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ACCELERATION WAVES IN ELASTOVISCOPLASTIC MATERIALS

WITH INSTANTANEOUS PLASTICITY

by Sanda Cleja-Tigoiu

1. INTRODUCTION
In the presént paper we  consider 'accéleratio.n waves (a.w.) which are
é}-opagating in an elaétoviseoplasti’c {e.v.p.) body with instantaneous plastieity (i.p.) _
.sﬁbject_ed to a large deformation. .
% The elastoviscoplastic behaviour of the body in a fixed material point X (in
the framework of thermod?namics with‘ internal variables) -‘was deseribed : by

Teodosiu [1], Mandel [2,3], Halphen [4], Dafalias{5], Loret [6], and it was based on

the concept of relaxed (unstressed or natural) econfiguration which was developed

by Lee, Lin [7,3]. The deformation gradient is m'ultiplicatively decomposed into its

élastic', Fe,.ar\d its plastic part, FP. Both tﬁese tensors aré deseribed by some
consfift‘uti-ve _an.d__ evolution equation.s-in tertrhé of the second Piola—Ki:chhoff st’r.eéé.
fensor,fﬁ’ , with respect to the relaxed configurati’on'. The state of materials
depends on a certain set of internal variables, which are’introduced by some
evolution equations. '

Whén a bcdyA & u‘ng‘ergoes an inelastic d,eform.ation, 4it gener.ally‘has nét - 4
global natu_ral,configuration' and therefore .Socs_ {9] has introduced the concept of
.current. relaxed isoclin‘ic configuration in thé,descr}btion-of’thé- e.v.D. behaviour of
the bo,dy at a fixed material point X, This concept is based on the Ioc;al'
con-figu_ration of the material point which was elaborated by No}l fro,a10

Briefly in the seconé section'.we recall the basical bag,sumptionsilz} of the

: * s A - g 7
approach to thermoelastovisconlastic body considered here. The behaviour of the

body at Xe® is described with respesdct to a eurrent local relaxed configuration,

th, whieh is an equivalence eclass of all configuration coinciding in a neighborhood

=]

of X (see Noil {10,111},

The propagation conditions for the a.w. in e.v.p. body as well as the
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properties of the acoustic tenéor for an a.c_g\elgra’tion waves are obtained_ in third
section. If a stress s.tate of the body cor‘t%%é;i}s to a unloading or to a ne.utral
proéess, or it is inside of the current yield surface,' then the acoustic tensor results
symmetric and it is similar to those obtained by Wang and Truesdell [13] but the
measures of the d_efomﬁation is the elastic part of the deformation gradient F..

g In the forth section we prove the existence of the acoustic tensor for any
e.v.p.- State of the body énd we 'g'ive the condition in which the acoustic tensor
: bécomes symmetric. The existence of'the plastic potentiial (with respeect to the

var;iable S= (EQ)TF?Jf—a cF: - used. by Halphen [4], Teodosiu, Sidoroff [14],

Halphen and Nguyen [15]) which ‘will be either made plausible by analysing the
.ﬁicrostural rearrangeménts (see Manael [2] - in the case of small elastic

deformation; Teodosiu, Sidoroff [14]) or simplvy postulated by Halphen [4], léads to

the syinmetry of tﬁe acéus.tiiftensor.
All consideration in the fifth sectioh refere to the case of e.\J;p. body .wi'th

i.p: ,wlrlen.el.a;éicv deformations are sma'll..IfA the elastic eonétitut_ive equation is

im.'/e'rtibl'e wit_h ‘respect to elasticCauchy-Gre‘eh tensor, Ce, -then the 'acoﬁstic

tensor is symmetric if and only if -thé» associated plastic flow_l_ow_is assumed
relative to the instantaneous plastic term only. In the s'ivmplest .ca'se when t.he'
elastic ¢on’sti.t'utive equation 1s isotropic and linear we analyse the propagaﬁioh of

tﬁe 'longitudinaliénd transverse a.w.

‘The a.w. which are propagating in an elastic bédy sﬁbjected to large stréin'
* were c.o.ns‘xderéd by Wang aﬁd:TruesdeH [13] and si_milar probl'em for a viscoplastic

body, described by some ra’te%onstitutive equation, was considered by Suliciu [16].

