bundle with the typical fibre V, and let 1 be a projec-
tive representation of F in V. We denote by G(t1) the subgréup

of GL(V) defined by
(&l G(T)={a£GL(V):aT(x)a_1=T(x); RER T,

.An elementary and standard argument shows that E has a G(r)—
-structure if and onlyif the algebra End(E) of all smooth
veetor bundle endomorphisms.of E iéla C{P,m)~algebra, where

m is the multiolier of 1 (compare for instance with tﬁe proof-
.of Proposition 1.1 in [6]).

More about smooth vector bundles endowed with such. a

°

s

- structure will be discussed in the last section of the paper.

1.4. We continue by presenting some examples of convolu-
tion algebras. The following result will. be used several. times
in the sequel. The proof needs only minor calculations and

is omitted.

PROPOSITION 1. Let .C be a finite dimensional assodiatiVe’
real algébra with Gnit 1. Assume that thefé,exist: |
-'(i) a finite group F with the orderveQual to the dimen-
',sion of C ; v |
(ii) a linear basis {Cx:xeF} of L with Cé=1;

(iii) @ map.m ofPel into R#*, such-that

(1.8) QX*Cy=m(x,y)CX

v ] X,YeF.

©

Then m is a two-cocycle for ¥ and the algebra C is



isomorphic to C(F,m).

This simple result will enable us to show that certain
—algebras reléted to a number of interestiné geometric struc-—
tures are in fact convolution algebraé. The two-cocycle m intro-
duced by (1.8) is called the cocycle associated with the basis
{CX:XEF}.

a) The simplest examples appear when~F={e,x] is the
cyclié group. of .order. twoi . Let m, be the "identity of Z2(F)

and let m, be the two-cocycle defined by

m1(e,e)=m1(e,x)=m{(x,e)=1, m, (x,x)==1.

1

If m is'-an arbitrary two—coéycle for-¥, then opne-has
mzmé or m=m, . Thus, there exist in this case only £wo nen=
isomorphic convolution algebras, CﬁF,mo) and C(F,m1). |

Thé algebra C(F,mo) is isomorphic tojR()IR,]an algebra
related to the so-called product-structures (see Example 2.10
in [6]), and the algebra C(F,m1)'is.i$omorphic wo.C . the éigeo'
bra of complex numbers. ‘ |

b) A géﬂerélizaﬁion of the algebras R(E)R and C is given

by the class of algebras Pn .+ Where n2z2is-an imteger aﬁd

7 <

€;£1. We explicitly set
L (1.9) P =r[t]/(t"-¢e),
n,E =

where R[ﬁ} is the algebra of real polynomials of the variable

t, and (tn~€) denotes the ideal generated by tn—e,
Taking the images of the polynomials 1, t,....,tn"1 in

Pﬁ.e' one obtains a,linear basis in Pn c" Applying Proposition 1
7 7

to our case we find a two-cocycle for the group Z/nZ. It turns



out that P is isomorphic to a convoclution algebra.
i IS o

| We should remark that thé“algebras Pﬁ,s appear ih connec-
tion with the so-called poiynomial structures.

c) Another example is that of the algebra H of quaternions.
The usual basis of H over R leads to a two-cocycle for thé group
of Klein and, hence,AH is also isomorphic to convolution algebra.

d) Our las£ class of examples is given by the Clifford
-algebras. We shallvnow outline the concfete description-of these
algebras. The reader who is interested in a more detailed dis-
cussion is referred td.[1],v[4] ox 97, "

Let p and.q be two positive infegers, with §+q=n21. The
Clifford algebra P9 ig the réal unital and associative algegra

"generated by a set {ei’eZ""’?n} with relations

TCE LR T T TR -
<00 . e§=1; p+1$i§p+q,
a12) eje tese;=0; 145, 350, 143

Let F be the set of all subsets of {1,2,...;0). For I and J in

F one defines
(1.13) .7 IAJ=(IvJ)-(Ing).

