INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

INDUCTIVE LIMITS OF C(X)-MODULES AND CONTINUOUS FIELDS OF AF - ALGEBRAS

by

M.DADARLAT and C.PASNICU

PREPRINT SERIES IN MATHEMATICS

No.61/1986

Juca 23762

. .

INDUCTIVE LIMITS OF C(X)-MODULES AND CONTINUOUS FIELDS OF AF-ALGEBRAS

by .

Marius DADARLAT* and Cornel PASNICU*)

November. 1986

^{*)} The National Institute for Scientific and Technical Creation, Department of Mathematics, Bd. Pacii 220, 79622 Bucharest, ROMANIA.

INDUCTIVE LIMITS OF C(X)-MODULES AND CONTINUOUS FIELDS OF AF-ALGEBRAS

Marius DĂDĂRLAT and Cornel PASNICU

INTRODUCTION

In [5] E.G. Effros posed the problem of studying inductive limits of C*-algebras of the form $C(X) \otimes A$, with A finite-dimensional, as a generalization of the AF-algebras.

Let X be a connected compact space. In this paper we. give some classification results concerning inductive limits lim $C(X) \otimes A_i$, with A_i finite-dimensional, where the bonding homomorphisms are unital, injective and C(X)-linear. The problem here is to measure and to store the possible twistings over X of the embeddings of A_{i} into A_{i+1} . The C(X)-linear *-homomorphisms $C(X) \otimes A_i \rightarrow C(X) \otimes A_{i+1}$ correspond to homomorphisms $A_i \rightarrow C(X) \otimes A_{i+1}$ which are classified, modulo inner equivalence, by matrices of complex vector bundles over X. (see Corollary 2.2). Each inductive limit L=limC(X) \otimes A, with C(X)-linear connecting *-homomorphisms, is isomorphic to the C*-algebra defined by a continuous field $^{ extsf{E}}_{ extsf{L}}$ of AF-algebras canonically associated with L (see Proposition 3.1). This field is not always trivial as it is shown in Proposition 5.1. Moreover, we are able to classify the inductive limits L in the case when the fibres of \boldsymbol{E}_{L} are simple, using the

semiring of the homotopy classes of projections in $\bigcup_{n=1}^{M} M_n \otimes L$ (see Theorem 4.4). If the canonical map $Vect(X) \to K^O(X)$ is injective (in particular, this occurs provided that X is a connected finite CW-complex of dimension ≤ 3) this result may be given using the pointed ordered group $(K_O(L), K_O(L)_+, [1_L])$ (see Theorem 4.6). Also we classify the C*-algebras L as C(X)-modules (see Theorems 4.3 and 4.5).

1. PRELIMINARIES

Hom (A,B) the space of all unital *-homomorphisms from A to B endowed with the topology of pointwise convergence. Two homomorphisms Φ_1 , $\Phi_2 \in \text{Hom}(A,B)$ are said to be inner equivalent if there is a unitary ucb such that $\Phi_2 = u\Phi_1 u^*$. Let $\text{Hom}(A,B)/_{\sim}$ be the set of classes of inner equivalent homomorphisms from A to B. If A and B are C(X)-modules, we shall denote by $\text{Hom}_{C(X)}(A,B)$ the subspace of Hom(A,B) consisting of all C(X)-linear homomorphisms.

We shall use Vect(X) to denote the set of isomorphism classes of complex vector bundles on X, and $\operatorname{Vect}_k(X)$ to denote the subset of $\operatorname{Vect}(X)$ given by bundles of dimension k. $\operatorname{Vect}(X)$ is a semiring under the operations \oplus and \otimes . In $\operatorname{Vect}_k(X)$ we have one naturally distinguished element [k]-the class of the trivial bundle of dimension k.

As usual we denote by G(n,k) the Grassmann manifold of all subspaces of \mathbb{C}^n of dimension k and by U(n) the Lie group of all unitaries of $\tilde{\mathbb{M}}_n$. Any continuous map $F\colon X\to G(n,k)$

defines a vector bundle $E_F = \{(x, F(x)\eta) : x \in X, \eta \in \mathbb{C}^n\} \subset X \times \mathbb{C}^n$. Let $H^1(X, U(k)_c)$ denote the cohomology set associated with the sheaf of germs of continuous functions $X \to U(k)$. We have a bijection $Vect_k(X) \to H^1(X, U(k)_c)$ which takes classes of vector bundles to classes of cocycles ([8]).

We describe below the cocycle of $\mathbf{E}_{\mathbf{F}}$. The fibration:

$$U(k) \times U(n-k) \rightarrow U(n) \rightarrow G(n,k)$$

induces the exact sequence of pointed cohomology sets: $C(X,U(n)) \rightarrow C(X,G(n,k)) \stackrel{\delta}{\rightarrow} H^{1}(X,U(k)_{C}) \times H^{1}(X,U(n-k)_{C}) \rightarrow H^{1}(X,U(n)_{C})$ (for details see [2]). Denote δ (F) = $(\delta_{1}(F),\delta_{2}(F))$.