‘The following notation w.ill'be useds

Z - a three-dimensional euclidian space with the t.ransiation vector space
vu, Lin=4§ A ¢ 'V’—-ﬂlf’ lineary, Sv_vm =l Aelin A= AT} , where AT is the transposé
of A, InvlincLin - the set of all invertible linear mappings; Psym - the set of all

positive symmetrie ‘mappings, Octh = § Q €Lin, QQ_T =1}, I - the identity tensor,
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a@b and A®B, and so on, the tensor product of a,b eV and A,Bg Lin respectively;

TL the scalar product of a,be V¥ and A,B€Le‘n respectively ;

A} = V trAAT; KX=§ ¥/ ¥ configuration of B, ¥ (¥ K—.]')/K(X) = I}— a local

a-b, A-B=tr AB

configuration, i.e. the equivalence class defined by the configuration Kj; ¥ -the
gradient field; KXt a local configuration of a fixed X at the moment t, which can .
' be identified (see Noll [10,11])4with the invertiblé linear transformation of ?'XA(the
‘t.;ngent space in X) onto v, ”ach.(C,o()—the partial derivative 9f h with respect to
"C.; if h is a scalar valued function then ach(C,O{)ELin, for Ce‘Lin;v{A‘}s, {A}a—

the gmmetric and the antisymmetrie parts of the tensor A, respectively.

-

2. ELASTOVISCOPLASTIC CONSTITUTIVE EQUATIONS
Let B be a thermoelastoviscoplastic body with instantaneous plasticity. The
behaviour of the boedy at X will Vbe deseribed in ferms of the following constitutive
assumptionsll‘é}: 3 4 | | _
: “A.1. For any (73, ), where X :3X'R§é is hthe motion of' the body and
'9 : B x R—(0, +20) is the temperature field, there exist: KXtQInvliﬁ‘(g'x,’U') a

current local relaxed configuration and of

g = & - the set of internal variables,

xt
such that:

A.2. The thermoelastic constitutive equation is of the form:

=T, =20, O )b. (C® 0,00z h, (C%6,d) (1)
. e 9 sy A /= A s
o By S O i s o _
where 1{/ is the specifiec Helmholtz energy and .
o A ES, with-BESES - VUGLIRTT, ' (®
xt : = ‘

is the left Cauchv=Green elastic strain tensor; 97{{ is the Piola-Kirehhoff stress
. : i “xt
tensor related to T (the Cauchy stress tensor) by the relation

F = (det FO(FH ()T edw(3)

and fh is the density relativ to K defined by:
: . oxt :

t
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€26, = PdetF° o et Gl S AL ()
o 3 Xt ¥ 3 : k

“with e zf(ﬁ(,t), where x =% (X,t), the actual mass deﬁsity.

A3. K . and o~ are given by the following evolution equations:
xt ] ; e

FPEP)1 - s

K
X

(3»',6,0()+,<-3K >B (:;T,e-,'o<)'@A' o
i xt xt s : e

e

(37,90 ,)

=l (5,0,%)+<A, Sm.
2 xt

th xt K

where FP is the plastic tensor relative to the reference configuration k of the body

and is defined by:
pE p - : _10 . : ‘ E
F Fth K TKX) 75 : (6)

FP and o satisfy the initial condition FP(0) = Fg , X(0) = 0{0,

The instantaneous plastie functions BK and mK are assumed to be zero
xt el

iside the current yield surface S(t) which is defined by the plastic function #, as

; K.xt :

follows:
s =§ (F,0)€sym xR/ F;, (7,9, =0}.
‘ xt ;

We associate, say for‘insfance, the function Ak

AZ,FP=a_ @ o : e
k K : 25 8
: xt
to the function AK in order to specify the dependence on’ th' Further the
. xt _ ; s 3 ; ; R
configuration k will be omited. We suppose that all constitutive and evolution
flincﬁons are continuous on their'argument's, but # and h have all the first order

partial derivatives continuous.

On S(t) the following consistencv conditions

1+m-9,(37 +9 p\?-B(Fp)T:O,»go(?-l«}-/}p?.Aszo (8)
: F ; e F :

hold.

Here AK ~the plastic loading factor is defined on S(t) by the relation

vt
At



e o

A

m

Moo =G B GEREG e (9)
Xt N e /

1

and <A> = HA +1al),
Let us (for instance) denote by F the composition of F with the elastic

_constitutive function h:
. FUCE 8, EPY = 0 A 6%, 0, EP), 6, EP) S

A4 On S(t) the plastic loading factor A is defined in a unique way by.

60

Under the last assumption it was pré:ved the existence of the complementary

plastic factor

Py =@ 13 F )T E+ DpF0 +,F -2+ _
xt & - 5 e , :
+ 9 FEOT.E-29 F-{coki, - (11)
FP C : '
(with C = FTF-), which has the same sign as AK , such that: " _ V
‘ ; xt
G Se= A AR S s bt s g -
th > .Fxxt s T

Here %" -the hardening parameter is defined on S(t) by :

t=29 F 4Bl -9 F - - ’ap? -BFP> 0 e

c* : Egt. 0l
and ¥’ is positive.

‘,By using the eom-plem'entary plastic (which has fhe me_aﬁing of the rate of
the current yield surface in the deformation space) it follows that (Fp,o()-are
solutions of some differential equations with initial data for any given ( X, 8).

