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SCHUR ANALYSIS OF SOME COMPLETION PROBLEMS
Gr. Arsene, Zoia Ceausescu and T .Constantinescu

1. INTRODUCTION

- The aim of this note is to pbint out thst some features which recently appear in
the rather-extensive literature concerning completion problems can be obtained using
the Schur analysis of positive or contractive block—m'atr‘ices. | :

The Schur analysis has its origin in [31], where the coefficients of contractive
analyfic functions in the unit disk were computed from the so-called "Schur sequences"-
via a Schur algorithm. A Schur analysis for Hankel block-matrices was done in the
famous paper [1]. The general case of indexing all contractive intertwining dllatlons was
started in [11] [12], and completed in [3] (see also [14]), using choice sequences (a
generalmatlon of Schur sequences) as free parameters. Schur'analysis for positive
_4 Toephtz block-matrices was done in [13]; the case of arbltrar‘y positive block-matrices
[16] asked for generalized choice sequences as free parameters. Schur -type algorlthms
are presented in all these generahzatlons :

The structure of contractive block-matrices is mtlmatelv connected W1th Schur
ana].ys;s This. is illustrated by the intensive use of the structure of two-by-two matrix
contractions ([6], [18], [27]) in various topies of dilation theory. A first attempt to -
generalize this for arbitrary matrix contractions was dcne in [17]. The S'churj' analysis of
pOsitiue block-matrices [16] or the iterative use -of the structure of the ellement}ary
rotation associated to a two-by-two matrix contraction ‘[2] provide a complete
deScription of the structure ~of'én arbitrary matrix contraction; this description,
together with the Schur .analysis of positive matrices will be our main tools.

The completion pr'oblems we are talklng about are the followmg

ii’1<i,j<n with .|1— l<m, where 0<m<n-1.

Analyse the positive band extensxons of (K ) (A completlon T = (TIJ)1<1J<n

Lof (K ) is a band exension if T is invertible and (T ).j =0 for li- j [>m.)

: IConsmer the operators (K B
(A)

rConsxder the operators (K. )1<J<l<n Give necessary and sufficient conditions

such that there exists an nxn contractive block-matrix T such that T.. = K..

L E e

for 1<j<i<n. Describe all solutions T and analyse isometric, coisometric or

unitary ones.




L

Describe the structure of upper triangular contractions T = (T..) (i.e. T,. = 0 for
IJ uJ
(C) i>j) and their realizability as transfer operators for time-variant linear

systems.

We do not intend to make a complete description of the history of these

-problems. Here are some bibliographical remarks concerning them.

For Problem (A) see [20], [19]; the maximum determinant problem for it is

. discussed in [19] and [26]. The permanence principle for Problem (A) is given in [21],

while the maximum distance problem is studied in [10] and [22].
- For Problem (B) see [19], [7], [8]; the parametrization of solutions was done in

(8] (via a linear fractional map, as'_a consequence of a more general lifting theorem) or

in _[17']. The unitary case was considered in [9]..

For transfer operators of time-variant linear system see for example [24].

The structure of the present paper is the following. In Sectio.n 2 we completely
describe the Schur analysis for contractive block-matrices (finite or infinite — Theorems
2.4 and 2.7); this analysis comprises a Schur-type algorithm for computing the entries of
the matrix from the parameters and the description of the defect spaces and of the
elementary ratation in terms of the parameters. A certain connection. between
positiveness and,céntractiveness is pointed out in Remark 2.5(3) and Theorem 2.6.

Some Szeg6-type limit theorems for this contractive case are also presented (Theorém'_

2.8), -

The next three sections deal with Problems (A), (B) and (C), rvespe_ctive.ly.

In Section 3, we analyse positive completions using the parametrization of
positive matrices by choice triangles. It is shown that all cases of positive completions
consist in the Schur analysis of given data and the continuations of the parameters

already determined (Corollary 3.2 and -Remark 3.4(2)). The trivial continuation — with

~zero entries — of the determined parameters corresponds to the solution of maximum

~ determinant (or maximum’ entropies) — see Corollary 3.5 —; the known structure of the

inverse of the whole matrix for this case is also reobtained (in general dimensional.
case) — see Theorem 3.6 — . By contrast, it is shown that the maximum distance problem
is equivalent to all these only in the one dimensional case (Coréllary 3.9).

Section 4 presents a similar study for contractive completions using the
parametrization giver in Theorem 2.4; the results are summarized in Corollary 4.1. The

existence (and the deseription of the solutions) of isometric completions is carefully

; analysed in Corollary 4.2, showing the importance of the last given diagonal.

Section 5 gives a variant of Theorem 2.4 for upper triangular contractions

(Theorem 5.2). The realizability of such operators as transfer operators for unitary

‘time-variant systems is deduced (Theorem 5.4).



*2. SCHUR ANALYSIS OF CONTRAC‘I‘IVEBLOCE&-MATRICES .

~ For two (complex) Hilbert spaces { and H', ‘the set,of all (linear, bounded)
operators from H into H' is denoted by L(H,H"; L(H) stands for L(H,H). For a
contraction T e L(H, H'), denote as usual [32] by_DT and Do the defect operator, resp.

the defect space of T, i.e.:

(2.1) Dy = (1 - ) ?

(2.2) : : D DI(H).