1.1. LEMMA. The vector bundle \mathbf{E}_{F} is given by the cocycle $\boldsymbol{\delta}_{1}\left(F\right).$

Proof. Choose an open covering (U $_{\dot{1}}$) of X and continuous maps u $_{\dot{1}}:$ U (n) such that:

$$F(x) = u_{i}(x) \begin{bmatrix} 1_{k} & 0 \\ 0 & 0 \end{bmatrix} u_{i}(x) * \text{ on } U_{i}$$

Then:

$$u_{i}(x) * u_{j}(x) = \begin{bmatrix} u_{ij}(x) & 0 \\ 0 & u_{ij}(x) \end{bmatrix}$$
 on $u_{i} \cap U_{j}$

and $\delta(F)=((U_{i},u_{ij}),(U_{i},u_{ij}'))$, by definition. Consider the local trivializations for E_{F} :

$$\mathbf{u}_{\mathbf{i}} \times \mathbb{C}^{k} \xrightarrow{\phi_{\mathbf{i}}} \mathbf{E}_{\mathbf{F}} \Big|_{\mathbf{u}_{\mathbf{i}}} = \{ (\mathbf{x}, \mathbf{u}_{\mathbf{i}}(\mathbf{x}) \begin{bmatrix} 1_{k} & 0 \\ 0 & 0 \end{bmatrix} \mathbf{u}_{\mathbf{i}}(\mathbf{x}) * \eta) : \mathbf{x} \in \mathbf{u}_{\mathbf{i}}, \ \eta \in \mathbb{C}^{n} \}$$

given by $\phi_{i}(x,\xi) = (x,u_{i}(x)\begin{bmatrix} \xi \\ 0 \end{bmatrix}), x \in U_{i}, \xi \in \mathbb{C}^{k}$.

The cocycle (U_i,b_{ij}) of E_F can be computed using the local trivializations:

$$\begin{aligned} \mathbf{b}_{\mathbf{i}\mathbf{j}}(\mathbf{x}) \, \xi &= (\phi_{\mathbf{i}}^{-1})_{\mathbf{x}} (\phi_{\mathbf{j}})_{\mathbf{x}} \xi &= (\phi_{\mathbf{i}}^{-1})_{\mathbf{x}} \mathbf{u}_{\mathbf{j}}(\mathbf{x}) \begin{bmatrix} \xi \\ 0 \end{bmatrix} = \\ &= (\phi_{\mathbf{i}}^{-1})_{\mathbf{x}} \mathbf{u}_{\mathbf{i}}(\mathbf{x}) \mathbf{u}_{\mathbf{i}}(\mathbf{x}) \mathbf{u}_{\mathbf{i}}(\mathbf{x}) * \mathbf{u}_{\mathbf{j}}(\mathbf{x}) \begin{bmatrix} \xi \\ 0 \end{bmatrix} = \\ &= (\phi_{\mathbf{i}}^{-1})_{\mathbf{x}} \mathbf{u}_{\mathbf{i}}(\mathbf{x}) \begin{bmatrix} \mathbf{u}_{\mathbf{i}\mathbf{j}}(\mathbf{x}) & 0 \\ 0 & \mathbf{u}_{\mathbf{i}\mathbf{j}}(\mathbf{x}) \end{bmatrix} \begin{bmatrix} \xi \\ 0 \end{bmatrix} = \\ &= (\phi_{\mathbf{i}}^{-1})_{\mathbf{x}} \mathbf{u}_{\mathbf{i}}(\mathbf{x}) \begin{bmatrix} \mathbf{u}_{\mathbf{i}\mathbf{j}}(\mathbf{x}) \xi \\ 0 \end{bmatrix} = \mathbf{u}_{\mathbf{i}\mathbf{j}}(\mathbf{x}) \xi, \quad \mathbf{x} \in \mathbf{U}_{\mathbf{i}} \cap \mathbf{U}_{\mathbf{j}}, \quad \xi \in \mathbb{C}^{k}. \end{aligned}$$

1.2. COROLLARY. Let $F:X \to G(n,q)$ be a continuous map and define a continuous map $\tilde{F}:X \to G(nk+p,\ qk)$

$$\widetilde{F}(x) = v_{i}(x) \begin{bmatrix} F(x) \otimes 1_{k} & 0 \\ 0 & 0_{p} \end{bmatrix} v_{i}(x) * , x \in U_{i}$$

where (U_i) is an open covering of X and $v_i:U_i \to U(nk+p)$ are continuous maps satisfying:

$$v_{i}(x) * v_{j}(x) = \begin{bmatrix} 1_{n} \otimes a_{ij}(x) & 0 \\ & & \\ 0 & & \\ & a_{ij}(x) \end{bmatrix}, \quad x \in U_{i} \cap U_{j}$$

for some continuous maps $a_{ij}:U_i\cap U_j\to U(k)$ and $a_{ij}':U_i\cap U_j\to U(p)$. Let H be the vector bundle corresponding to the cocycle (U_i,a_{ij}) . Then $E_{\widetilde{F}}$ is isomorphic to $E_F\otimes H$.

Proof. We may assume that $F(x)=u_i(x)\begin{bmatrix}1_q&0\\0&0\end{bmatrix}u_i(x)*$ on U_i , where $u_i:U_i\to U(n)$ are continuous and:

$$\mathbf{u}_{i}(\mathbf{x}) * \mathbf{u}_{j}(\mathbf{x}) = \begin{bmatrix} \mathbf{u}_{ij}(\mathbf{x}) & 0 \\ & & \\ 0 & \mathbf{u}'_{ij}(\mathbf{x}) \end{bmatrix} \quad \text{on } \mathbf{u}_{i} \cap \mathbf{u}_{j}.$$

We get the following formula for $\widetilde{\mathbf{F}}$ on $\mathbf{U}_{\mathbf{i}}$:

$$\widetilde{F}(\mathbf{x}) = \mathbf{v_i}(\mathbf{x}) \begin{bmatrix} \mathbf{u_i}(\mathbf{x}) \otimes \mathbf{1_k} & \mathbf{0} \\ \mathbf{0} & \mathbf{1_p} \end{bmatrix} \begin{bmatrix} \mathbf{1_q} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \otimes \mathbf{1_k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u_i}(\mathbf{x}) * \otimes \mathbf{1_k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{v_i}(\mathbf{x}) *$$

so that we can compute $\delta(\tilde{F})$. Indeed, for $x \in U_i \cap U_j$ we have:

$$\begin{bmatrix} u_{i}(x) * \otimes 1_{k} & 0 \\ 0 & 1_{p} \end{bmatrix} v_{i}(x) * v_{j}(x) \begin{bmatrix} u_{j}(x) \otimes 1_{k} & 0 \\ 0 & 1_{p} \end{bmatrix} = \begin{bmatrix} u_{i}(x) * \otimes 1_{k} & 0 \\ 0 & 1_{p} \end{bmatrix} \begin{bmatrix} 1_{n} \otimes a_{ij}(x) & 0 \\ 0 & a_{ij}^{\dagger}(x) \end{bmatrix} \begin{bmatrix} u_{j}(x) \otimes 1_{k} & 0 \\ 0 & 1_{p} \end{bmatrix} = \begin{bmatrix} u_{ij}(x) \otimes a_{ij}(x) & 0 & 0 \\ 0 & u_{ij}^{\dagger}(x) \otimes a_{ij}(x) & 0 \\ 0 & 0 & a_{ij}^{\dagger}(x) \end{bmatrix}$$

Hence $E_{\widetilde{F}}$ is given by the cocycle $(U_i, u_{ij} \otimes a_{ij})$.

