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© INDUCTIVE LIMITS CF C (X) =MODULES AND
CONTINUOUS FIELDS OF AF-ALGEBRAS

Marius DRDARLAT and Cornel PASNICU

INTRODUCTION

'In-[S] E.G. Effros posed the problem of studying induc—
tive limits of C*-algebras of the form C(X) ® A, with A
finite-dimensional, as a generalization df the AF~algebras.

Let X be é connected compact,space}_In this paper we.
"give some classification reSults_copcerning inductive-limits

lim C(X).G)Ai , with Ai finite-dimensional, where the bgndinq
- : ' ) .

homomorphisms are unital, injective and C(X)-linear. The pro-
blem here is to measure and to store the possible twistings
over X of the embeddings of Ai into Ai+1° The C(X)-lineax

*-homomorphisms C(X) ®>Aj > CH({X) @ Ai correspond to nomno=

+1
morphisms Ai + C(X) @)Ai+1vwhich are classified, modulo inner
equivalence, by matrices of complex vector bundles over X-.
(see Corollary 2.2). Bach inductive limit L=limC(X) & Ai’

4 | N S
with C(X)-linear connecting *~homomorphisms, is isomorvhic
to the C*-algebra defined by a continuous field EL of Abf'-al-
gebras canonically associated with L (see Proposition 3.7).
This field is not.always trivial as it is shown in Proposition

5.1. Moreover, we are able to classify the inductive limits L

in the case when the fibres of EL are simple, using the



(¢e]

semiring of the homotopy c]aoces of prOJectlons in U M @ L
n=1

(see Theorem 4.4). If the canonical map Vect (X) - KO(X) is
injective (in particular, this occurs provided that X is a
connected finite CW-complex of dimension £3) this result may
be given using the pointed ordered group (KO(L), KO(L)+, [TLJ)
. (see Theorem 4;6).'Also we classify the C*-algebras L as

C(X)-modules (see Theorems 4.3 and 4.5).

1. PRELIMINARIES

If A, B are unital C*—-algebras we shall denote by
Hom (A, B) the space of all unital *-homomorphisms from A to B
endowed with the topology of 'pointwise convclqence. Two homo-

v

moxrphisms @1, ¢.€Hom(A,B) are said to be inner equivalent If

2
thereAis a'unitary ucB such that ®?=u®1u*. Let Hom(A,B)/. be .
_the set of classes of inner equivalent homomorphisms from
A to B. If A and B are C(X)wmodules}we shall denote by -

Hom (A,B) the subspace of Hom(A,B) consisting of all

C(X)
C(X)~linear homomorphisms.

We shall use Vect (X) to denote the set of isomorphism,
cldsses of éomplex-vector ﬁundles on X, and Vectk(x) to
denote the subset of Vect(X) given by bundios of dimension k.

AVécﬁ(X) is a semiring under the operatibhg ® and ® . In
Vectk(X) we have oﬁe-naturally distinguished element‘[k}wthe
class of the trivial bundle of dimension k.

As'uéual we denote by G(n,k) the Grassmann manifold of

all subspaces of c¢? of dimension k and by U(n) the Lie group

of all unitaries of ﬁn’ Any continuous map F:X - G(n,k)



defines a vector bundle EF:{(X;F(X)H):XGX, né@n}cixﬂn . Lét
H1(X,U(k)c) denote the cohomology set associated with the
sheaf of germs of continuous functions X.+ U(k). We héve a‘
bijection Vectk(X) ks H1(X, U(k)c) which takes clésses éf
vector bundles to classes of cocycles ([8])-

We describe below the cocycle of;EF. The fibfa%ion:
U (k) x Uln=k) » U(n) > Gn.x)
induces the exact séquencé oflpointéd céhomology sets:
C(X,0(n)) ~ C(X,Gn,k)) $ H1'(X,U(k)c)xH1 (X,U(n=k) ) > 1! (X,Um))
(for details see [2]). Denote 6(f$=(6

L (F) 6, ()