-The unitary operator:

_ J(T) : HOD px = H'®D o,
(2.3) ; ? T

T*
J(T) =
DT

is called the eleméntary rotation of T. For an arbitrary operator Se L(H, H"), R(S)
stands for the closed range of S. :
We first recall the Schur analysis for positive block-matrices ([16]); this will be

explicitely used in Section 3, and also provides a way for obtaining the structure of
n

contrac‘uve block-matrices. Consider a string {H} =1 of Hilbert spaces, H = @® H i ‘and
i= 1

fix a positive operator S = (S..)

i 1<i,j<n in L(H), where S i € L(H H. )

Clearly, S, 1<1<n, are arbitrary - posmve operators in L(H;). A {(S“l 1}'

-choice triangle (called "generalized choice sequence" in [16]) is a set of contractions

= (GIJ)1<’<J<n such that G, = 0 € L(R(S;;), 1<i<n and _othermse Gjj acts between

D

G ‘and D, . We need the following operators associated with a choice triangle:

lTlaJ iyj—]—

* a) the row contractions Ri'(G) = Rij , 1<i<j<n, where

b b - TR

(2.4)ij RU : k=i+1 “i+1,k s
Rij = (Gi,i+1 . DG;:HIGLH‘Z ot DCI*HI--- DG;:j—lGij) i
~ b) the column contractions ‘C (G) =G 1<i<j<n, where
' sy @
2.5, il I‘ e e l)D(%ka 1 ; 2
: C;=(Gyq 5 Gj'g’jDGj—l,j i GijDGiﬂ,jm DGj—l,])

("t" stands for matrix transpose);



¢) the generalized rotations Uij(G) = Uij

4

Sl BT L n; where

and for j>1i 5
..i"
k=-] -.k,_] k=i 1,k i i A e
(2.6)ij v
Uij:Je( 141)J (G 11+2)"'Je 1+1’J@DC* 2
. iy |
1M ANn
where the subscript "e" at J(G i s )means that J ( 11+k) is J(Gl 1+k) on DGl+1 i+k@
b2
@D E and the identity e].sewhere;
i,i+k ; -
d) the trlangular operators F, (G) = j 1<i<j<n, where
_ o ; 1
: i
20y it
and for j>1i
J
@R(S —~ @D
(2.7)” k"'l k:l 1,k
ij .
: o &
: s
Lj-1 ,J SR
ij- 1
0 DG.. “DG.‘ s_]j
L 1] J—laJ
Note that the operators Fij also verify the relations:
3
| ; i Rigfie,;
@0 .. F..=
Il 1] % .
0 . D,(Rij)lr“i,rl,j ey
where :
B by
B T e D e e L SRR S D e B
(;i i+1 il 1.,1+2 . ikl Gi,i+2 1,i+3 : it 1’1+2 Jl’J_l 1]
0 D : G SEE g e e
Gi,i+2 1it2: 0,143 i,i+2 G1 i+3 Gi,j—l ij
(2.0 E(R) = : : e y
i . 0 0 D, . :
2 H ’ i;i+3 ) ’
0 0.. 0 DG. :

e




is the operator which appears in the identification of D, with @ D (see (2.15)).
: : : ij k=i+1 1k
With these notations, the Schur analysis for positive block-matrices ([16]) is the
following: w4

2.1. THEOREM. There exists a one-to-one correspondence between the positive

operators S = (S..) and the pairs {(S .) }, where S t—:L(H) (1<i<n) are

1j°1<1,j<n 171<i<n’
positive operators and G = (G )1<1<J<n is an { 1} choice trlangle._ Between
correspondmg elements the followmg formulas hold:
1
4 2
(2 8) i,i+1 5; i,i+1 S G 1+lsi+1,i+1 2

(1<i<n-1)and fori+1<j<n
2

(2:8)s St —S (R SEC. s kD o oD % G.D s 2B IS
ij ij i,j= 1 i+1,j=1 “1+1,] Gi,i+1 Gi,j-_-l ij Gi+1,j Gj-l,j ij

Moreover, for 1<i<j<n the foliowing factorizations hold: .

(2.9)i’j Sy <K< = FUFIJ
2.2.REMARKS. 1) There are now no difficulties in describing positive block-
-kernels on N or Z, using infinte (uni- or bilateral) choice. triangle; the Toeplitz case
corresponds to choice strings or sequences. ' : _ ,
. 2) The reason why U, i’ Lli<idn, frqm (2.6) are called generalized rotations
w111 be clear from Remark 2.5.

3) With respect to the decomposmon of H as @ H

the matrix bf S is
1 .

N=id1?

AN Al = > : e =
(80 o wheresiSiSu e o a8 L If (GIJ)1<1<J<H is the {(3 )l 1} |

ij’1<1,j<n 1] nElblian=)+1 n-j+1, n=i+1"

- ~choice’ tmangle of S with respect to this decomposmon, then it is plain that GJ

i for 1<i<j<n.

n=jkns 1+1’

_ 4) If the spaces H., 1<i<n, are finite dimensional, then the formulas (2.9) and
(2.7) imply that ' : ' ' :
e n 5
(2.10) dets = (I det s“)( IL - «detD’, J-
: : i=i 1<i<j<n ij
5) The formula (2.10) illustrates very clear the -classical inéquality of
Hadamard, i.e. :

; n ;
(2.11) detS < I detS..
SiEn e

"and the fact that the equality in (2.11) occurs if and only if S is diagonal (for this last

o

TR



i e ot S i it B

6 =6,

6

assertion see the algorithm from (2.8)). Moreover, the generalized inequality of

Hadamard also follows. Indeed, let 1< p<n; then from (2.10) it results that

(2.12)p det S < (det (si].)1 < SP) (det (Sij)p+l G Sn) :

‘The equality in (2.12)p occurs if and only if Gij: 0 for 1<i<p and p+1<j<n. An

inspection of the algorithm (2.8) shows that this is the case if and only if Sij =0 for
1<i<pandp+ 1<j<n. (For Hadamard inequalities see for example [23]).