2. HOMOMORPHISMS OF C(X)-MODULES.

In this section we classify the homomorphisms in $\frac{\text{Hom}_{C(X)} (C(X) \otimes A, C(X) \otimes B)}{\text{Hom}_{C(X)} (C(X) \otimes A, C(X) \otimes B)} \text{ within inner equivalence, where } \\ A=M_{n_1} \oplus \ldots \oplus M_{n_r} , B=M_{m_1} \oplus \ldots \oplus M_{m_s} \text{ and } X \text{ is compact and } \\ \text{connected.}$

Any homomorphism $\Phi \in \operatorname{Hom}_{\mathbf{C}(X)}(C(X) \otimes A, C(X) \otimes B)$ is uniquely determined by its restriction to A. This allows us to identify. $\operatorname{Hom}_{\mathbf{C}(X)}(C(X) \otimes A, C(X) \otimes B)$ with $\operatorname{Hom}(A, C(X) \otimes B)$ as topological spaces, identification which preserves the inner equivalence classes. By Proposition 1 in [3] it follows that there is a bijection

$$\delta: \operatorname{Hom}_{\operatorname{C}(X)}(\operatorname{C}(X) \otimes \operatorname{A}, \operatorname{C}(X) \otimes \operatorname{B})/{}^{\sim} \to \{\underline{\operatorname{E}}=(\operatorname{E}_{\operatorname{pq}}) \in \operatorname{M}_{\operatorname{SXr}}(\operatorname{Vect}(X)) : \underline{\operatorname{E}}[\underline{n}] = [\underline{m}]\} \tag{1}$$

where $[\underline{n}]:=([\underline{n}_1],\ldots,[\underline{n}_r])$, $[\underline{m}]:=([\underline{m}_1],\ldots,[\underline{m}_s])$. Explicitly, $\underline{E}[\underline{n}]=[\underline{m}]$ means:

$$(E_{p1} \otimes [n_1]) \oplus \dots \oplus (E_{pr} \otimes [n_r]) = [m_p], p=1,2,\dots,s.$$

The description of δ can be obtained using the local structure of homomorphisms $A \to C(X) \otimes B$ given in [10] or by Proposition 1 in [3]. For simplicity, suppose that $B=M_m$. Thus, for a homomorphism $\Phi \in Hom(A, C(X) \otimes B)$ there are: an open covering (U_i) of X, continuous maps $V_i:U_i \to U(m)$ and positive integers k_{11}, \dots, k_{1r} such that:

$$\Phi(a) (x) = v_i(x) (a_1 \otimes 1_{k_{11}} \oplus ... \oplus a_r \otimes 1_{k_{1r}}) v_i(x) *$$
 (2)

where $x \in U_i$, $a = a_1 \oplus ... \oplus a_r \in A$ and:

$$v_{i}(x)*v_{j}(x) = \begin{bmatrix} 1_{n_{1}} \otimes a_{ij}^{1}(x) & 0 \\ 0 & 1_{n_{r}} \otimes a_{ij}^{r}(x) \end{bmatrix} \text{ on } U_{i} \cap U_{j}$$

If $\delta(\phi)=(E_{1q})$ then each vector bundle E_{1q} is given by the cocycle (U_{i}, a_{ij}^{q}) . Note that rank $E_{1q}=k_{1q}$

If C is a unital C*-algebra we shall denote by D(C) the set of homotopy classes of selfadjoint projections in $\overset{\infty}{\cup}$ M $_{\rm n}$ C. Recall that D(C) is a semigroup under the operation $_{\rm n=1}^{\rm n=1}$ induced by the direct sum of projections and D(·) is a covariant functor.

Let C=C(X) \otimes A. It is known that there is an isomorphism of semigroups D(C(X) \otimes A) \to Vect(X) r which maps the class of a projection FCC(X) \otimes A \otimes M $_n$, having the decomposition

$$F=F_1 \oplus \cdots \oplus F_r \in \bigoplus_{k=1}^r C(X) \otimes M_{n_k} \otimes M_n$$

to $(E_{F_1}, \dots, E_{F_r}) \in Vect(X)^r$. Any homomorphism

 $\Phi \in \operatorname{Hom}_{C(X)}(C(X) \otimes A, C(X) \otimes B))$ induces a map $\Phi_*:D(C(X) \otimes A) \to D(C(X) \otimes B)$ or equivalently a map $\Phi_*:\operatorname{Vect}(X)^r \to \operatorname{Vect}(X)^s$. Vect $(X)^r$ is a free module over the unital semiring $\operatorname{Vect}(X)$. Let e_1, \dots, e_r be its canonical basis, $e_i = (0, \dots, [1], \dots, 0)$ with [1] on the i-th position. We denote by

 $\operatorname{Hom}_{\operatorname{Vect}(X)}$ (Vect(X)^r, Vect(X)^s) the set of all homomorphisms of $\operatorname{Vect}(X)$ -modules $\operatorname{Vect}(V)^r \to \operatorname{Vect}(X)^s$. As usual any element of $\operatorname{Hom}_{\operatorname{Vect}(X)}$ (Vect(X)^r, Vect(X)^s) is given by a unique matrix in $\operatorname{M}_{\operatorname{SXr}}$ (Vect(X)) with respect to the canonical bases.