1.1. LEMMA. The vector bundle EF is given by the cdcYcle
61(F)‘
Proof. Choose an open covering (Ui) of X and continuous

maps ui:Ui + U(n) such that:

e O .
3 = 7 ’ b * .
F(x) ui(x) o hiﬂx) on Ui
0 0
Then:
uij(x) 0
u, (x)*u. (x)=- on U.NU.
s | A ’ i)
i 5
0 | U4 (>.x)

and 5(F):((Ui’uij)’ (Ui,uij)))by definition. Consider the

local trivializations for EF:



k%

< Ny 7 k i 5 n

U, x€ —> EF!Ui~{(X,ui(x)\O Olul(x) n):xeu, nee }
1 2 > 2 — E ,—r; . g -Qk

given by ¢i(x,€)—(x,ui(x) . ) 5 Xcdi ;LGB

The cocycle (Ui,bij) qf EF can be computed using the local

trivializations:

a1 | B -—14 el
by, ()£ (877, (05) 6= (97 ) g 0 {0]
= (671 uy (o) (x) *ug () m=
u, - (x) 0 £
- 1]
-:((I)_L )X l(X) =
0 uij(x) 0
- ' u, . (x)E :
:(¢11) ul(X) J =uij(x)gi eriﬂU, i gq@k,
0

1.2. COROLLARY. Let F:X » G(n,q) be a continuous map and

define a continuous map F:X - G(nk+p, k)

e

@)
.lj

B

where (Ui)»is an open covering of X and vi:Ui - U(nk+p) are

continuous maps satisfying:

v, (%) *v. (%)= , , X€U.OU,
b J 1

kN i3



S i s maps a,.:U.00. 7 ) and a'.:U0.nU, > U(p).
for some continuous maps alJ UlﬂU] U(k) .a a;4:0;0Yy (p)

‘L,et H be the vector bundle corresponding to the cocycle (Ui,aij).

Then Lf is isomorphic to EF @ H.

1 0

& : , ’ 4
proof. We may assume that F(x)=u, (%) u. (x)* on U,
i i i
: 0 0
where ui:Ui » U(n) are continuous and: ’
A_ _ uij (). 0 ‘
sy % <) = ’
ui(x) uj(A) - on Uint
1
0 uij(X)

We get the following formula for T on Ui:

- e

u, (x) @ 1, 07 1.0 0] fu; ix @ 1y O
® 1y |

% d
f;‘, 7)) = 7 ro O ) %
I (A) Vi (A) : ’ ) Vl (“) i
0 1 0 0 0 1

p P

so that we can compute § (I?‘) . Indeed, for X{?,UiﬂUj ‘we have:

- P
u.l(h) ‘(J e 0 | u. (x) © Wk 0
> Y % . s
vi(x)‘vj(x) 7 - =
0 1 ' 0 1
L - P P
0 1 0 al. 0
L p alj(x) ) 1p
™ & = . “
5 (x) ® ay s (%) 0 0
= 0 ulL (x) & a - (32) 0
1
) ; ° ajy ()




Hence Eg is given by the cocycle (U , UL & ass).

2. HOMOMORPHISMS OF C (X)-MODULES.

In this section we classify the homomorphisms in
(C(X) ® A, C(X) @ B) within inner equivalence, where

A=M. @ ... ONM , B=M_ & ... @M and X is compact and
. n, n, m, m i

connected.

-~ Any homomorphism ®€HomC(X)(C(X) ® A, C(X) € B) is uniquely

determined by. its restriction to A, This allows us to identify

Hom (C(X) & A, C(X) & B) with Hom(A, C(X) @ B) aé topologi-

C(X)

cal spaces, 1dent1flcataon wh1ch pleSCIVGS the inner equiva-

lence classes. By PrOpOolthﬁ 1 in [3] it follows that there

v

is.a bijection

.
St

§ :Hom, ., (C(X) @ A‘, C(x) @ B)/~ » {E=(E, )M, (Vect (X)) :E[n]=(n]} “

where {E]: n1j,.¢ [n j), [m]:i([m{},...,[ms]), Explicitly, .