We will give now the structure of a contractive block-matrix and of its

eiementary rotation.

m n .
For this, let H=@® Hi’ HY =) H} and T = (T a contraction in

o e
=1 i=1 1j°1<i<n, 1<j<m
L(H, H"), where m,n € N (the finite case). The structure of T can be described using the

analysis of positive block-matrices via the fact that ||TH§1 if and only if the block-

matrix
I . G o Tan
s ke, : Ta1 e
(2.13) S = I Ty <Tgh e B
et )

QN R b Sia b e
nm . 1m : 3

. . o

(acting in H'n®; A .@H'l@Hl@. ..@H ) is positive. The previous analysis suggests the
following: ' : 2
m fien 7o
2.3. DEFINITION. A (® H; ® H')-choice matrix is a set of contractions
: =l L

1,j)05i§n,05j5n1’ where GO,J.:OEL(HJ.,HJ.__I), for 1<j<m, (Hoz{o}), Gig =
).

=0eL(H,_,,HY) for 1<i<n (H = {0}) and for ij>0, Gy; is in L(D

1_1 ! .] G 1D

b 3
e ni-1

To any choice matrix we attach the following objects (similar to (2.4), (2.5) and

(2.6)) :

a) the row contractions Rij(G) = R 1<i<m, 0<j<m, i+j> 1 where




AR AT VEE

H_®...0H,0OD, Q.00 =l

- = i-1,]
210 -1 tinies ad _
R (O s UG s DR G il . D G..)
g 9 % gl b3 o ;
1 ‘ i1 G11 i2’ Gjl : Gi,j-—l ij
b) the column contractions Cij(G) = Ces 0 L, 1<j<m, i+j>1, where
Cyj:Hy ~Hi1 @ .®H @DG @.. @D *
; ek o y
(2'15)ij j-1 times - i
Cle (0 G D ,G.D B
ij e L ase G1J ij Gi—l-,j Glj

e¢) the generalized rotations Uij(G) = Uij LG nl +'j > 2, where

(2.16) HJ_1®...@H'i -'*H1®...@Hj_1,2__<_j§m

1j Ijlj s
(2.16);; Uil:H'1®...®H;_1~+H;_1@...®H' O,

are the matrices with I on the cross diagonal and zero elsewhere, and for 2<i<n and
2<j<m,

(o Uyt @ ©H,@pgs  ©..Ggr >

J 1 ]-1 1 1= 1
= Feeri @ @H‘@D ®...®D
(2.16); " a Gy 1,41
Pu o @ @Hl’ ’Je(Gi—l,l)"”Je(Gi—l,j—l)‘Ui—l,j@DG* o

i-1,j-1

_wher'e the subscript "e" has the same meamng as in (2. 6) and OH y is the zero
17

2
operator between H1 and H2 Wlth these notations, we have the followmg

'_ 2:4. THEOREM. a) There exists a one-to-one corresponde‘nce between  the :

n

ontractlons TeL(@ Hys @H and the set of ( @ H @H'i)—choice matrices
i=1 J=1 i=1 - =1
G =1(G: )0<1<m 0<J<n, P+i>0 ° Be;ween corresponelin’g elements, .the following formulas‘
'hold.
(2.17)1'1 ‘ : Ty =Gy
and fori+j>2
(2.17);; D B G e Dk D e 86D D

ij el i 1] G G 1FaGhe s G

i,0 i, j=1 1=1,] 0,]



et

' (‘?chur algorithm for block-contractions). Lo

b) Moreover, if T and G correspond to each other, then the followmg umtary

: ldentlflcatlons hold:

-o(T) 2 5
(2.18) _ Do D @...@DG b,
o senil ; nm
L)
(2.19) DT*az o ®.. @DG ¢
- ' 1m :

where A(T)D ., (0 (T)Dp#) is an M x M (resp. Nx N) upper triangular matrix having on the

diagonal the products D, Dg **Dg , 1<j<m (resp. D DG *Dgt
; el e 1j im o iym=-1 il

fgi<n); : : ‘

e) With these identifications of the defect spaces of T, its elementary rotation

J(T) has the following cell-structure (for clarity, the picture is drawn for m =4 and

n=3):
Hl ' H'l
(G, . .
0 i1 e
iR H, e 2 J(G12~ hJ(Gm : 'H'g
. Sl J(G (G G
(2.20) Hijo o 137, 1 227 — 731 v
i) 5 ; ' ' 31
e _J((J14L J(o23 | J(G32 -
G14‘¢ Py - 3 .—___‘ ST G32
J(G24 J(G33) :
DG* ot W] ] | z : DG
24 . : J(G , 38
DC* 34. : DG .
34 ' 34

Part (a) follows directly from Theorem 2.1. The defect identifications in Part.
(b) can be deduced using (2 9) applied to S from (2.13). However, (b) and (¢) can be
obtamed using the structure of defect spaces of row and column contractions ([3], and
[14], Lemmas 1.3 and 1.4) and of two-by-two matrix contractions ([6], Theorem 1.3), as
well as the form of their elementary rotation ([4], Lemma 2.2 and [2], Proposition 1.1).
A careful inspection of these results show that the general case of (2.18), (2.19) and

(2.20) can be reduced to the basie ingredients mentioned above. Let us also note that

“the factorizations in [17] can be simply read out from (2.20).

2.5. REMARKS. 1) A useful property (already-alluded in the previous reduction
of the general case) of the description of matrix contractions by choice matrices is that
one can easily handle the operations of "glueing"-o'r "broking" some of the spaces {Hi}inll
and {H } & thése operations require exactly the same action on the associated choice
matmx ’Ilm feature is important in iterative analysis, as those performed in Sectlon 4

on completion to isometries.



 string {ﬁ-l' =

- the begmmng of this section: SEL(H) is a positive operator with the matrix (S..)