2.1. PROPOSITION. The map Φ_{\star} is Vect(X)-linear and its matrix it is equal to $\delta\left(\Phi\right)=\left(E_{pq}\right)$.

Proof. We may assume that $B=M_m$. Using (2) and the canonical bijection $Hom(A, C(X) \otimes B) \to Hom_{C(X)}(C(X) \otimes A, C(X) \otimes B)$ we get the following description for Φ :

$$\Phi$$
 (G) (x) = v_i (x) (G₁ (x) \otimes 1_{k₁₁} \oplus ... \oplus G_r (x) \otimes 1_{k_{1r}}) v_i (x)*

$$v_{i}(x)*v_{j}(x) = \begin{bmatrix} 1_{n_{1}} \otimes a_{ij}^{1}(x) & 0 \\ & \ddots & & \\ 0 & & 1_{n_{r}} \otimes a_{ij}^{r}(x) \end{bmatrix}, x \in U_{i}^{fiU_{j}}.$$

Let $\Phi_n\colon C(X)\otimes A\otimes M_n\to C(X)\otimes M_m\otimes M_n$, $\Phi_n\colon =\Phi\otimes \operatorname{id}_{M_n}$ $n\geq 1.$ Since Φ_* is a homomorphism of semigroups it is enough to describe the homotopy class of $\Phi_n(F)$ for a projection $F\in C(X)\otimes M_n\otimes M_n\subset C(X)\otimes A\otimes M_n$. One can easily obtain the following formula:

$$\Phi_{n}(F)(x) = v_{i}(x) \otimes 1_{n} \begin{bmatrix} F(x) \otimes 1_{k+1} & 0 \\ 0 & 0_{p} \end{bmatrix} v_{i}(x) * \otimes 1_{n} , x \in U_{i}$$

where $p=mn-k_{11}n_1n$. Since:

$$(v_{\mathbf{i}}(\mathbf{x}) \otimes \mathbf{1}_{\mathbf{n}}) * (v_{\mathbf{j}}(\mathbf{x}) \otimes \mathbf{1}_{\mathbf{n}}) = \begin{bmatrix} \mathbf{1}_{\mathbf{n}\mathbf{n}_{1}} \otimes \mathbf{a}_{\mathbf{i}\mathbf{j}}^{1}(\mathbf{x}) & \mathbf{0} \\ & & & \\ & \mathbf{0} & & \mathbf{a}_{\mathbf{i}\mathbf{j}}^{1}(\mathbf{x}) \end{bmatrix}, \mathbf{x} \in \mathbf{U}_{\mathbf{i}} \cap \mathbf{U}_{\mathbf{j}}^{1}$$

where $a'_{ij}(x) := \bigoplus_{q=2}^r 1_{nn_q} \otimes a'_{ij}(x)$, it follows by Corollary 1.2 that $\Phi_n(F)$ gives a vector bundle isomorphic to $E_F \otimes E_{11}$, where E_{11} is the vector bundle corresponding to the cocycle (U_i, a_{ij}^1) .

2.2. COROLLARY. The map $\Phi
ightarrow \Phi_{f *}$ induces a bijection

 $\operatorname{Hom}_{\mathbb{C}(X)}(\mathbb{C}(X) \otimes \mathbb{A}, \mathbb{C}(X) \otimes \mathbb{B})/\sim + \{\operatorname{E}\operatorname{\mathsf{E}}\operatorname{\mathsf{Hom}}_{\operatorname{Vect}(X)}(\operatorname{Vect}(X)^r, \operatorname{Vect}(X)^s): :\operatorname{E}[\underline{n}] = [\underline{m}]\}$

Proof. Use (1) and Proposition 2.1.

Let $K_O(C(X) \otimes A)$ be the Grothendieck group for the abelian semigroup $D(C(X) \otimes A)$. Let $K_O(C(X) \otimes A)_+$ be the image of $D(C(X) \otimes A)$ in $K_O(C(X) \otimes A)$. $(K_O(C(X) \otimes A)_+, K_O(C(X) \otimes A)_+)$ is an ordered group. The isomorphism $D(C(X) \otimes A)_+ \vee C(X)^r$ induces an isomorphism of ordered groups $(K_O(C(X) \otimes A)_+, K_O(C(X) \otimes A)_+)_+ \vee (K^O(X)^r, K^O(X)^r_+)_+$ where $K^O(X)_+$ is the image of Vect(X) in $K^O(X)_+$. Recall that $K^O(X)$ has a

natural structure of ring. In $K_O(C(X) \otimes A)$ we distinguish the class of the unity $[1_{C(X)} \otimes A] = [\underline{n}]$. We shall denote by $Hom_{K^O(X)}((K^O(X)^r, K^O(X)^r, [\underline{n}]), (K^O(X)^s, K^O(X)^s, [\underline{m}]))$ the set of all pointed ordered group homomorphisms which are $K^O(X)$ -linear.

2.3. COROLLARY. Assume that the canonical map $Vect(X) \to K^O(X) \text{ is injective. Then the map } \Phi \to K_O(\Phi) \text{ induces}$ a bijection:

$$Hom_{C(X)}(C(X) \otimes A, C(X) \otimes B)/\sim$$

$$\longrightarrow \operatorname{Hom}_{K^{O}(X)}((K^{O}(X)^{r}, K^{O}(X)^{r}, [\underline{n}]), (K^{O}(X)^{s}, K^{O}(X)^{s}, [\underline{m}]))$$

3. CONTINUOUS FIELDS OF AF-ALGEBRAS

Let X be a compact space and let $(A_i)_{i=1}^{\infty}$ be a sequence of finite-dimensional C*-algebras. We consider a system:

$$... \rightarrow C(X) \otimes A_{i} \xrightarrow{\Phi} i \rightarrow C(X) \otimes A_{i+1} \rightarrow ...$$
(3)

where each *-homomorphism Φ_i is unital, injective and C(X)-linear. We show that the corresponding C*-inductive limit L=lim($C(X) \otimes A_i$, Φ_i) is *-isomorphic, by a C(X)-module isomorphism, to the C*-algebra of the sections of some continuous field of AF-algebras.