The relations (2)2 and (6) involve the multiplicative decompos:i.tlion of the

--deformation gradient relative to k into-its elastic.and plastic parts:
: | e - j
F = 98X, )(IkX) " = F°FP ) : (14) -

From (4) and (14) it results



9= S /jdet T P e _ W)

where €o is the initial mass density.

In what follows we suppose that the functions relatlve to the reference
configur‘ation k, see formula (7), are not dependent on F,p, i.e. they obey the "tim_e
invariance condition", and that the gpecific Helmholtz energy funetion is expressed

[see Teodosiu [1970], Mandel [1971]) by:
P (% 6,0= p(cio)+ ¥ (6:) (16)
eoxit : : ; j :

From (1) and (16) we get following form of the thermoelastic constitutive equation:

T=287 %0 n(c%8,%,FP) @
C ‘ i |

Therefore the function ?, introduced by (10), depends on FP only through
¢ = § /det FP, ie.

?(c &, ,FP) = 2599 H(Cs,9),6,90. 0 (18)

From (13), togather with (18) and (8) we obtain the fellovying expression of .

_tne hardening parameter:

‘6”:4 ?937? -Qf:ew{cen}sﬂu(ﬁ-._@?,v? JrB +1>0, " (ié)'_
using the 'fermula.

% 7. 2?33 e\y(m— 9C F.m, for all I\Ie‘Sym, | (zb)
. derived from (18).

In that follows the processes (¥, 8) will be supposed to be isotermie, i.e.

6 =0 o Where 6 is the initial temperature.

3. THE PROPAGL‘&TIO‘I CONDITIONS

Most of the notation and definitions used are as in Truesdell, Noll {19] and



Wang, Truesdell [13).

The acceleration wave (a.w.) is a regular surface gt in k(3 ): $~(X,t) =0

A
E ;’},;,;,..

with the property that
VH(X,1)# 0 on $(X,t) =0 : ‘ “{21)

which is singular with respect to the second derivatives of the motion % < The

image of the-a.w. in 1B 0= ﬁt , denoted by bpt , is characterized by
¢ (x,0) = (X " Lx, 0,0 . ik : (22)

We denote the -unit normal of .‘/’t and b’t by n and n respectively. Then

B _ve e - ,
n= l‘;‘é-i' ,n—w¢| = (23)

From (23) and (22) it follows that

o=l VP _ Sodeiaatonln o d TR (24)

. The normal speeds i and u are introduced by -~

s S el ol
0 fot”/w&\ 5”‘"5‘?/‘%; | A28)

If we introduce the intrinsec speed of ‘ft, U:

U=u-ven : | : o (26)

where v is the velocity of the material point X at time t on 9: then

v Pl

(27)

Since the first derivatives of % are continuous on the surface V’t at all t

there exists a vectors field 5, defined on 'ft and called the amplitude vector of the
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a.w. in the configuration- E?t such that (see Wang, Truesdell [13], Truesdell, Toupin
: [20]):'

[YE(X,0] =3@T @7, [F(X,0]= -5 @F, [(?2;6/at)(x t)] % (28)

Here ['f]‘denotes the jump of f on the surface ':35;

- We suppose that FP and « gre continuous on the wave. Then from (14) we

see that FC is also continuous since [F] = 0. From elastic constitutive equation (17) .
with (2) and (4) we get [X¥]=0 and therefore {ﬂo] = 0, where 31'0 is the Piola-

Kirchhoff stress tensor relative to k and defined by:

T = det rPEDY 1T #P)T or o= (det F)E ™ TF (29)

o

Since Y, is not singular with respect to .WO' there exists [l € Sym such that
[divT 1=J7, [27 /o d=-12 | (30)

The jump condition for #P and & follow from the evolution equations.(s):

[FP) = h(k)(BFp@)?J,? N3, (] =h(A Mm@ & F 5] i

where h() is the Heavyside function: h(A)=1if A >0 and h(4) =0 if' A <0. We
note that we have no jumps for FP and & in the case of ther'moelasioyiscopla‘sti_c
body, i.e. when B and m are every where zero. We can obtain the jump {l.?e]
réplacing (28)2 and (31)15in (14) derived with respect to t:

BeroER a SR - = . - G (32)
Then

1E€] = -G @RED) L - WA XFER@ 2 F ] L 433

Now differentianting the elastic constitutive ,e'quation (17) with respect tot

we obtain the following relation between the jumps of C€and 7 :

{1, + hO e BIE 2 AT O4F1=289% VY . (34)



e

" Here 14 is unit forth order tensor'. We can employ the jump condition (33) in

188 = [F)FES)T + (FO) T1Fe)
. and
S {(Fp);T(_ﬁ®'s)Fe}S - 2n(A X§C®B} (® 9, F AT ] )

follows.