Efﬂ]:[m] means s

F)[n1]3j@ . S @'(P g;(nlj [mpj, p=1,2,0.+ 5.

'”The.d650”1ptwon of: 6 can be obta1nﬁd uslnq thc local structure
of homomorphisms A + C(X) & B given 1n.L10J or by Plopo ition 1
in [3}¢ Foxr simplicity, suppose that Bsz} Thus, for a homo-
morphism'éeﬂom(A, Cc(X) & B) there are: an open covering (Ui)

of X, continuous maps vi:Ui-+ U(m) and positive integers

k

17 ’klx such that:



)

) 3 3 B, . , ) o ,
@(d)(X)»Vi(k)(dqt®’1k ® ... ®a. € 1k )vi\x) (
: 11 1r
S _ 3 @ - .
where kCUi, a=a4 [ & argA and:
1@ al.(x) 0 i
nqs ij ‘
- vi(x)h%(x): "9. on Pﬁﬁuj
r
L. . 0 1nr & aij(x)

1f 6(®)=(E1q) then each vector

aq
(Ui, aij)'

cocycle
If C is a unital
the set of homotopy classes of

o0
\J M @ C. Recall that D(C) is

n=1

~induced by the direct sum of projeétions'énd D(+) 1is

riant functor..

Let C=C(X)
of semigroups D(C(X) @ B)

a projection FEC(X) ® A & Mn 7

r
F=F, @ ... © F_€ @ C(X)
' k=1 -
o (B., 7+« 7B )€Ve'ct(X)r ANy
E : I
1 r .
¢ X) @ (%) @ B))
@gnomc(x)(c( ) @ A, C(X) @ B)

> D(C(X) & B) or equivalently

[ I
Vect (X))~ 1is a free nmodule over

Let €., ,€ be ‘its-canonical
1 X '

with [1] on the i-th position.

bundle E.
. 1q

Note that rank E1q=k

- Vect{x)r

is given by the

1q

c*-algebra we shall denote by D(C)

selfadjoint projections in
a semigroup under the operation

a cova-

A. It is known that there is an.isomorphism

which maps the class of

having the decomposition

homomorphisnm

induces a map 9,:D(C(X) S Mg

r
a map ®,:Vect (X)

> Vect(X)S*
the unital semiring Vect (X) .

basis, ei:(O,a.., Dj""

We denote by



HOMG ¢ ot (X)

. yect (¥X)-modules Vect(V)r.% Vect(X)s. As usual any element of

(Vect(x)r, Vect(X)S)_the set of all homomorphisms of

HomVeét(X)(Vect(X)I,Vect(X)S) is given by & unique matrix in

MSXI(Vect(X)) with respect to the canonical bases.

9.1. PROPOSITION. The map & is Vect (X)-linear and its

matr;xgit is equal to 6(®)=(qu).

proof. We may assume that BzMﬁ. Using (2) and the

canonical bijection Hom (A, C(X) & B) ~ Hom (C(X) @ A,C(X) @ B)

C (X)

‘we get the following description for. d:

0 (G) (x)=v, (x) (65 (x) @ 1}'{11 ® ... ®G_(x) ®71k1r)vi(x)* |

r r
xe€U., G= @ G, € @ C(X) & Mn 7 where_k11,...,k

‘are positive
1 i L

integers (n k. . +t...7
g¢ ( 1711 nrk

and vi:Ui«~%U(m) are continuous maps satisfying:

1r:m), (Ui} is an open covering of X

*yr r'-; ° . ,. ' . i 5
.vi(x) §j(h) - _ _ ,xanﬁUj

-~ wt

M 7

1 o vy W) . 4 i) f", T - 3 4 4% / Vo & 22 by 1
LO’L B C(X) & A & __/in » C(X) & Mm o Mn i <I>n. o & id )
: 1

nz1. Since ¢, . is a homomorphism Of semigroups it is enough
- o describe the homotopy class of ¢f(F) for a projection