Since we can canonically identify $\operatorname{Hom}(A_i, C(X) \otimes A_{i+1})$ with $C(X, \operatorname{Hom}(A_i, A_{i+1}))$, each Φ_i defines a continuous map $X \ni X \to \Phi_i(X) \in \operatorname{Hom}(A_i, A_{i+1})$. Note that each $\Phi_i(X)$ is injective.

For any x \in X define the AF-algebra A(x)=lim(A_i, Φ_i(x)). We want to define a continuous field of AF-algebras $E_{L}=((A(x))_{x\in X}, \Gamma). \text{ Let } L_{O} \text{ be the algebraic inductive limit of the system (3). Then define } \eta:L_{O} \to \Pi A(x) \text{ by } \eta([F])(x)=[F(x)], x\in X, F\in L_{O}. ([a] denotes the image of a in the corresponding inductive limit).$

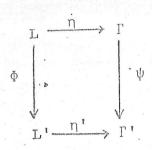
Define Γ to be the closure of $\eta(L_0) \subset \Pi$ A(x) with respect to the norm $||a|| = \sup ||a(x)||$. It is easily seen that E_L is $x \in X$ a continuous field of AF-algebras. Moreover, η extends to a C(X)-linear *-isomorphism from L onto Γ . Thus, we have the following:

- 3.1. PROPOSITION. The inductive limit L is *-isomorphic to Γ by a C(X)-module isomorphism.
- 3.2. REMARK. If each A_i is a factor or if the space X is connected, then $A(x)\cong A(y)$, $x,y\in X$. If X is locally contractible, then the field E_L is locally trivial.
- 3.3. PROPOSITION. Let L, L' be inductive limits of the above type such that the fibres A(x), A'(x) (x \in X) of E_L , E_L , are simple. Then, for any *-isomorphism $\Phi:L \to L'$ there is a homeomorphism $\Phi:X \to X$ such that:

 $\Phi (f \cdot a) = f \circ \Phi (a)$, $f \in C(X)$, asL.

Proof. Let $\eta:L\to\Gamma$ and $\eta':L'\to\Gamma'$ be the *-isomorphisms

. constructed in the proof of Proposition 3.1. Let ψ be the *-isomorphism which makes the diagram:



commutative. Since η and η are C(X)-linear, it is enough to prove that ψ (fa)=f $\circ \varphi$ $\circ \psi$ (a), f $\in C(X)$, a $\in \Gamma$.

Since each A(x) is simple, the maximal ideals of Γ are of the form $I_X := \{a \in \Gamma : a(x) = 0\}$, $x \in X$. Since ψ is an isomorphism, it induces a homeomorphism $\phi : X \to X$ such that $\psi(I_X) = I' - 1$ (x) $\phi^{-1}(x) = \{a' \in \Gamma' : a' (\phi^{-1}(x)) = 0\}.$ For $f \in C(X)$ and $a \in \Gamma$ we have $(f - f(x)) a \in I_X \text{ hence } \psi((f - f(x)) a) (\phi^{-1}(x)) = 0, \text{ that is } \psi(f a) (\phi^{-1}(x)) = f(x) \psi(a) (\phi^{-1}(x)).$ The proof is complete.

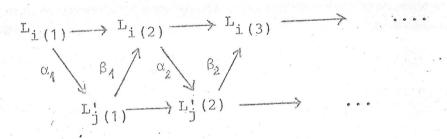
3.4. REMARK. Assume that all the AF-algebras A(x) and A'(x) are simple. Using Proposition 3.1 and a similar argument with that given in the proof of Proposition 3.3 one can see that $L \cong L'$ if and only if the field E_L is isomorphic to the pullback ϕ^*E_L , for some homeomorphism $\phi: X \to X$.

4. CLASSIFICATION RESULTS

Let X be a compact connected space. In this section we shall consider inductive limits L=lim(C(X) \bigotimes A_i , Φ_i), where $(A_i)_{i=1}^{\infty}$ is a sequence of finite-dimensional C*-algebras and

each $\Phi_i \in \operatorname{Hom}_{\mathbb{C}(X)}(\mathbb{C}(X) \otimes \mathbb{A}_i, \mathbb{C}(X) \otimes \mathbb{A}_{i+1})$ is injective. Note that L inherits a natural structure of $\mathbb{C}(X)$ -module. Consider $\mathbb{D}(L)$, the semigroup of homotopy classes of selfadjoint projections in $\bigcup_{n=1}^{\infty} \mathbb{M}_n \otimes \mathbb{L}$ (see section 2). Since $\mathbb{D}(L) = \lim_{n \to \infty} \mathbb{D}(\mathbb{C}(X) \otimes \mathbb{A}_i)$, $\mathbb{D}(L)$ inherits a natural structure of module over the semiring $\mathbb{D}(L)$ inherits a natural structure of the inductive limits L will be given in terms of $\mathbb{D}(L)$ and $\mathbb{K}_0(L)$. Consider two inductive limits $\mathbb{L} = \lim_{n \to \infty} \mathbb{D}(L) \otimes \mathbb{A}_i$, $\mathbb{D}(L) \otimes \mathbb{A}_i$, $\mathbb{D}($

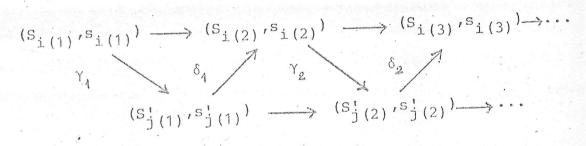
4.1. LEMMA. Let $\Phi:L \to L'$ be a *-isomorphism such that $\Phi(fa)=f\circ \Phi(\Phi(a), f\in C(X), a\in L, for some homeomorphism <math>\Phi:X \to X$. Then there is a commutative diagram of *-homomorphisms:



such that $\alpha_i(f)=f\circ \phi$ and $\beta_i(f)=f\circ \phi^{-1}$, $f\in C(X)$. The converse is also true.