" If we introduce the forth order tensor an defined by

2 —I4+h(A)trB(Jl®9f,f ) + 4h(2) §(92 w{ceB} JOHF G

then from (34) and (35) we obtam -

¥ Li]= 40 %'9 2 viEP Tagnrey, 37)
Ce S . , :
If ;_fo is an invertible for the order tensor for any elastoplastic state, then
il Sl o N S
L /g = 4ue’f ) «M.(F ) TROFT), with 2 =X (38)

holds. 25t
. From the balance low of impulse (in the reference configuration)

AET )+ ¢ b= ¢, 9%/ ath

when the body force b, is* continuous, we obtain the dvnamic compatibility

~ condition:

90. B _of<axﬁ>§-"mﬁ=o e o (39)

~

The jump [ 31 ] -U Jt can be expressed in terms of [ 3] since the tensors 370

and U7 are related by (29)1. Taking the derivative with respect to t in (29), and ,

usihg (3.1)1 we obtain
=W/ g )& =T/ ¢ )= (FO 1 W?- )FOy-T | (40)

where » =



o A1A0 &

&y =1, + At B(F ®9y F )--zn(wm"ys@aﬁ? . S (41)

We introduce (38) into (40) and since U # 0 it follows that

PR = 462,207 2L D) RO ST (42)

We use (42) into (39) and we obtain the propagation condition in the

reference conflcruratlon k(A

0= eoazg- &, - (RO - 4'?0Fe02"2g19 zce'\%’f(Fp)—T(ﬁ@g)Fe}s(F?)"Tﬁ fbs

We can 'expx‘esé the condition (43) in the actual configuration. Using (24) we

obtain
RO = (et NI/ oz VT @) il
witi\ (29), and

BRYidgs n@s) °} = ch/\vm){ &7 n®( g e (45)

4 Introducmg (44) and (45) into (43) we get the propagatlon condltion in actual :

configuration:

eUZs-T- (n@ s - 4 gi’e(fzgclaz é\;»){(ye)’rn@(FQ)TS}S(F‘3>Tn = 0(46)

» smce U'=:the intrinsec speed of the a.w. is expressed by U with (27) and s-the

amphtude ‘vector of the a.w. m the actual confwuratlon is defmed by .

s= (1981 /1931 )% 5 (47)

The acoustic tensor (for a similar notion see for instance [13] or [16] is

deff_ned.for allv B by:

~2 S ETneE viIES T ()
A

Q(n)v—’l‘ (n®mv+4gr (o‘Z' ‘Cey i

and the propagation condmon for the a.w. in e.v.p. body with i.p. becomes

&
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In the next section we shall prove the existence of Q(n)

In the case of e.v.p. body we obtain an equivalent Fresnel- Hadamond

theorem:

The amplitude s of dhe a.w. travelling in.the direction n must be a proper :
vector of the acoust'c tensor Q(n); the com‘esnonow proper number is ¢ U ”2, where
U is the intrinsec speed of the wave. The acoustic tensor Q(n) given by (48), with
'(38)2, (41) is determined by the elastic constitutive equation (17), (2)-(4), the
elastic part of deformation, F€, the wave-normal n and also by B-the instantaneous
plastic function and ’Dj‘ff' -the normal to S(t) when the stress J lies on the current
yield surface, S(t). :

If the eléstic properties of the material depend én o( (i.e. "‘{/K can not be
expressed by (lb‘))fhen Q(n) will contain also the instantaneous functio;(tm' from the

evolutlon equatlon of « (see (5).?) and o( wﬂ.l be mvolved not only in B and 93-' E

but also in '3 \P

4, THE ACOUbTIC TENSOR

In this sectlon we shall prove the existence of the acoustlc tensor Q(n) and
we shall analyse its symmetry. :

Let Fe,' Fp, o 5T charactebiéé the e.v.p. 's-tate: of the body in X and at tlimé t.
for a given motion % and the temperéture 9:0'. |

. Two cases must be considered:

a) the process is such that F(J, 9 )< 0 or _?(ﬁ, 9. ‘;() =0 but A SO_.
Then B(J, 8 % )=0and h(A) =0 reébectively. | 2 |

b) the process corresponds to a loading, i.e. F( 7, 90,0( Y=0and A>0.