I

2) Let us mention also another feature of the choice matrix G associated to g

. contraction T. The strings {Gil’ GiZ’ s ’Gim}inzl are fitted to produce the row contrac-
tions '
- : : m ¥
= i)y i : i
_ R; = R{Gy;) 1<j<m): {:)1 DGi_1 e
(2.21); . 4
i 7 (Giy 5 G*G dviusa e e G
i1 11 I,m-1

"lgign, (see (2.14)). Because DR (via oci) can be identified with DG ®.. .@DG , the

[y

1 im

B el T "'°‘1’Dﬁn-1} :

fitted to produce the column contraction C(ﬁi; Lgi<n)=1(R. ;R B= ’En Ds e

12529 Rl’ R

n=1
o DR— )t, which is exactly T. So, with a slight abuse of notation, we can write
1

(2.22) T= C((R(Gi.); F<iicm)sil Gidnle R((C(G..); 1 <i<mhil<j<m).

This is another Justlflcatxon of the fact that choice matrices behave nicely at
"brokmg" or "glueing" components in the direct sum decomposxtlons of H and H'.

3) We are now. able to explain the term "generalized rotation" which appéars in

.(2.6) and (2.16); First, it is easy to vemfy that the operator U from (2.16) is (modulo

some obvious space-manipulations) the elementary rotatlon of the matrix

Mg 1<kei-1, 1<0<j-1°

The positive case deserves more attentlon Consider again the notatxon from

o 1j°1<1,j<n

with respect to the decomposxtlon H = @H and the {(Sii)izl}—choice triangle
: : i= 1 S : : . ;

= (GlJ)lﬁlf_JSn Coristruct now the {1@2 R(S ) @ R(S. )} choice 4matrixA G =

—(ij)()<1<n 1, 0<j<n-1, i+j>0°’ where

A

O i
for i+j > n+1, and zero on the other pésitions; this means that to the choice triangle -

0 G G

12 13 14

23

G 24

G .

34

we associate the choice matrix



0 0 076 e
J4 ;
0 0 GG, .
O Gt G Gy By
b

Denote by T = (T.. )1<1 j<n-1 the corntraction associated to G by Theorem 2 4. Then the

operator U, (J>1) which appear in (2 6) is (neglecting the 1dent1ty on some spaces) the

elementary rotatlon of the matrix:
(kal)n-j#lgkgn-l, i<2<j-1"

We think that is worth to isolaté a part of the preceding remark as the
following (see also Theorem 3.2 of [5]):
2.6. THEOREM. There exists a one-to-one correspondence between the positive

matrices S = (S..) € L(@ H) and the pairs {(Sl) -1 I }, where Sii € L(Hi) are

ij71<i,j<n i1
n-1 .
arbltrary positive operators and T € L(@ R(S ) ® R(S ) is a contraction with Tkz =0
1=2 =1 o ; :

for k + 8 5 n. This correspondence is given by S <+ G +> G« T from Remark 2.5(3).

We shortly discuss now the infinite'ca'se_ (i.e., where m and/or n are infinite; the

case of matrix contractions indexed by Z can be also-inferred from thi_s); First, let us

note that the algofithm deseribed in Part (a) of Theorem 2.4 (and the representation

2 22) works in the infinite case, with corresponding infinite ehmce matrices.

For the identification of defect spaces in the infinite case, we need the ana1y51s
for infinite row contractions as done in [15], Propositions1.4 and 1.6. For recalling this,
D.x G

suppose n=1 and m= % in the previous considerations. Th'enuT:(Gll, G 19°

: ' . ; R g
DG* DG*_GL’S"" ). For each 1<k< %, denote by Tk = Tl(iD Hj’ and by Pk the

112 K j=1

orthogonal projection of H onto ® H.. Then the operator

Izl

[0 0]
OL(T) DT = @1 DG1'
(2.23) ela :
: UT)D.p, = D (T)

where
(2.24) D (T) =s - 1lim oc(T )D

K+ Ty Tk



e e G il

for a contraction T = (T )

11

(see (2.18) for a(Tk) and (2.7)" for Ot(Tk)DT ) is a unitary operator (Proposition 1.4 in [15]).

For computing Doy, define

0, (T): Dyx ~ F(T)

(2.25) .
- @4(DDypx = Dy, (1),
‘where
(2.26) DZ (1) = s-lim |o,(T Dy |
‘ ’ kereo k

-

(6,(T, )D e ISl D =D s v iD *)énd
ok _Tk _ Gk Aall TGy G

52:27) F(T) = RDZ (D))

then a;(T) is a unitary operator (Proposition 1.6 in [15]).
Of course, similar facts hold for column contractions.