Proof. We prove only the nontrivial implication. Using Glimm's Lemma [7, Lemma 1.8] as in the proof of Lemma 2.6 in [1], we can get suitable unitaries $u_i \in L^i$, $v_i \in L$ such that the homomorphisms $\alpha_i = u_i^{\Phi} u_i^*$ and $\beta_i = v_i^{\Phi^{-1}} v_i^*$ to have the desired properties.

4.2. LEMMA. Let $\Lambda:(T,t)\to (T',t')$ be an isomorphism of pointed semigroups such that $\Lambda(sa)=J(s)\Lambda(a)$, seS, aeT. Then there is a commutative diagram of homomorphisms of pointed semigroups:



such that $\gamma_k(sa) = J(s)\gamma_k(a)$, $\delta_k(sb) = J^{-1}(s)\delta_k(b)$, ses, ass i(k). The converse is also true.

Proof. The proof uses the fact that \mathbf{S}_k and \mathbf{S}_k^{I} are finitely generated as S-modules.

4.3. THEOREM. Let L=lim(C(X) \otimes A_i, ϕ _i), L'=lim(C(X) \otimes A_i, ϕ _i). Then L and L' are *-isomorphic by a C(X)-linear isomorphism if and only if D(L) and D(L') are isomorphic as semigroups, by a Vect(X)-linear isomorphism

which takes the class of $\mathbf{1}_{L}$ to the class of $\mathbf{1}_{L}$.

Proof. The proof uses Corollary 2.2, Lemma 4.1, (with $\phi=\mathrm{id}_X$) and Lemma 4.2 (with S=Vect(X) and J=id_S).

4.4. THEOREM. Assume that the fibres of the continuous fields E_L and E_L (see section 3) are simple. Then L and L' are *-isomorphic if and only if there is an isomorphism of semigroups $\Lambda:D(L)\to D(L')$ which takes the class of 1_L to the class of 1_L , and such that:

$$\Lambda(sa)=J(s)\Lambda(a)$$
, seVect(X), aeD(L)

where $J:Vect(X) \rightarrow Vect(X)$ is an isomorphism of semirings induced by some homeomorphism $X \rightarrow X$.

Proof. The proof uses Corollary 2.2, Proposition 3.3, Lemma 4.1, Lemma 4.2, and the following remarks:

a) Let A, B be finite dimensional C*-algebras and let $\Phi \in \text{Hom}(C(X) \otimes A, C(X) \otimes B)$ be a *-homomorphism satisfying $\Phi (fa) = f \circ \Phi (a)$, $f \in C(X)$, $a \in C(X) \otimes A$. Then we have a factorization $\Phi = \Phi_1 \Phi^*$

$$C(X) \otimes A \xrightarrow{\phi^*} C(X) \otimes A \xrightarrow{\Phi} C(X) \otimes B$$

where $\phi^*(F) = F \circ \phi$ and ϕ_1 is a C(X)-linear *-homomorphism.

b) If $\gamma: \text{Vect}(X)^{r}$ \rightarrow Vect(X)^t is a homomorphism of semigroups satisfying $\gamma(sa) = J(s)\gamma(a)$, seVect(X), asVect(X)^r,

then we have the factorization $\gamma = \alpha J$ (r)

 $\text{Vect}(\textbf{X})^r \xrightarrow{\textbf{J}^{(r)}} \text{Vect}(\textbf{X})^r \xrightarrow{\alpha} \text{Vect}(\textbf{X})^t$ where $\textbf{J}^{(r)}(s_1,\ldots,s_r)=(\textbf{J}(s_1),\ldots,\textbf{J}(s_r))$ and α is Vect(X)-linear.

We denote by $K_O(L)_+$ the image of D(L) into $K_O(L)_-$. Since $K_O(L) = \lim_{K_O(L)_+} (L_1)_+$ and $K_O(L)_+ = \lim_{K_O(L)_+} (L_1)_+$ it follows that $K_O(L)_+$ inherits a natural structure of $K^O(X)_-$ module and the triplet $(K_O(L)_+, K_O(L)_+, [1_L]_+)$ is a pointed ordered group. When the canonical map $Vect(X)_+ K^O(X)_-$ is injective the above two Theorems can be formulated in terms of K_O^- groups in the following way:

- 4.5. THEOREM. L and L' are *-isomorphic by a C(X)-linear isomorphism if and only if $(K_O(L), K_O(L)_+, [1_L])$ and $(K_O(L'), K_O(L')_+, [1_L])$ are isomorphic as pointed ordered groups by a $K^O(X)$ -linear isomorphism.
- 4.6. THEOREM. Assume that the fibres of the continuous fields ${\rm E_L}$ and ${\rm E_L}$, are simple. Then L and L' are *-isomorphic if and only if there is an isomorphism of pointed ordered groups

$$\Lambda\colon \left(\mathrm{K}_{\mathrm{O}}\left(\mathrm{L}\right),\;\mathrm{K}_{\mathrm{O}}\left(\mathrm{L}\right)_{+},\;\left[1_{\mathrm{L}}\right]\right)\;\to\;\left(\mathrm{K}_{\mathrm{O}}\left(\mathrm{L'}\right),\mathrm{K}_{\mathrm{O}}\left(\mathrm{L'}\right)_{+},\left[1_{\mathrm{L}}\right]\right)$$

such that: $\Lambda(sa)=J(s)\Lambda(a)$, $s\in K^O(X)$, $a\in K_O(L)$ where $J:K^O(X)\to K^O(X)$ is a ring isomorphism induced by some homeomorphism $X\to X$.