. 1
FEC(X) & Mn & MHCC(X) @ AQ M, - One can easily obtain the

1-
following formula:



s

nn, ij ;
. i * = ¢ .'U-
(v (x).® 1)) (v (x) @ 1,) , : ) X€U, U5
1 ' .
,- . 0 aij(;x)
- ¥ - -
where a'!. (x):= @ 1 © ai.lx)r it follows by Corollary 1.2 that
i ~, nn ij
g=2  q : . -
@n(F) gives a vecltor bundle jisomorphic to Ech Eoq s where
E11 is the vector bundle corresponding to the cocycle (Ui’ alj
:%2,2. COROLLARY. The map ¢-» ¢, induces a bijection
] - ;.":;.R (’ N ), Fas = L"“ Toct A T >0t 15 .
Hon&:<x>((,(Y) & A, C(X) & B > {}“leanect(X)(VFct(X) Nect (X)7) :

xn]=[x13

proof. Use (1) and Proposition 2s 14

Let KO{C(X) & A7) be the'Grothendiebk gfoup for the
abelian semigroup D(C(X) ® A). Let KO(C(X) & A), be the image

of D(C(X) ® A) in K (C(X) & A). (K, (C(X) @ D)y K (CX) & B
(C(X) @ B) » Vect (£)”

is an ordered group. The isomorphism D

inducesvan isomorphism of ordered groups
5 3 ¥ Y. s 9 e ,O > I: O 1:‘ ’ O
(hO(C(h) & A) . KO(C(A) & n) )~ (K7 (X)~, K (X)+) where K7 (X)

is the image of Vect (X) in KO(X). Recall that KO(X) has a



natural structure of ring. In}KO(C(X)<g.A) we distinguish the
clas; of the unity [TC(X)xﬁ A]=L§]. we shall denote by
o r o] il o s .0 s :

Hom 0 yy (K7 (X)7, K7 (X}, [n], )7, KX L m])) the
set of all pointed ordered group homomorphismswhich are
K° (X)-linear.

2.3. COROLLARY. Assume that the qanonical map
Vect (X) -~ KO(X) is injective. Then the map ¢ > KO(®) induces
a bijection:

(C(X) & A, C(X) @ B)/~ ey

Hon%:(x)

. o) T O, X Tnl e s .0 s r
3. CONTINUOUS FIELDS OF AF-ALGEBRAS
Let X be a compact space and let (Z\.l)O;.)S1 be a segquence

of finite~dimensional'C*—algebras. We consider a system:

. b |
N L o . :
6o e Y . S 3 T e e e ‘
> Cc(x) @B, T CX) @R, A» 2 (3) :

where cach *-homomorphism @i is unital, injective aﬁd C(X)¥
~linear. We Show>that the corresponding_C%winductive limit
L=1lin(C(X) & By ®1)>is *wisomorphié, by a‘C(X)wmbdule iso—
> :

morphism, to the c*¥-algebra of the'sectiops of some conti-
nuous field of AF-algebras.

gince we can canonically,identify_Hom(Ai,C(X) §3A1+1)
with C (X, Hom(Ai,Ai¢1)), each @i defines a continuous map

_Xox > ®j(X)EHom(Ai,Ai+1). Note that each @i(x) is injective.



For any x€X define the AF-algebra A(X)=lim(Ai,@j(X}).

. : - -
we wanL to define a continuous field of AF~algebras
EL:((A(X))XGX' T). Let Lg ‘be the algebralc 1nductive limit of

the system (3). Then define n:Ly > 1 A(x) by n fF])b{—{P )]
xeX
x€X, Felg. ({al dcnotes the image of a in the correspondnng

inductive limit).

Define T to be the closure of n(LO)C:H A(x) with respect
‘ xeX .

to the norm ]\a\l—suplla(x V). It is easily seen that EL is
XEX . ‘

a continuous field of AF- algebras. Moreover, T extends to a
C(X)-linear *- isomorphism irom I, onto T'. Thus, we have the

following:

3.1. PROPOSITION. The inductive liﬁit I is *-isomorphic

to T by a C(X)-module isom@rphism.