In the first case, Q(n}—the aeoustic tensor for the wave normal n is defined
for an:y veV by:

Qv =T - (n@nlv + 40 FE 2 o (T R@ED VI (FOTn = 0%mv  (50)
. c
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since -&’2 and &"O given by (41) and (36) respectively are the identity. It results

Z‘l = ;1 =1, The existence of Q%(n) follows from the linearity in v of the right

side of (50). In the case (a) the acoustic tensor Q(n) has been denoted by Q®(n) since
_it corresponds to the elastic part of deformation F€. The resuits is similar to those
presented by Wang and Truesdell [13] but F® is measured from the plastically

- deformed configuration Kwt‘

"'. b) Let J be on the current yield surface and A > 0. We prove that the linear

-oVo : Sym— Sym, defined by

> &”6X= X + ((tr B + 4?’ aie\y(’lceB}s)) gﬂ F.X=Y : (51)

e

is an invertible forth order tensor. We take the scalar product of (51) with (9379’_

and we obtain

: 8'?7( ?' = ?3? Y . : ! (52)
with the hardemng parameter ¥ >0 ngen by (19). Then 9~ &R 0 if and only if

'9 9‘ Y = 0. Now we replace (52) mto (51) and flnaliv we get
e 40 -1 (trBM@DaL g szy({cg}) TG ST i)
| ¥ ey jY =
Therefore
X = Y with X, =1, - (h(A)/¢)(tr BT + 43 32 w {c "B} Wod (54)

In this way the inversability of 2{0. given by (36)”‘ has-been proved for any
elastoplastic state of the body.

By direct caleulus we derive the formula '

: L 200 2 b : [
Fo&y =1y - @A)/ )BT} +2 ?’;‘Cﬁ; Fetsl magr (55)
From (48) with (55)and (50) we obtain the following formula for Q(n):

Qnlv = 0%(n)v - (2h(X /¥ detFE(2, F - 4722 ¥ (§FO Tn @F®) v} FE({BF}  +

o

+28 9% yics) e o)
e . '



=13 -

Aﬁot.her expression of Q(n) - . : “ e
Qv = Qv - (4h(A)/ wdet FO)( ace?' 49T @ES VI Fe({BIY + |
+2§2 é;}’ GofBlES . e o

can be obtained if we use (18) and (20). The existence of the acoustic.terisor results

at once as the second term in (57) is’linear too, with respect to v, for all ve V%

-~

PROPOSITION 4.1. The acoustie tensor Q(n) is symmetric for all n €V if and :

only if there exists a scalar valued function ¥ such that
L Ao el i '
{legs+.zga e«y({qB}S)_~Ja T ' (58)
. C & s
Proof. Q(n), for a certain n, is symmetric if and only if

A ETROES TV (BTE + 2837 4% NED n. FHw=

( ? 59)

( face?- $ (Fe>Tn_ @(Feffw} JUBIY +2 83 et (B} NES 0. 79Ty

Pem

holds for all v,we?V, since Qe(n) define by (50) is symmetric for a given wave-
o ~n 2 e ; . o : ‘
normal n. Here {Bii} Sroe o e’\\'({C B} J€Sym and the first factor in (59) can be
C = | Tase
transformed by using the formula A-(xQy)= ATy «-x  written: for-

a=72 Fe Sym. If we put-
Cege

e\ T W : e
o= PRI} _+ 2% 32 Ap((cop}JF) nib=F O
: = -
into (59), then (a-v)b-w)=(a-whb- v). The last relation holds fgji' all v,w,eV7if

& ne\T -~
ZE (60)

C

and only if a is paralel with b. Therefore there exists a scalar valued function.

depending on Ce, 90,0( ,§ and n such that

e ""-""'2 e el e % e T :
F({BJI}S+2§9Ce'\\f({? BYES) =0 F acezr_(r Jaii e o (61

The last equality takes place for any neV if and only if (58) holds with
independent of n, since F€€ Invlin.

PROPOSITION 4.2. The acoustic tensor Q(n) is ‘symmetric”for all wave-

. . 3 . . v ~ ‘. L
normal n if and only if the instantaneous plastic funetion B(1, 8 0,0() satisfies:
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e C
where Z is the non-symmetric tensor define@by:
Z=C%q (63)
Proof. Let we consider the function
cesym —Z=C%T= 2§ C° 9 Ve Lin (64)
i o ;
The differential with respect to C® of the above function is given by
(65)

F ) ' :

(2 TXa)=Ad¥+C®d
¢

C
for any A €Sym. By taking the scalar product of (58) with any arbitrar A€Sym and

z 2?9 ’\f’ we obtam

by using the symmetry of the forth order tensor

condition (62).

- e

REMARKS
115 The ’IOﬂ bvn‘metuc tensor X plavs a special role fo” the melastzc

(piaatxc) dﬂformstlon being the cofactor of LP = Fe(Fp(’-“p) hE® L in the plastic

power X - LP (see Teodosiu, Sidoroff [14], Halphen, Nguyen [15], Halphen [4]).