In the case n<®, the space D, can be easily identified (using (2.22) and (2.23))

o :

with ® DG , the unitary operator which realizes this identification being an infinite
=L

upper triangular matrix having on the diagonal the products D, DG (i <o),

: nj 1j
Something similar is true for D+ when m < © gnd n = . In general, using (2.22), (2.25)

and (2.24), we have:

be a contractioﬁ and let G=

2.7. THEOREM. Let T =(T};), < <o
= (G, ,_])0<l,]<°° i+>0 be its choice matrix. Then the followmg are unitary operators
Sl DT = @ F(C((G, J) 1igiie oo))
(2.28) = '

0, () —+® FR((G;.); 1<j< =)
b =1 ij? — =

'Simple identifications show that Theorem 9.7 contains the cases where m (or n)
is finite. On the other hand, the facts from Remark 2.5 and Theorem 2.6 have obvious
"infinite" variants. A

We end this section by pointing out some Szego- type 11m1t phenomena (see [25])
1, j<e" (Slm_llar facts for the positive case were obtained in
[16] and [5] as nonstahonary variants for the classical Szegd limit theorems; see [13],
[15] and [4] for the Toeplitz case.) ; :

These phenomena are based on the fact that if T = (Tij)lﬁign, 1<j<m’? and all

Hilbert spaces involved are of finite dimension, then Theorem 2.4 (b) implies that



i d(W) = det D

L

oo det(I-T*T)= T detD’
1<i<n ij
i<j<m

Suppose now that T = (Tij)l_gi,j@o’ that all Iij act on finite dimensional Hilbert

spaces, and that the choice matrix is "nondegenerate", i.e. det DG # 0 for all 1<i,j< =,

For simplifying the writing, let us consider the contractions i

Y6 o
(2.30)7 M8 (Tij)a5i58, ARSI

6:

“where a,B,Y,0 € N; if a>B or y>§, take MZS 0. Also, for a contraction W on finite

" dimensional spaces denote by

2
W’
There are quite a few convergence phenomena resulting from ﬁonstationary Szego-type
limit theorems in [16], [5], and from the specific form of (2.13). The importance of them
comes, e.g., from their geometric significance as convergence of angles in
nonstationary processes and from connections with maximal entropy spectral analysis.
Due to row-column symmetry of T, we give here only "row" formulas.

2.8. THEOREM. For T = (Tij)l G (with all Hilbert spaces of _finite

2258 : .

dimensions), we have: - :

a) For every q e N,

lim (d(Mq’n)/d(I\'I?_ll’n)) = lim (_d(m"“l‘)/d(zw“’“' =

(2.32) e Dl fppms T
g = 1 o
= T (@MPDamdH™) = 14 ).
S 1,n 'l,n e
(r)

Denote this limit by g* *(T) (the symmetric notation ggc)(T) for columns is clear),

q
. b) For a fixed ge N and p > q,.

p 3 S
tim (@2 h/aM3 M) (=1im - 1 @mb/aiLmy))

S i1 T LE A
A’. H p m.
(2.33) =1im @M PN/dM™Y ) (=1im 1 @MBMaMm ) =
q,p o gl p.+1,l n+°°i=q 1 il ‘1+1,1
(o) ; - . p o p
= T (mPhyamI ™M)= T T dG, )= I g§P)<T>.
n=1 ¢ & i=qg n=1 i=q

c) For a fixed q e N, the limit for p+ « in (2.33)'q 5 is

3



of T; in this way one obtains 8.
: b
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(2.34) I T d(G, )= Hg&M3—Uanm%%&C).(d».
- i=q n=1 i=q P 0

Part (a) is the analog of the first Suego limit theorem; it is natural to call

: gg)('l‘) the r‘—geométrical mean of order q for T. Part (c) is the analog of the second

Szegd limit theorem, and Part (b) is a "scale" of Szegd limit theorems which connects

‘the first one (for p = q) with the second one (for p + »). See [16], Corollaries 5.6 and

5.7. Note also the expression of the r-entropy of order q for T ([16], Relation 5.14))

G

(2.35) —— By = -2ng™T) = - ¥ indetD
9 s q. i n=1 gn

q

The limits in Theorem 2.8 can be multiplied starting by deleting the first s (e N) columns

(r)(

T), and so on.

3. POSITIVE COMPLETIONS

This section is devoted to the study of positive block-matrices using their
structure given in Theorem 2.1. The problems to be considered come fvom-}?roblem A,
and include topics as positive completions  of band (6r more general) matrices,
permanence principle, extremal (band) completions, maximum determinant problem,
and maximum distance problems. We reobtain - in an unified way ~ some results from
[19], [20], [21], [26], [10], [22] (some in. a more generalv ’setting) and we offer

explanatlons of these results using the choice triangle associated to a pos1t1ve matrix.

We consider only the "finite" case which contains all the necessary ingredients; see also ;

Remark 2.2 (1) for the "infinite" case.

n

Let H=® H; be a Hilbert space. For a positive operator S =(8:.). . ., . €LH),
= 1j71<1,j<n

we consider its aosocxated {(S )}1<1< ~choice tmangle G(S) Gz(Gu)1<1<J<n (see

Theorem 2.1) and the row contractions, column contractions, generalized rotatlons and,

: tnangular operators associated to G by (2.4), (2.5), (2.6), and (2.7) respectively.

To formulate a more general completion pr‘oblem than Problem (A) we need the

following:

3.1. DEFINITION. A set E {G,q; i<j i<, '15j__<_n} is called a quasi-

" triangle if ji = max{j | i_<_j§ﬁ, (i,j)€ E}>1 for each 1<i<n, and for every (k, &) with

i<k<a <k, 8) ek

Note that the sequence {J} = appeaxmg in the previous definition is non-

_ -decreasing.

Now we can consider the problem:
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Consider E a quasi-triangle and for each (1 J) e E choose an S.. e L(H H. ) Give

/ (A)E <{necessary and sufficient conditions such that there exists a posmve Se L(H)

with the chosen entries for (i, J) € E, and desecribe all such S.