3.2. REMARK. If each A, is a factoxr or if the space X
is connected, then Alx)EAly), X, YeX. Tf X is locally contrac-

tible, then tnhe field EL is locally trivial.

3.3='PROPOSITION.ALet L, Lf be inductive limits of the

above type such that' the fibres A(x), A'(x) (x£X) of EI

)

EI‘ are simple. Then, for any *—igomorphism ¢:L ~ L' there

is a homeomorphism ¢:X X such that:
o (f-a)=£od 0 (a) ,- feC(X), ack.

proof. Let n:L >~ T and n':L' > I''" be the *igomorphisms



2

=

_constructed in the proof of Pro

*-isomorphism which makes the d

L ——> T

commutative. Since n and n" are

prove that U (fa)=Eob -y (a), £eCl

since each A(x) is simple

of the form Iy:={a€F:a(x)=0}, %

it induces a homeomorphism $p:X

{a‘CF‘:a'(¢f1

° =

(x)) For feC

(£~f (x))a€l  hence p((F-£ (x))a)

q)(fa)(q{'1

(x))=F (x)y(a) (o (x))-

3.4. REMARK. Assume that

A' (x) are simp.ie. Using Proposi

with that given in the proof of
that L =L' if and only if the £

the pullback ¢*EL| for some hom

ma
'

4. CLASSITICATION RESUL

Let X be a com@act connected

shall consider inductive limits

0

S

(A )i:1 i ; S

i equence of finite

position 3.1. Let y be the

iagram:

’C(X)—linear, it is enough to
X), acl.

; the maximal ideals of ' are
¢X. Since Y is an isomorphism,

» s
.

s X such that P(I)=I"_4 =
- (%)

(X)'and aéf we have

(¢”1(x)):0, that is

The proof is complete.

all the AF-algebras A(x) and
tion 3.1 and a similar afgument
proposition 3.3 one can Sceé

18

ield EI isomorphic to

comorphism ¢ :X > X.

space. In this section we

Cp=1im{C(X) @ A, 2.), whers

~dimensional C*—algebras and



each @iEHomC<X)(C(X) QpAi, C(X) @;Ai+1) is injective. Note
. that L inherits a natural strhcturc of C(X)-module. Qonsider
(L), the %emigroup of homotopy classes"of selfadjoint projec-
t1ons in \J M @ L (see section 2). Since‘D(L)=limD(C(X),9 A Y
+
D(L) 1nheglls é natulal structure of module bver the semiring
Vect (X). Our classification of the inductive limits L will- be
given in terms of D(L) and KO(L). Consider two_inductlve
limits L=1im(C(X) @ A;, ¢;) and L'=1lim(C(X) @ A, 9}) of the

> . ; ' -

above type. Set Li:=C(X) & Ai and L{:=C(X)f@)Ai;

4.1. LEMMA. Let ¢:L - L' be a *-isomorphism such that
® (fa)=£fob-0 (a), fEC(X), acl,, for sone homeomorphism ¢ X > X.

Then there i3 a commutative diagram of * -homomorphisms:

Li(1y— le“‘"""?‘L ) 7
i
j(,l)w-—-—"——““? IJ:} (2) B 4 e e

suéh that ai{f):f°¢ and Bi(f)zfo¢f1, fﬁc(x). The converse

is also true.

proof. We prove only the nontrivial implicationh_Using
e ' -
Glimm's TLemmalf{ 7, Lemua 1‘8J as in the proof of Lemma 2.6

in [1], we can get suitable unitaries uiEL'y VieL such that

; ‘ =]
the homomorphlsms aj:ui®u§ and Bi:vi® V? to have the

© desired properties.