5. APPLICATIONS

Assume that X is a finite connected CW-complex of dimension ≤ 3 . Then there is an isomorphism of rings $\chi: K^{O}(X) \to (\mathbf{Z} \times H^{2}(X,\mathbf{Z}), +, \cdot)$ given by $\chi[E] = (\operatorname{rank}(E), c_{1}(E)),$ $E \in Vect(X)$, where $c_{1}(E)$ is the first Chern class of E. The ring structure on $\mathbf{Z} \times H^{2}(X,\mathbf{Z})$ is given by:

$$(k,\alpha) + (1,\beta) = (k+1, \alpha+\beta)$$

$$(k,\alpha)\cdot(1,\beta)=(kl, l\alpha+k\beta)$$
 where $\alpha,\beta\in H^2(X,Z)$, $k,l\in Z$.

Also,in this case the map $Vect(X) \to K^O(X)$ is injective. These facts follow from the properties of stability of vector bundles (see [9]). When $X=S^2$ we obtain that:

$$K^{O}(S^{2}) = \{s+tx: s, t \in \mathbb{Z}, x^{2}=0\} = \mathbb{Z}[x]/(x^{2})$$
 and $K^{O}(S^{2})_{+} = \{s+tx: (s,t) \in \mathbb{N}^{*} \times \mathbb{Z} \cup \{(0,0)\}\}$

Let $3 < p_1 < p_2 < ...$ be a sequence of prime integers, $a = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$, $n_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and define $n_i = \begin{bmatrix} n_i' \\ n_i'' \end{bmatrix}$ by $n_{i+1} = a_i n_i$ where $a_i = p_i a$, $i \ge 1$.

Let $A_i = M_{n_i} \oplus M_{n_i}$ and consider a simple AF-algebra A given by the Bratteli system:

$$A_1 \xrightarrow{a_1} A_2 \xrightarrow{a_2} A_3 \xrightarrow{a_3} \cdots$$

We shall consider a C*-algebra L=lim(C(S 2) \otimes A $_i$, Φ_i) whose pointed ordered K $_0$ -group is given by the inductive limit

Mea 27762

corresponding to the following system of $K^{O}(S^2)$ -linear homomorphisms:

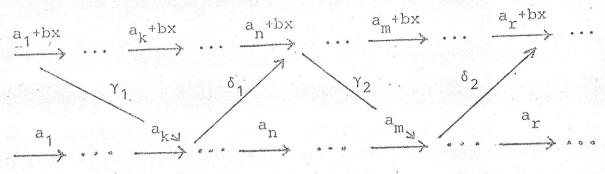
$$K^{O}(S^{2})^{2} \xrightarrow{a_{1}+bx} K^{O}(S^{2})^{2} \xrightarrow{a_{2}+bx} K^{O}(S^{2})^{2} \xrightarrow{a_{3}+bx} \cdots$$

where $b = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix}$. Note that Φ_i is such that $K_O(\Phi_i) = a_i + bx$ and Φ_i is injective.

The following proposition shows that the C*-algebras studied in this paper do not reduce to the C*-algebras given by trivial fields of AF-algebras.

5.1. PROPOSITION. The inductive limit L=lim(C(S 2 \otimes A $_i$, $^{\varphi}$, is not *-isomorphic to any C*-algebra of the form C(S 2) \otimes B, with B an AF-algebra.

Proof. By reasons concerning the primitive spectrum of L, it is enough to show that L is not *-isomorphic to $C(S^2) \otimes A$. To get a contradiction assume that $K_O(L)$ is isomorphic to $K_O(C(S^2) \otimes A)$ as in Theorem 4.6. Since any homeomorphism $\phi: S^2 \to S^2$ has the degree +1, it follows, with the notation of Theorem 4.6, that $J=K^O(\phi): K^O(S^2) \to K^O(S^2)$ is given by J(s+tx)=s+tx. We shall consider only the case J(s+tx)=s-tx. The case J=id is simpler. By Theorem 4.6 and Lemma 4.2 we must have a commutative diagram of the form (we have deleted the spaces $K^O(S^2)$):



where $\gamma_1 = (c+dx)J^{(2)}$, $\delta_1 = (e+fx)J^{(2)}$, $\gamma_2 = (c'+d'x)J^{(2)}$, $\delta_2 = (e'+f'x)J^{(2)}$ and $J^{(2)} = \begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix}$.

The following computations use the identities ab=ba=-b and $J^{(2)}(g+hx)J^{(2)}=g-hx$, $g,h\in M_2(Z)$. The commutativity of the above diagram implies:

$$ec=a_1\cdots a_k\cdots a_n$$
 (4)

fc-ed=b(
$$a_2 a_3 \dots a_n + a_1 a_3 \dots a_n + \dots + a_1 a_2 \dots a_{n-1}$$
 (5)

$$c'e=a_{k+1}\cdots a_{n}\cdots a_{m}$$
 (6)

$$e'c'ec=a_1\cdots a_k\cdots a_n\cdots a_r$$
 (8)

From (4), (5), (6) and (7) we get:

$$d'a_1...a_n^{-a_{k+1}...a_n}...a_m^{d=c'}(p_2p_3...p_n^{+}...+p_1p_2...p_{n-1})(-1)^{n-1}b$$

so that we infer that $\begin{bmatrix} p_n & 0 \\ 0 & p_n \end{bmatrix}$ divides c'b in $M_2(Z)$. It

follows that p_n divides $\det(c')$. We obtain from (4) that p_n^2 divides $\det(ec)$ hence p_n^3 divides $\det(e'c'ec)$ which contradicts (8) since $\det(a) = -3$.