- 2. The existence of the plastic potential:

B~=az$<z,e,o<,§>, Wil st *(66)

- postulated by Halphen [4] leads to the symmetry of the acoustic tensor and

. mc')reov‘er'
> dz,0.x5)=7Y7 (86,8 (67)
e c® :

5. ACCELERATICN WAVES IN THE CASE OF SMALL ELASTIC

DEFORMATION
All considerations in this section refere to elastoviscoplastic body with

instantaneous plastieity but:



i) the elastic deformation are smalll, i.e.

Ce=1+2€% or US=1+ g® -' " -teB)
with.. : | '

Ve =y (€92 <<1

_and finite rotation R€e Orth.

".. Piola-Kirchhoff stress tensor &’ will be related to Cauchy stress tensor T by
¥ = (r¢)TTRE - ' e (e
ii) the elastic constitutive function is linear in deformations:
> : .
¥=8¢€% 290 = S )
: Ce

with £ a forth order symmetric invertible tensor. From (69), (68), and (70) we

obtain an equiva'lent form of the elastic constitutive equation:

e

=8 &, where £°=RCERYT, Vo<1 +E (71)
With.t‘h'e following relation between tensors éand é

% A=RAB(RS TARSRST ] e
written for all A€ Sym. - |

In the éase of isotropic linear elastic constitutiv’e equation we have .

T=.7\e<.trfeﬁ+'2ﬁé.se = e b W

where € and ﬁe are the Lame elastic consténts.
P.5.1. Under the conditions i), ii) the acoustic tensor Q(n) is in Sym for all

ne‘V’if and only if
By = v oy ¥ : _ Lo (74)
‘and the sym metric.acoustic'tensor is expressed by | |
lQ(n)v = (§§D®V}S)n - (hA)/%) _( 2‘.3,{? ®©2 93«5‘:){ n®v}n (75)
with -

(76)
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vy

and o ' ey
-?(T,Q,c?,.R.e):?(Rve)TTRe,G,o{').E 5*“ <J7,\é,'e<>h e (77)

. and « = (R.eo(.('Re)T,vﬁ,-)—the actual internal variab}es, when _o(j (with j'éx 1',—51})

are tensors and o( (with k €{T,n, Mo} ) scalars | .

Proof In the case of small ela%txc deformations the tensor Z = Jlé‘ Sym and

>

from (62) we get

 ( acedl )A-{B}Sz'ﬁgce?-A '. i (78)
for all A €Sym. By using (20), (70) wit‘n:(68)-1' in (78) we obtain
Ea-{B} = V¥ -§a ' . (79)

with ‘é—the forth order invertible teﬁso'r. (74) results at once. Now % is considered :
-.as depend_ing on W,QI,M since £e=‘§_137. .
The corresponding form of Q(n) is calculated from (57) with (50) in the form
Q(n)v = ((%5‘3) -.(n®n) ‘v o ‘g{n@v} n -
- (Y h( N )/% N1/detF®) 20:F $(r® )Tm@(r{e) v} R Z S5y rsd)

by using (70) - (72) in (50) and (70) with (20) in (58) With (70) for o(qwen bv ((7)

the plastic function F( 5 9 ,o) becomes (77). It follows that

0. F-r° 3% &Y' 5 e e
éy usmg the syn‘metrv of ,g! and the definite on of 3,;— given.v,by. (72) in (80) we
obtain (75) since the first term in (80) can be neglected in the presence of*the

second one, when elastic deformations are small. The expr‘essxon (19) of the

hardening parameter becomes
‘6":”\)% &,»ﬁ’ BJ’ & (i ﬁ§)trgﬂ?}+l = (82)

with (70) and (74). Further we use (81) and (72) in'(82) and the .expression (76)
follows at once.

P.5.2. 1) For a given e.v.p. state and for each wave-normal n, Q{n) eSym
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satisfies the condition Q(n)n - n> 0 if and only if the scalar ‘constitutive function

S

" given by (75) obeis

inf %-(n@n@n@-nb
neV;ini=1 * e i o
Z(h(?-).\j/l’r\)(?,r?-‘g 9T§+T-3T? tr 3T§)) vvsug\(g%?)n_-n\z (83) -
: . nev, iny =1

> 9) If condition (83) holds for a given e.v.p. state then at least one wave-

normal n allows a longitudinal amplitude.

Proof

1) Tile proof follows at once from ("1"5) in which v is repIaéed by n and with
calculated from (78). » ‘

2) The éssuﬁption leads to Q(n)n .n3y0 for all veV. Following Wang and
" Truesdell (13) we observe that n— Q(nin/1Q(n)n| vmaps continuouvsly the unit
sphere int.o itself and it maps no point into its antipode. .