Let S be a unital semiring. Con51der two inductive

N '

"llmjts T=1im (S l,-i) and'T‘zlim(; . ) whole O and Qi are
- -

homomorphisms (not necessarily leOCLlVO) of S~modules. Note

that T and T'!' inherit a natural structure of s-modules. Set

x

S. =S "
A

1 and S'=S . We shall distinguish an element s, (resp,sg)

i - : P fa V) =gt
in 5, (resp. S ) such Lhat 0, ( l)—s;L 1 (resp. Gi(Qi)ﬁsi+1)'

Then.T and T' will be pointed in the obVLous way, by t=i}i]

and t':[si]. Let. Jis- = 8 be an isomorphlsm of semirings.

4.2. LEMMA. Let by ey + (R ,E) be an isomorphism
of pointed semigroups sneh_ that A(sa)y=J(s)h(a), €5, acT.
Then there is a commutative diégram of homomorphismgof pointed

senigroups:

(Si(wj'si<1\ 51(2) %1 N L e

SN

(&2 r S e
25411 3(2
‘ - = /- i Y e | .c* —~1 ; = 3 ~
such that \k(sa)~J(s)Yk(a), ék(gb)~J_ (S)Gk(b), sES, atsi(k) »
bLSB( .. The converse is also true. |

proof. The plOOL uses. the fact that Sk andrsi are fini-

tely generated as S-modules.

A.3. THEOREM. Let L=1lim(C(X) & A, 04)
5 R

1,'=1lim(C(X) @ Ai,QQ).'Then L and L' are *~isomorphic by a

- t ek

C(X)-linear isomorphism if and only if D(L) and D(L'). are

igomorphic as semigroups,by a Vect (X)-linear isomorphismn



which takes the class of 1L £% the élass of_TI,.

Proof. The proof uses Corollary 2.2, Lemma 4.1, (with'

$=1d,) and femma 4.2 (with S=Vect(X) and J=idg).

4.4. THEOREM. Assume that the fibres of the continuous
fields EL and EL' (see section 3) are gsimple. Then L ana L'
are *—isomorphic 1 andlonly if there is an isomorphism of
semigroups A:D (L) = D(L')'which takes the class of 1L to‘the

class of 1L' and such that:

A{sa)=J(s)h(a) sevect (X), aeD(L)
‘ where . J:Vect (X) Vect (X) is an isomorphism of semirings

induced by some homeomorphism X + X.

Proof,.The proof uses corollary 2.2, Proposition 3.3,

Lemma 4.1, Lemma 4.2, and the following remarks:

a) Let A, B be finite dimensional C¥-algebras and let
geHom (C(X) & A, C(X) & B) be a *-homomorphism satisfying
.9 (fa)=fop-d(a), fEC (X)) acC(X) @ A. Then we have a factori~

zation ®:®1¢*
. £ - o
c(X) & A .A.EM%, c(X) & A sty CAXY 6 B

where ¢* (F)=Fo¢ and @1 is a C(X)-linear *~homomorphism.

e ' IS ot t i
b) If Y:Vect(h) i Vect(x)L is a homomorohism of semi-

"groups satisfying y(sa):J(s)y(a), sevect (X) aGVGct(X)r,



(r)

then we have the factorization y=0J

{x) :
vect (X)F % vect (X) ¥ —tp Vect (x)©
where J(r)(sq, .,sr)=(J(s1),.,.,J(sr)) and o is Vect(X)—linear,

N i : 5 | ;i
We‘denote by‘KO(L)+ the image of D (L) into KO(L). since
KO(L)leTKO(Li) and hO(L)+x11TKO(Li)+ it follows that KO(L)
jpherits. a natural strugture.of KO(X)Qmodule and.the triplet
(KogL), KO(L)+’ KWL]) is a pointed ordered group. When the
canonical map Vect (X) - k° (x) is injective the above twoO

Theorems can be formulated in terms of Ko*groups in the follow—

ing way:

4.5. THEOREM. L and L' are.*~isomorphic by a C(X)-linear

isomorphism if and only if (KO(L), K (L), {1L]) and‘

o
(KO(L‘), KO(L‘)+ ’ EWT‘J) are igsomorphic as pointed ordered

O , . ;
groups by a K (X)-linear isomorphism.