A necessar‘y condxtion for the existence of a posmve completion for (S, )(1 ]}§E
-~ whe1e E is a quasi- tmangle — is the following: !
() {For each 1<i<n, the blqck-—matrlx (Skz)igk,ﬁ_{ji is positive, where for i<y,

5 e
- i

If Condition (x) is verified, theh one can apply Theorem 2.1 for analysing the
structure of positive matrices which appear in it. The "overlapings" which appear in
Condition (#) and the one-to-one feature. of Theorem 2.1 imply that (SlJ)(l DEE verifying
(%) is characterized by a set of contractions (Gl])(l,])EE such that Co= 0 € L(R(S ll))

1<i<n and otherwise G'j acts between DG ’ and DG.*. . . (f (i,j)e E, i<]j, then
i+1,] L)

_easily follows that (i + 1 ,j)and (i,j - 1) are in E).

322 COROLLARY. Let E be a quasi-triangle and (S. a set of opérators.

Then (Sij)(i,j)EE

the positive completions of (S,. )( i)eE are in one-to—oné corresponde_nce with the
1, : ;

i, E
admits a posmve completion if and only if it verifies (). In this case,

completions of the set of contractions (G, J)( el toa {(S )} —chozce triangle.
7

This follows fr'om the fact that the quasi-triangle of contractlons (G, )(l DeE
can be always completed to a {Sii)}i= = chome triangle (takmg, at lcast zero if

(o) é: E,: 1<), and for Theorem 2.1. The algorithm connecting correspondmg elements

(under the correspondence of the corollary) is that given in (2.8).

3.3. REMARK: Let 1 <m, <m, <n. [tisclear that if E @s quasi-triangle, then
E(m'1 , M ) = {(i Li)ie B my <igig m2} is also a quasx—tmangle. So, IS, )( J)EE has a
positive completion, the same is true for any (SIJ)(l,J)GE(m ) with 1< ml_gszn,the

Condition (%) being also her‘edltary. This is the so-called permanence principle 2l

3.4. REMARKS. 1) When there exists an m € N such that in the quasi-triangle E,

ji = min {i + m, n} for any 1<i<n, we reobtain the band situation considered (in the

finite dimensional case) in [19], [20], [21]. This situation includes the Toeplitz case.

2) It is clear that the existence of positi\}e completions does not depend upon
the order of the subspaces {II, } _1- The characterization of the configurations obtained
from quasi-triangles by 1eordexmg was givén in [26]; these are so-called "ehordal
graphs™. In [26], it was shown that the hypothesis that the given entries form a chordal

graph is necessary even in the scalar case considered there. So, Corollary 3.2 covers the



. (remember that F

i

most_gencral situation: in the arbitrary dimensions case, if the given entries form g
chordal oxaoh, reorder the spaces to obtain a quasi- triangle and then apply the analysis
from the quoted corollaxy

The interpretation of the maximum determinant problem ([19], [26]) is the

following:

3.5. COROLLARY. Consider again the situation of Corollary 3.2, and that the

Hlilbert spaces involved are finite-dimensional. Then there exists one and only one
" positive completion having a maximum determinant, namely that obtained from the

- completion-with zeros of the quasi-triangle associated to the given data. This is also the

unique solution which maximizes all the entrbpies of order i, 1<i<n (see Relations
(5.14) in [5] for the definition of the entropies). :

The result follows from the formula (2.10).

In the quoted papers, the solution to the maximum determinant problem is
obtained as the unique posztlve completion whose inverse has zeros on the places where
the entries of the initial matrix are not prescribed.

In ‘our setting this phenomenon follows from the study of "nonstationary"

»_orthogonal polynomials associated to a positive matrix. We present here only a

"shortcut" for obtaining this charaetemzatxon of the ~solution of the maximum _
determinant problem from our Corollary 3.5.
- : n .
3.6. THEOREM. a) Let S = (Su)l<1 j<n € L(@ H,) be a positive operator with the
b

choice triangle G = (G )1<1<J<n If the operators S p 1 <i<n, and DG 1<i<j<nare
: : ij

- invertible, then S is invertible.

b) In this case, if Eis a quasi- trlangle and G = 0. for (1 ,J) & E; then (s- )J 0
for (i, J) ¢ E.

PROOF. Part (a) follows by induction over n from (2.9) and (2.7).
(b) Let E be a quasi-triangle and suppose G.. e =0 for (i,j) 4: E. From (2. 9)

follows that the conelusion would follows from the fact that (Fln)lJ 0 for (1,]) ¢ E

i is an upper tmangular matrix). The relation (2. 7) i implies that (we

consider the nontrivial situation n>2)

e ' ' |
F _n-1 1 |
lign=1 Fl n- 1[1n lcmDG DG
(3.2) Fﬁl e n-1,n 1n
: 1n ' -3 -1 e |
0 SnnDG DG
n-'l,n 1n J 9
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o n‘l

, n- « il %
with respect to the decompositions (® DG \)@DG' and (® R(S. )}@R(Snn). From
= il

it~ el =1

(3.2) it follows that we can reach our concluéion by induction over n, provided we handle

the operator

s e »
(3.3) Sl Pt n-1%1n

So, it remains to prove that the first n' component‘s of the column ?31 are zero, where
n* = max{i; (i,n) ¢ E}. For n=2, 012 = Cyg = Gyg and the result follows 1mmed1ate1y
Suppose now that n>3 and that n'> 1. We w111 show that the first component of C