Such map has as'fixea point. Thus there exists n& ’V',', .\ne\ =1, such that
Q(ne)he = \Q(ne)ne,ine, i.e. ng is a proper vector corresponding to a positive value
: and it is a longitudinal ampiitude. : :

In what follows we suppose that:

iii) F(&.0 ,o(.) is an isotropic funetion with r:es'pect to (I, x). From (77)_we
obtain

F (1,0 ,%,R9= F(1,6,%) = F(T,0,) e (85).

iv) ?dependes only on the deyiatorié pért of 7 and _o(j, or on T' and & ’J ‘and
tr 9,'1‘,3" =0, .

PROPOSi’fION 5.3. Un@er the conditions i)-iv) with isotropic line as el.asvtic

_.constitutive equation (73) the symmetric acoustic tensor (75) becomes:

Q) = (A€ + §®)(n - v)n + % -

o~

Can(EO (3, Fut L+ 293 FI D A Fn L 6D

and Q(n)n - n> 0 for all veV, if and only if; : : j(\;%
B e ”



; s
(Re+zue>><<4h<,x><u?)2w<1+m 197 12»\3 ”“\ . (ee)

Proof. From iii) we replace’ BT?‘F by aT? and éijke =2 Jijé‘,ke ot

5 3. g 51.' ). Therefore (87) follows from (75). ‘Here the hardening
ik 39 ie " jk S

parameterc?']s' calculated from  (76) in  which tr L] T'?:O and
T? =2yl

The condition (88) is obtained from (83) if we note that

¥ -0 ¢ et A

'é°(n®n®r{®n)=ie+2ﬁe, : sup \;?a,r,?n-n\z:
: neV, ing =1
S ey ! .
i nt =1

=4(;'Je)2 \ 04 F 2 Here we have used the symmetry of 9’1"9;'

" REMARK. If A€>0 then for » >0 the condition (88) is satisfied.

THEOREM 5.1. Under the conditions of P.5. 3
1) A wave- normal n such that aq,&’n n# 0 is a longitudinal amphtude lf_

and onlvif nisa proper vector of 3

9) The local speed of the longitudinal wave in the direction e; 1s glven by &

= \/Q(ei)ei : ei/§ where
Qeje, &= (A° + 219~ (4 »EH AN/ + 29792 7y I D)9y Fe, - e)” (89)

must be positive.
3) A wave travelling in a direction n, such that ’BT,’:Fn.rF O allows a
longitudinal amplitude which is prooégating with the local elastic longitudinal

e i o st e

speed given by U \/( P 2;10)/9

»

Proof. Let n be a longitudinal amplitude. Then s-the amplitude vector of the

wave is paralel with n, i.e..Q(n)n = A {n)n. From (87) we get
Qlnn = (A€ + 20%)n - ((4n( w )2 wa,r,m r))/<1 + 290 19 JF1D) op T (90)

If c‘éT,nf n-n#0 then Q(n)n is paralel with n if and only if Q,T,?n is paralel with n,
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i.e.nisa proper vector of 0 Te Sym. A i R

Conversely, let a wave-normal n, with n a glven proper vector for 'b C}‘

There is s eV such that Q(n)s = A(n)s. From (87) we obtain that Q(n)s =an +°
with geR generally non-zero. Comparing this expression_ with Q(n)s:?\(n)s we
obtain lth.at s is ‘paralel with n. A : | v : e

3) If n is such that 'bT,'}' n-n=0 then (90) gives Q(n)n = (Re + 20, i.e. all
these waves allow a longitudinal amphtude ‘

T.5.2. Let n be a wave- normal n which allows a transverse amplitude

al) If n is a proper vector of 'BTSn then the amphtude vector of the
transverse wave -corresponds to any orthogonal di-rection ton and the local speed of
the wave is elastlc, el =Jiie . '

2) If n is not a proper vector of BT,? then the amplitude veetor is paraiel'

with the normal to (n,?ﬁT,‘}n‘). The local speed is also elastie.

b) If d ?n ‘n= 0 and n is not a proper vector of © S & ‘then s is paralel

with 3 anZo and the local speed of this transverse wave is real if and onlv if

Qs -9 = € - (4R(A)Y GEH 12 (rm?

= ~ 2
3 2.*9;,1 15T,?% N>0 }(91)

for all neV such that DT,?n ne=0.

Proof. A wave-normal n allows a transverse amphtude if and oniv if there

exists s&V, s+ n=0 such that s is a proper veétor for Q(n). From. (87) we obtain

Qs = T - (UH(ANEY (3, F s 1+ 297210, F1 D2 Fn (oD

It reéﬁlts xat Q(n)s is paralel with s eithef if a) BT,?S -n=0, withn-s=20, or
b) DT,?S~ n# 0 but 3 ,Fn s parald with s and s n = 0. In the case a) the local
_speed is elastic and the statements 81) and 2«.2) follow at once since T:i & Svm. If
n is-not a proper vector for ’aT,‘§ and ZsT,CEn- n=0, then any s paralel with
¥ ?n is an amplitude ‘vec*n", and from (92) we obtain (91) .