4,6. THEOREM. Assume that the fibres of the’continﬁ@us
fields EL and EL' are simple. Then L and 7, are *-isomorphic
if and only if there is an isomor@hism_of pointed ordered'
grodps

.« L] 3 7 - 1 L e T 8 7 -1 T “

At (K (LY, R (L) (1) 7 (BB K Vo L1l

such that: A(sa)=J(s)A(a), SQKO(X), aéKO(L) where
/O r O iy : 4 ! . i N4 ) ’
J:K°(X) » K (X) is a ring isomorphism induced by scme homeo-

morphism X - X.



5. APPLICATIONS

Assume that X is a finite connected CW-complex of dimen-— -
sion $£3. Then there is an isomorphism of rings X:KO(X) >
> (2 X.H2(X,Z), +, ) given by X[E]:(rank(E), c1(E)),

 EeVect (X) , where c1(E) is the first Chern class of E. The ring

ostructure:on 7 x HZ(X,Z) is given by:

(k,a)+(l,6)=(k+l,-a+8)

~

(k,a) - (1,8)=(k1, la+kg) where o, geH2 (X,2), k,1€ 7.

Also,in this case the map vect (X) - K2 (X) is injective. These
facts follow from the properties of stability of vector bun-

dles (see [9]). wWhen X=82 we obtain that

KO(82)={S+tX: s,t€Z, 2=0}=Z[x3/(xz)~ and

KO (s?), =ls+tx: (s, t)eN x Z2U{(0,00})

, . : 1 4
Let 3<p1<p2<... be a sequence of prime integers, gi{ } ,
' ; 1.4

2 n!]
Eme =2 - — 4 - - = 1 .
n —[ ] and define n; { w | bY Dy a;ny where.ai pyas iz1.

7 0yl S

Let Ai=Mn,'® M n and consider a simple AF-algebra A given by .
: i i -
fhe Bratteli system:
a, a a
Byl iy

We shall consider a C*-algebra L=lim(c(82) ®§Ai, @i) whose

—)-
pointed ordered'KO—ﬁxoup is given by the inductive limit

iy Mg adl
Moedk © i



i 18 -
. 2 A
corresponding to the followikg system of k° (87)~linear homo-

morphisms:

a.+bhx a2+bx 5 a3+bx

2 . 1©shH? S x° (s2) R

KO(SZ)

where b:{ii 62]. Note that ®i'is such that KO(®i5=ai+bx and
®i is injective. .

The following proposition shows that the Cf*aléebras
studied~in this paper do not reducé to the C*walqebras.given
by trivial fields of'AF—élgebras._ ; .

5.1. PROPOSITION. The inductive limit L:lim(C(S% @;Ai,qq)

e

is not *-isomorphic to any C*-algebra of the form C(S?) & B,

with B an Af-algebra.

proof. By reasons. concerning the primitive spectrum of
. - 3 )
L, it is enough to show that ‘L is not *~jigomorphic to c(s®) @ 2.
76 get.a contradiction assume that K_(L) is isomorphic to
iy U . i : ;
KO(C(b )y & A} as in Theorem-4.6. Since any homeomnorphilsm
Y el 2 .. . . ;
$:8° > S has the degree *+1, it follows, with the notation |
- e ehat 3=1° 0,2y 5 w2(a2y j .
of Theorem 4.6, that J=K (d): K (87) 2 {§%) is given by
J (s+tx)=sttx. We shall consider only the case J{s+tr) =s~tX."
The case J=id 1s simpler. BY Theorem 4.6 and Lemua 4.2 we
must have a commutative diagram of the form (we have deleted
[ J
(87) 7 )

the spaces K



g (2 ' Y?=,(c'+d'x)J(2) '

Zf

where YTz(c+dx)J( . 61=(e+fx)