, we obtain:

zero, and that the proof can go on by induetion. From (2.7)1 e
: : s
ol S pele g
L 11 E e, n=1 In-il
R L
0 F2,n-1D (Rl,n—l) :
n=1 n=l
with respect to the decompositions D @(@ DG ) and R(8, )@(@ R(S;)). From
S 1i i=2
(2'6)1,n~1 we have
UZ,n—l )
(3.5) . U1,n'—1 " Vl,n—l
0. L e
where ‘
(E0) Vyn1 = 9e(019Me(Gg) - 3glGy ng)

and . the matrix  is written ‘with  respect -to the decompositions

=2 n=i : ;
(@® Dn~x )OD % and(® D, )®D . But V, . is, modulo the
i=1-n G--i,n—l G1,n-—1 - i=2 G2, Gln 1 alanel : :
canonical identifications of defect spaces (see Theorem 2.4), the elementary rotation of
Rl,n—l y SO
%*
: Rl,n—l
: (‘3.7.) Vl,n—l = .
*®
I Isn=1
n-1 n-1
with respect to the decomposnlonc(@ D )OD andD . n@G: (D Jpithe
G @ D
i=2 2l 1n 1 11 =2 1i

entries noted by * will not be used explicitely. Finally
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(3.8) | e e oh

in n’

because of <2°5)1n and of the fact that Gln =

Now, using (3.4), (3.5), (3.7) and (3.8), the relation (3.3) implies that:

~cm:(o,F‘1 e NG

(3.9) 9,n-192,n-1%2n

Zn)'

‘The relation (3.9) shows indeed that the fust component of C is zero, and that the

.proof of the fact that the first n' components are zero can be done mductlvely

'S

The proof of theorem is now completed.

3.7. REMARK. The implication in Theorem 3.6 (b) is in fact an equivalence (due
to the one-to-one correspondence of Corollary 3.2), and does not depend on the finite
dimensionality of the spaces {Hi}inzl . In the later case, it gives the characterization of

the solution to the maximum determinant problem obtained in [19] and [26].

We end this section with an analysis of the maximum distance problem from
[10], [22). A generalization of this problem as considered in [22] is the following.
Consider a family {H } P

fixed posmv_e operator. Fix also a positive block-matrix S = (51])1<1,J<m

of Hilbert spaces and for each n€N let S SL(Hn) be a

A pair
{(V(n)) N }, where K is a Hilbert space and V(n)eL(H ,I ), is called. an

S-admisible pair if i

(3.10) e ;5= VO*V(), '15i,j$m.

For an S-admisible pair V define K (V) = \/v )H, C K and P_(V) = i =l

n & .The

paif V is'called extremal-if for every n eN_th.e quantlty
(3.11)_ i l|a - P V(n + 1) I

is equal with the supremum, taken over ali admissible 'pairs,' of similar quantities. The

general maximum distance problem (MDP) means to describe all extremal S-admissible

pairs. | ) :
The Toeplitz case (TMDP) asks — when Hn = H, and Snn = S11 for every n, and S

1 :
is Toeplitz — the same extremal problem taken over all admissible pairs which verifies

_ instead of (3.10) the conditions:

i = % 3 s s
(3'10)T_ Si—j+1,1f‘ V(Gi)*v(),  for |i-j| <m.

The scalar case (both for (MDP) and for (TMDP)) means that dim Hn =1 for every n € N.
(In [22] is considered the scalar case of (TMDP).)

6D

Byl
!\v’L B
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Our appr‘oach to (MDP) is the followmg First, we show that all S-admissible
pairs can be (esentially) described using all completxons of the ub 1)l 1; choice ir iangle
(associated to S) to a {(Sii):zl}—chmce mangle,

To do this, we have to recall from [16] the description of so-called Kolmogorov

. decomposition for a positive block-matrix & =S )1<1 1<°‘; in terms of its associated

o : ; 1 ; .
{Snn}nzl—cholee triangle G'{(Gij)l_{if_ﬂw}' For this, consider the infinite row-

-contractions

(8.12), ' ‘RizR'im, 1<i< @,

defmed by (2.4), and the 1dent1f1catlons of defect spaces of R as done in (2. 23) 2.27)
(following [15]); recall that F(R. ) (defined in (2.27) and (2 23)) is an identification of the

space DR*’ and denote
; g

¥ A _
(3.13); D(R;) = o(R)Dy = ._(f) D oo BGGS,
i j=itl 1]

Define the spaces:

' ' Lo , .
(3.14) | K =i .@F(R1)®F(R1)®h(811)@D(R1) ;
and “ : ; » : :
(3.14); kD=, . @FR)OFR)OFR)O. . OFR,_ORE,)ODR), 2Li<=,
and for 1<i< o the unitary operators: : .

(i+1) _, ®

W, : K
(3.15) :
' : = 1OW, ,
where
70 . :
| e W, : FR)ORS,, ¢ ) @DR )~ RE)ODR
3.16). : x
L I 0 0 I
W = J(R.) :
0 oR) a.(Ry) 0
Consider now the pair V . = {(V -(i)) K(I)} where
G G leN’
- (1)
VG(I) pH =K
(3.17) - (PKl Js? =1
xoy ~ 9 R n 1l =
' V(i) =
& 3
L- (W Wy o W, IIR(SH)]S“ i>1
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The pair V(, is then the minimal Kolmogorov decomposition ofAS .€. Sij = VG(i)*VG(j)
for- all 1 <iyjiseand Kl \\/; VG is clear an S-admissible pair for
ie
(SU)l <i,j<m’

The next lemma is the basis of our analysis of (MDP):

3.8. LEMMA. With previous notation

1

D s’ I

G Gn’nJrl n+l,n+1

(3.18), (1-P (@W.m+1)] =[|[Dg D Y
‘ ISR ehig e R Cintt Yg,nel

for each n2> 1.