As an example (see Dafalias [5] and Loret (5], but they neﬂwtec the rate of
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“elastic deformation in (98)) we consider an isotropic linear elastic constitutive

equation (73) with the associated plastic fié}zygg:.‘{:’vv
D e e
DP=v<A>3,,F=<a>{B}, : . (93)
related to the plastic function F (T, &, %,), say for instence:
LT R ) = (/23T =& )+ (T =K ) =1 , - (94),

isotropic with respect to T and &‘1 (the deviatorie shift oy back-stress tensor) and

which depends on e, &R. The actual plastic spin

-

wP=<a>{B} , with {B ia""‘ (4T - T'E,) : , (94)

for instance, where }_§ }a is an isotropic antisymmetric valued function with
respect to T' and 2‘1 and depends on ot 4 & R. The plastic loading factor becomes
: LT R e é:‘ie s e "
a:bTE-T, With T =T =g T 2985, O = KBk} (95)
- ‘2& j'. - 4 . L

for any stress state such that ?(T’,Rl,d\?) = 0, since (85) hol~ds.' The evolution

equat'ions for the actua.l_ value of internal variables 3,1, &2 =, are

s AR e ek el -('96).
= By = <Ay, with o) S84y -8 o, ¥ oy LI :
and ard
o, = <A,

ﬁ,j (i= 1. 2) supposed also to be isotropic with respect to T' and &, dependent of
: &2. The function ﬁil may be givén by

T ()

A

T -8y + Ay, T, e e

: : . P 2
and o, is defined by o, = {@E/2)DP - pPyl72,

The scalar constitutive funetions from (93)-(97) are given such as to satisfy the
consistency condition (8), on S(t).

From (32) and (14) we obtaig the following relations:



et

o

. i-L}SE e Dp + € with £8=

o

Soafetvet : (98)
-aﬁd

1LL W=+ WP, of = RomS)"

in the ‘case of small elastic deformations ( see (68)-(71)). Here L= FF 1 xep[esentS‘ |
the velocity gr‘adient.

>
O s '
: We observe that the rates T, ,, & € for the spin £.° are objective tensors
: T - i e :
since T* = QTQF, d‘;‘ = Q deT-"F*e = QF~, PPe FP (see [9] and [12]), where by *
we denote the fields with reference. to the motion
X = x* (t) + QUX(X,1) - x o) with Q= Q(t)eOrth

The symmetry of the acoustic tensor follows and all the results contained in

+ B.5.1..T.5.2:hold too.

CO_NCLUSIO&S. We coﬁsider an elastoplastic body defined by:

- linear isotropic elastic constitutive equation, -

—‘assbciatned' plasﬁc flow low related to a plastic function isotropic ‘with
r‘espeét to T and & -the act_ual internal variaples (with tr“c)Tr-J:‘:O) when t]jg elastic -
+ deformations are small and the elastic. rbiatio_n great and when % €is compared
with o1 '

Then

(1) all the longitudinal and transvers a.w. are prooadaund with local elastic
s.peeds_._ i.e. U= UL or. U= U when the elastoplastic state corresoonds to a
unléadmc or-neutral process, or the elastoplastlc state is inside the current yield
surface, .

(2) when the élastopiastic state corresponds to a loading process (i.e. A > 0).
there exist some transverse a‘.w. and some longitudinal a.w. (see T.5.1 end T.5.2)
"“which are propaga 1ting mm locai speeds less than the oorrcsponcmg; elastic speeds.

We note that if the material is plastie 1ncompresswle then [div Tf €140 on
the 10"Uitudin91 a.w. a.nd [div € =0 on the transx}ers a.w.

In our analvse we have ecsmtmlv used the existence of the elastic rate of
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deformation which is comparable with the pléstﬁc raté of deformation. If?é‘ € (in the

'.ca‘se'of' small deformation) is- neglected with ‘fespéct to DP (this means that
1€ — +c9 then the local speeds of the 1ongiiudina1 and transvers waves become oo,
In his experimen-ts concerning the pr.opagation of the plastic waves in pre-
stresse.d.bars (see [17] and also [18] for general rem>arks about this problem) Be.lln
obtained a local elastic speed along the ldngitudinal reloading waves. ‘
' In -our theoretical consideration we can obtain the elastic longitudinél .
reloading waves if we consider the viseoplastié terms A'-and £ in the evolution
equatiohs (5).
So, a more realistic quel based on (93);(97) can be ot;tained if we consider

the elastic fate of deformation in (98), as well as the viscoplastic terms in

evolution equations: (93) with (94) and (87).
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helpful discussion.
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