: Under this operatibn F becomes an abelianvgfoup of Qrder o
Next, for any I‘in F one defines the element e; of Cp,q'
-as follows:

| (i)<é¢=1; |

Eed YA Tt 3010 U2 S v s p i@ rnith - 121 e ) <. o

.<i(s)sn, then

(1.14) eI=ei(1)e

(2 A s)



(1)

The elements {eI:IgF} form a basis of cP'd ang for any

I and J in F there is a number m(I,J)}, which is +1 or -1,
such that

(1.15) e_e_=m(I,J)e

=l I6d. "

""Proposition 1 implies that m is a two-cocycle for F and

the Clifford algebra P9 g isomorphic to a convolution alge-
01 1,0
7

to R@ R, C and H.

bra. Note that C ¢ -and CZ'O are isomorphic, respéctively,

2. DERIVATIONS IN C(F,m)-ALGEBRAS

Throughout this ‘section A will denote a fixed C(F,m)-alge-

bra with the structural morphism A:C(F,m) -~ A. By {eX:XEF} we

denote the canonical basis of C(F,m) and lét'h(ex)=b(x)' (XEF) .

our aim in what follows is to describe the get of, all
derivations 9 in A which satisfy a system of equations of the

form

d(b(x))=alx);  xeF,  a(x)eA.

2.1; A derivétion in the algebra A is.by definition a

real .linear map 9 of A into A with the property

21 ) d(aa')=(0a)a'+af{da'); a,a'eA. -

The space of all derivations in A will be denoted by Der (A).
For any & and a' in A.one defines-their commutator

by.;

) {a,a‘]=aa'—a'a

For a fixed a., thevmap B(a):A ~> A,-G(a)a'ita,a'j (a'ed) is a



s

‘derivation in A, called the inner derivation corresponding to
a. The function ® of A into Der(A) is real linear. In certain
cases all derivations are inner. For example if A=End(V),

where V is a real finite dimensional vector space.

2.2. In order to state the main resulté of this'éectioh
we need a few preliminary constructions. ‘

Considet firstlthe tensor product of reél vector spaces
A()CHF,m). An element A:in this tensor product is of the form

b3 A= a(x) @e, ;. alx)eA
: xel .

Let L(A,)) be the subspace of all elements A of the

form (2.3) which ;atisfy the equations

(2.4). la(X)b(y)+b(X)a(y)=m(x,y)é(xy); E X,y eF;
Recall thét b(x)=k(¢x).(x;F), hence

(2:9),.. b (x)b(y)=m(x,y)b(xy); ’ %,YeF{

Next we introduce a linear map ¢:Der(A) - E(AsX) by the
formula

(2.6) ¢(a>=x§est (b_m) ®e, 7 deDer(A).
An obvious consequence of (2.5) and (2.1) is that ¢(8) really
belongs to L(A,}) for each derivation. 3.

OQur aim is to.solve equations of the form ¢(3)=4,
AEL(A;X)ﬂ Thé essenfial step in thié_is accomplished by the
construction of a linear map W=L(A;K) = A:with‘the property

that (6v(A))=A, for all A in L(A,A).



PROPOSITION 2. For each A= |

a(x)(g}ex in L(A,)) we define
»eF .

(207 via)=(ord B) 1 A e e N

el

Then the inner derivation 93=6 (Y (A)) satisfies the equation

¢ (3) =A.

PROOF. We have to prove that

(2.8) 0(a)b(y)-b(y)y(B)=aly);  YEF.

Suppose that y in F is fixed and note that

1 ) m(x,x-1)_1a(x)b(x_1)b(y).

w(A)b(y>=(ord'F>'
X EF .

Froh (2.5) one has
| =1 o e
b(x )b(y)=m(x ,VIb(x Y) .

and the equation (2.4) leads to -

a(x)b(x"y)+b(x)a(x"y)=m(x,x”7y)a(y).

Consequehtly one obtains

(2.9) Y(A)b(y)=c,~Cy
where
| § 298 I =1 g
(2.10) c,=(ord F) Y m(x,x ) m(x ,y)m(x,x ylaly),
; x €F ’
and
i 1 —1,-1_ -1 -1
(2.11) c,=(ord F) Y m(x,x ) mx ,y)b(x)alx ¥)-
‘ X €W

The relation (2.8) will follow from {2.9) if it is shown

that



(5712) 1=a(Y)r
(2.13) cy=-hIy)U(A).
To this end, note first that (1.1) and.(1.2) imply
f, (2.14) ‘m(x,x“1y)m(x_1,y)=m(x,x—1);- x€eF.