?(e'+f'X)J(2)’and J(z):[g 3}

62
The following com@utations use the identities ab=ba=-b
(2)

and J(Z)(g+hx)J =ep=0K , g,hﬁmz(z), The commutativity of the

above diagram implies:

e¢=a1...ak.;.an o . (4)
fc—ed=b(a2a3‘.Lan+éqg3.“ah+7“+a1a2 e an_? » | .(5)
c'e=ak+1...an.o.am . [6)
d'e-c'f=0 - =3 (7)
e'c'ec=a1...gk.;.an...am..,ar ' {8)

Ffom (4) , (5); (6) and (7) we get:

" ! o r ! F ' . n-1
d a1.,uanﬁak+1..uan..aamd—c (p2p3ﬁ,.pn+...+p1p2“.pn4)( 1N b

- 0

‘ P . ‘ :

so that we infer that n .Xdivides c'b in M2(Z),»It

0 p °
“n

follows that P divides det (c¢'). We obtain from (4) that

2 .l o 3 L. :
P divides det(ec) hence P divides det(e'c'ec) which con-

tradicts (8) since det (a)=-3.



In contrast with the above proposition we have the

following:

5.2. PROPOSITION. Let X be a connected finite CW-complex
.of dimension £3 and let A be a UHF~-algebra, A=lim Ai where
S
each A.l is a flnlte dlSCIGtC factor. Then L= 1im(Cc(X) &® A }
+

1
T is *—isomorphlc by a C(X)-linear isomorphism to C(x)(§ A, for

any choice of @iﬁHomc(X) (C(X) @ By C(X) @)Ai+1)'

proof. BY hypéfhesis we have Vect (%) + N X HZ(X,Z):

={gs+nx:sel, neHz(X,E), X2=O}. Hence

(c(X) @ A

1010 ¢ . o 5 <'_~X- r ==
LO“C(X) > By Y f= = {EeVect (X) :E ﬁ)tni}

v

T 2
= Lnl+|]} 3 {s. RIS n QH.(X Z) nin=0, x“=0}

where Ai:wn' and s.=ni+1/n. (see'Corollary_2,2)v Considér
an arbitrary inductive limit L' =1im (C (X) @)A @i) of the
>

same Lypo as L. We shall apply Theoren 4.3 to show Lhat

L=L' as C(X)-medules. To prove that (D(I, { L] 3 (D(u ),[ﬂv,]}

as pointed vVect (X)-modules we shall use Lemma 4.2 i.e. we

shall construct a commutative diagram of the type:

81+n1x Sm+nmX Sf+nrx
D L e e o -, D o T T
1 ——— SR Ao ] R 5 Dr+1 P %
\ : ~ i
~X S, Af &
1 \‘«
S, 4N, ¥ S, MX " s ¥
1 n1\ k KT, g g L




5 5 r 3 3
where Di:Diz(NxH (X,z),ni), (@i)*~si+nix ; (@i)*—si+nix .

.Y1=s1.,.sk+€1x . 61:Sk+1 q

"ot.sm+£2x P Y2=sm+1...s +ij, etc.
Let Tizz{UGHz(X,Z):nin:O}. The torsioﬁ part of HZ(X,Z).iS_'
finite. Hence the seqgquence TTCTZC”" stops. Since niETi

we maf assume that ﬂicT1 , iz1. After dropping finitely many
terms in the sequence 51,52,53,... we may also assule thaﬁ
any.class §ieZ/n1Z occurs infinitely many~ﬁimés. With'these
assumptions, the sequence (gi)oio:1 ; g1:0,'is constructed

inductively,using the following remark: given u<v and geTy

there are w>v and g'€T, such that if y=su...sv+gx and

6=s§+1...sw+g'x, the following diagram:
D ‘i}ii?il-); ‘.. fﬂ}; D
u _ w1
: =7
\\\\\;1 §
>
Dy +1

commutes, i.e.:

w _
;EE(Si+nix):(sv+1...sw+£'x)(su...sv+gx)

To prove this we choose w large enough such that

.(su,..sv)A divides (Sv+1"'Sw)A in z/h1z R
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