In contrast with the above Proposition we have the following:

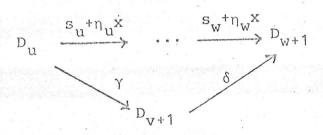
5.2. PROPOSITION. Let X be a connected finite CW-complex of dimension ≤ 3 and let A be a UHF-algebra, $A=\varinjlim_{i} A_{i}$ where each A_{i} is a finite discrete factor. Then $L=\lim_{i} (C(X) \otimes A_{i}, \Phi_{i})$ is *-isomorphic by a C(X)-linear isomorphism to $C(X) \otimes A_{i}$, for any choice of $\Phi_{i} \in \operatorname{Hom}_{C(X)}(C(X) \otimes A_{i}, C(X) \otimes A_{i+1})$.

Proof. By hypothesis we have $Vect(X) \stackrel{\sim}{\to} \mathbb{N} \times H^2(X,\mathbb{Z}) = \{s+\eta x : s \in \mathbb{N}, \ \eta \in H^2(X,\mathbb{Z}), \ x^2=0\}$. Hence

 $\begin{aligned} &\operatorname{Hom}_{C(X)}\left(C(X)\otimes A_{\mathbf{i}},\ C(X)\otimes A_{\mathbf{i}+1}\right)/\sim \ \ \, \left\{\operatorname{E}\operatorname{e}\operatorname{Vect}\left(X\right):\operatorname{E}\otimes\left[n_{\mathbf{i}}\right]=\right. \\ &=\left[n_{\mathbf{i}+1}\right]\right\} \ \ \, \left\{\operatorname{s}_{\mathbf{i}}+\eta\ x:\ \eta\in\operatorname{H}^{2}\left(X,\mathbb{Z}\right),\ n_{\mathbf{i}}\eta=0,\ x^{2}=0\right\} \end{aligned}$

where $A_i^{=M}_{n_i}$ and $s_i^{=n_{i+1}/n_i}$ (see Corollary 2.2). Consider an arbitrary inductive limit $L'=\lim_{\to}(C(X)\otimes A_i,\Phi_i')$ of the same type as L. We shall apply Theorem 4.3 to show that $L\cong L'$ as C(X)-modules. To prove that $(D(L), [1_L]) \cong (D(L'), [1_L])$ as pointed Vect(X)-modules we shall use Lemma 4.2 i.e. we shall construct a commutative diagram of the type:

where $D_i = D_i' = (NxH^2(x,Z), n_i)$, $(\phi_i)_* = s_i + \eta_i x$, $(\phi_i')_* = s_i + \eta_i' x$, $\gamma_1 = s_1 \cdots s_k + \xi_1 x$, $\delta_1 = s_k + 1 \cdots s_m + \xi_2 x$, $\gamma_2 = s_m + 1 \cdots s_q + \xi_3 x$, etc. Let $T_i := \{\eta \in H^2(x,Z) : n_i \eta = 0\}$. The torsion part of $H^2(x,Z)$ is finite. Hence the sequence $T_1 \subset T_2 \subset \ldots$ stops. Since $\eta_i \in T_i$ we may assume that $\eta_i \in T_1$, $i \ge 1$. After dropping finitely many terms in the sequence s_1, s_2, s_3, \ldots we may also assume that any class $\hat{s}_i \in \mathbb{Z}/n_1 \mathbb{Z}$ occurs infinitely many times. With these assumptions, the sequence $(\xi_i)_{i=1}^\infty$, $\xi_1 = 0$, is constructed inductively, using the following remark: given u<v and $\xi \in T_1$ there are w>v and $\xi' \in T_1$ such that if $\gamma = s_1 \cdots s_v + \xi x$ and $\delta = s_{v+1} \cdots s_w + \xi' x$, the following diagram:



commutes, i.e.:

$$\prod_{i=u}^{w} (s_{i}^{+n}i^{x}) = (s_{v+1}^{-n} \cdot \cdot \cdot s_{w}^{+\xi'x}) (s_{u}^{-n} \cdot \cdot \cdot s_{v}^{+\xi x}) .$$

To prove this we choose w large enough such that

$$(s_{u}...s_{v})^{^{^{\prime}}}$$
 divides $(s_{v+1}...s_{w})^{^{\prime}}$ in $\mathbb{Z}/n_{1}\mathbb{Z}$

REFERENCES

- O.BRATTELI, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171(1972), 195-234.
- 2. M.DADARLAT, On homomorphisms of certain C*-algebras,
 INCREST preprint no.11/1986.
- 3. M.DÄDÄRLAT and V.DEACONU, On some homomorphisms Φ : $C(X) \otimes F_1 \rightarrow C(Y) \otimes F_2$, INCREST preprint no.33/1986.
- 4. J. DIXMIER, Les C*-algebras et leurs représentations, Gauthier-Villars, Paris, 1964.
- 5. E.G. EFFROS, On the structure of C*-algebras: Some old and some new problems, in "Operator Algebras and Applications" Proc. Symp. Pure Math. part I, (19-34), Amer. Math. Soc., Providence, RI, 1982.
- 6. G.A. ELLIOT, On the classification of inductive limits of sequences of semi-simple finite dimensional algebras, J.Algebra, 38 (1976), 29-44.
- 7. J.GLIMM, On a certain class of operator algebras, Trans. AMS, 95 (1960), 318-340.
- 8. F.HIRZEBRUCH, "Topological Methods in Algebraic Geometry", 3rd ed., Springer-Verlag, Berlin/Heidelberg/
- 9. D.HUSEMOLLER, "Fibre Bundles", 2nd ed., Springer Verlag, Berlin/Heidelberg/New York, 1976.
- 10. C.PASNICU, On inductive limits of certain C*-algebras of the form $C(X) \otimes F$, INCREST, preprint no.51/1986.
- 11. J.L. TAYLOR, Banach algebras and topology, in "Algebras.

in Analysis", Academic Press (1975), 118-186.

12. K.THOMSEN, Inductive limits of homogeneous C*-algebras, preprint, Aarhus Universitet, 1986.