The last identity and the formula (2.10) clearly give (2.12).

It remains to prove (2.13). From (2.14) one obtains also

1

c,=(ord p) " i m(x,x_1y)w S(x)a(xﬁ1y),

xXEF

thus, after the transformation x *>yx, one finds

{2.15) c2=(ord F)—1‘z m(yx,x_1)“1b(yx)a(x—1).
: xeF : ' :
On the cher hand one has
: . o =1 = ol Tt -1
(2:186) b(y)y(A)=(ord F) ' § m(x,x ) blyla(x)bix ).

xeF
An obvious consequénce Qf (2.4) is that a(e)=0. Hence,
by (2.4) again, one obtains
i,

a(x)b(x” ) =-b(x)a(x
thus V

b(y)a(x)b(x_1)=—m(y,X)b(yX)a(x~1).

From (2.16) it follows that

2.17) b pare=tora BT § ne,xH iy,bymiaT .
' X el

Finally; note that (1.1) and (1.2) yield

(2.18) m(y,x)m(yx,x"1)=m(x,x—1); xeF.



Now, (2.13) follows easily from (2.18), (2.15) and:(2.17)«. The

proof of Proposition 2 is complete.

2.3. Proposition 2 shows at once that the map ¢ defined
by (2.6) is surjective. Actually, an alternative formulation
of Proposition 2 can be given as follows.

Let Der(A)X be the subspace of Der (A) defined by

(2.19) Der (A) ={deDer (A) : 3 (b (x))=0; xeF},
and:let 1:Der(A)A + Der (A) be the inclusion map. Then we have:

THEOREM 1. The sequence of vector spaces

(2.20) © 0 + Der(A)} 3 Der(A) % L(A,A) > 0

is exact; moreover, the map YL (A, A) ~ Der(A)‘provides a split-

ting for the sequence (2.20).

2.4. Theorem 1 enables us to represen£ thé'spéce Der (A)
as a direct sum of Der(A),X and L(A,)), in a specific way. An
immediate consequence of this‘representation can be stated
in the hext form.' |

4

THEOREM 2. Let x:Der(A) - Der(A) be the map defined'by
.x=id-6y¢, where id is the identity map of Der(A). Then we have:

i) x is a projection from Der(A) onto Der(A)X, that is,
x2=x and image (X)=Der(A)A;.

ii) for a fixed A in L(A,)X) the equation $(3)=A has the

general solution

(2.21) d=x(3"')+0yY(A); d'eDerxr (A).



= e

2.5. We conclude this section with a few remarks. It is
implicit in Theorem 2 above that if 9 is an inner derivation,
then y(3) is also an inner derivation. More precisely, let

XO:A *:A.be.the map defined by

= =

(2-22) oy (a)=ford )70 § mixex" ) T B (erabix" ) aes

XeF

A direct computation shows that X(S(a))z@(x.

O(a))_for all a in A.

Actually the map X is a projection of A onto the commutant of
the set {b(x):xeF}.
In addition to Theorem 1 we find that the system of com-

mutator equations
(2.23) [a/b(x)]=a(x);  xeF,

where A= Z afx)ox e, is an element of L(A,X), has the genefal
» - XE:F i .

(2.24)  a=x_(a')+p(aA);  a'eA .

3. LINEAR CONNECTIONS ON SMOOTH C(F,m)-BUNDLES

By a smooth C(F,m)~bundie we shall meaﬁ.a smooth Vecth
bundle E, togefher with a morphism of ;eal algebras A:é(F,m) >
s > Eﬁd(E).AWe recall that End{E) isthe algebra of all smoofh
vector bundle endomorphisms of E.:Qur gim in this.section .is
to present a geometrical-application of Theorem 2. An outline
only will 5@ given and the detailed proofs will be omitted.

We have to note that Theorem 3 below, the main result of
this section, gives thg unified form of certain well-known
results concerning product, complex or quaternionic structures.
We refer the reaaer wa: Fal - I27 o 48] - anf to. the papeis qdoted

there.



3.1. We begin by recalling some notations and definitions.

Assume that E is a smooth vector bundle over the smooth
maﬁifold M. Lét Cw(L) be the algebra of real valued smooth
functions, on: M.and.let T'(E) be. the Cm(M)wmodule of all smocoth
sections of E. According to an usual isomorphism we shall
.3 identify throughout in what follows the algebra End(E) with the
Cw(M)~§lgebra of all Cw(M)—linear maps fromAF(E) into T'(E).

The space Der(Cm(M)) of derivations in the algebra Cm(M)
ig. exactly the spaéé X(M) of all smooth vectsr fields on E.
The space Der (End(E)) will be-denoted‘simply by X(M,E). Note
that X(M,E) has a natural structure of Cm(M)—module. In order
to define natural relationshipsbetween X (M) and X(M,E) we have
to fécall the notion of linear connections on E.

. A linear connection on E is by'definition‘a real bilinear

map V of X (M)xI'(E) into I'(E) such that
(3. V(aX,0)=aV(X,0),

£35:2) V(X,00)=X{a)o+aV(X,0),

-

for all X in X(M), ¢ in '(E) and @ in Cw(M).'Suppose that V is a

fixed linear connection on E and let us define for any X in X (M)

a map V(X)J of T'(E) into T'(E) by
(35 38) V(X)0=V(X,0); . oeT (E)

In additions one introduces a function @(X) which associates with
any T in End(E) the map V(X)T of I'(E) into T (E) given by
(3.4) V(X)T=V(X) oT=-ToV (X) .

An immediate computation shows that V(X)T is Cw(M)wlinear,



therefore Vimeie an elenent iof End (E) . Actually V(X) is a
devitation in the algebra End(E) and the map %:X(M) +. XM, B): i

c”(M)~1linear.

3.2. Suppose now that F is a finite group, m is a two-
;cocycle.for F and the smooth vector bundle E is a C(F,m) -
-bundle. Déﬁote by_A:C(F,m) + End(E) the structural morphism
and let Ale )=8(x) (xeF). The set }={S(x):xeF} is reférred to
as a C(F,m)-structure on E.

Given a linear connectiqn V on E we shall say that V

preserves the C(F,m)-structure Z £
(3.5 V(X)s(x)=0; XeX(M), xeF.

Following an already introduced notation, one has that the 1li-
near conﬁéction V preserves fhe strﬁéture 2 dE and»only if the
defivations %(X) belong to X(M,E)A fof all'X imec (M) .

The main result of this section gives a concrete des-
cription of all linear connections on E which preserve the
structure . This descfiption‘appears in fact as an applica-
tion bf.Theorem 2 l

More precisely, if ¥V is ' a linear connection on E and X
is a vector field in X (M) we define first the mapvxv(x):T(E)+

STAR) By

"y mGxT s ) 07 (x) 05 (x7 )

(3.6) VA =tord By
s _XE;F

Next let us denote by xV the map of X (M)xI'(E) into T (E) obtained

as follows:

(3.7) XxVI(X,0)=xV(X)o; XeX(M), o0el(E)



By @ straightforward computatiﬁa one finds that ¥V is a linear

connection on E and moreover we have:

PROPOSITION 3. Let V be a linear connection on E. Then
i) XV preserves the structure Z, and

"~ ii) V preserves the structure Z if-andonly+if V=yV.

3.3. More generally, Theorem 2 furnishes a description
of the set of all linear connections V on E which satisfy a

system 5f eguations . ofi:the form
(3.8) V(X)S (x)=T (x) (X) ;  XeX(M),  xeF,

where T={T (x):xeF} is a collection of Cw(M)~linear maps from
X (M) into End(E). According to‘the results of Section 2,+the

-

next’ analogue of the second paft of Theorem 2 follows.

THEOREM 3. The system of equations (3.8) has éolutions

if and only if
(3.9) T (x) (X)S () +S (x) T (y) (X) =m(x,v) T (xy) (X)

for all X in -X(M)and KoV AN R,
If the collection satisfies the conditions (3,9) then

the system (3.8) has the general solution
(3510 VeV Sl Ty

where V' is a linear connection on E, and Y(T) is the map of

X(M)xI' (E) into T (E) defined by

(3.0 wAT) (,0)=(oxd )71 § mie,x” ) o) )8 (x7T) 0
3 7 XEF

XeX (l\’l) o A (E) o
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