PROOF. For n = 1, we have
' ) . }
la-py v @l =la- PR(Sll))(“lIR(SZZ S, 11=l] 612822” ,

simply looking at the matrix of W1 (see (3. 16) and (2. 7)” o) The proof can be
completed by induction, applying the induction hypothe51s to the matrix obtained from S

deleting the first row and the first column, and finally making the last product with W1

Let us remark that the previous lemma also follows from the formula of the
product WlW2 W obtained via the analysis in Theorem 3.2 from [5].
Our dxscussxon of (MPD) is now transparent. Any S- admissible palr' V 101 - the

fixed positive bloeck-matrix 8 = (8 produces a posmve extension S of S (note

: 13)1<1,J<m
that the main diagonal is fixed). This extension 'S has a chmce triangle G and a unique
Kolmogorov decomposition V . It is eclear that‘ir is, essentially, the minimal part of V.
Thus it follows that the supremum e (3. 11) can be taken only over all VG’ obtamed
from various positive e}\tensmns of 5 (or, Whl(’h is eqmva]ent from all ecompletions of

0
the choice triangle of S to an infinite {(S )

e 1} -choice triangle). So, we obtain:

3 9. COROLLARY. a) For (MDP) the supremum. in (3.11) , n>m is equal to

|, which is attained, for example, by the completion of the choice triangle

”Sn+1 n+1
of S with zero entries. However, in the nonscalar case, (3 18) shows that this solutlon is

far from being unique.

b) For (TMDP) the supremum in (3;11),, n>m - is .equal to

(where G.=G or

i Dy Syl = IDg g 1 e

Gn—m+1,n+1 Gn,n+1 I m-1 1

every i,]j> 1), which is attained, for example, by the completion of the choice sequence
ofS with zero entries. However, in the nonscalar case, (3.18) shows that this solution is
far from being unique.

¢)In the scalar case both (MDP) and (TMDP) have unique solutions, namely

_ those-indicated in @) resp. b).
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3.10. REMARK. 1) Corollary 3.9 shows that in the scalar case (MDP) or (TMDP)
is equivalent with the maximum deter mmmt problem (see [22]). It also shows that, in
general, this is no longer true: the unique >olut10n to the maximurm determinant problem
is a solution to (MDP) or (TMDP), which have many others.

2) The formula (3.2) from [22], which expresses the distance from (3.11) = for

- the scalar ecase — in terms of a ratio of Gramians follows easily from Lemma 3.8 and

from our formula (3.1).

4. CONTRACTIVE COMPLETIONS

In this section we apply the Schur analysis of contractive block-matrices (given
in-Section 2) to Problem B. Following a notation which is usual in this context (see e.g
[8], [9]) we define for a fixed ne N, for two families of Hilbert spaces {H }1/1<n and

{H’}1<1<n : and for =0 <M. ny.the sets

(4.1) Q,(m) ={K e L(H, H"); K = (Kij') with K5 = 0 for i< - m}

and i

(4.2). Ty ={K e L(H, H) K = (K;) with Ky; = 0 for i>j = m},

where H = @ H; @ H' Clearly QSL(—n) =i} Ql(n) = Qz(n—l) = L(H,}{’), and
1 1 i=il : :

R (m) = Qu( m)*, for -n<m<n. Due to the last fact, we present only the case of 2,

el ;
‘the other one being completely sxmllar With these notations, a generalization of

Problem (B) reads as follows:

Consider K € 2(m) -n<m<n- 1. Give necessary and sufficient conditions
(B') such .that there exist contractlons in the coset K + @ (m + 1) and describe all
: solutlons. Same problem for contractxons replaced.by isometric,  coisometric,

or unitary operators.

More general comple‘uon problems can be handled, pxovxded the given data

be "movcd” in the upper left corner (a fact also remarked in [17]); moreover the basic

facts appear in the study. of Problem (B') and the interested reader can adapt the

analysis done for positive complebons in Corollary 3.2. The aspect that only "square"

matrices are considered here is also inesential.

We dpply now Theorem 2.4 for obtaining some of the results on Problem (B")
from - [19], [7], [8, Theorem 2] and [9]. For this, let K.:(Kij)eﬂz(m), where

-n+1<m<n- 2 (to avoid trivial cases). The following condition is clearly necessary

for the existence of a contraction in K + Szu(m #:4d )
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L O i1 s 1 - s, 1y : o
(x) {I‘or each p with max {1, 1-m}<{p<n, the block-matrix (Kij)p_{if_n, 1<j<min {p+m,n)
is a contraction.

Suppose K verifies (x); then one can apply Theorem 2.4 for analysing the
structure of the contractions which appear in Condition (*). For this it is necessa"y to
"move" the low-left corner into the upper-left one; we do this by writing H' = O H'

: =1 e
so the g-row becomes the n - q one (1<g<n). We keep, however, the initial notation of

i 5

the matrix entries. Taking into consideration the "overlapings" which appear in.
C(;ndition (+), and the one-t-one feature of Theorem 2.4, it follows that K verifying (%) ‘

is characterized by a set of eontractions

(4.3) {Gu}mdx {1,1-m}<i<n+1, 0< j<min {i+m,n}, (n+1- 1)+]>O
where '
(4.4)j Gy Vel S He for 1<j<min{n+m *1, n}

- (with H_ = {0})

=0l ol for max {1, 1 - m}<i<n

(4.5). : Gi’ﬂ _ L

(with H' = {0}), and

e @) T R R TR
: 1j. IRy Gi+1,j Gi,j—l ;
the 'connection between K and G(K) is‘given by the algorithm (2.17).

n i
It is clear that GfK) can be oomplotcd to a (@ H @ H' )—'choice matrix, and
i=1 j=1 :

_that the "freedom" in starting this completion depends on the defect spaces of the ele-

ments of the "last diagonal" in G(K). We have then:

4.1. COROLLARY. Let K ¢ Qg(m) where -n + 1<m<n = 2. ar
a) There exist contractions in K + (m + 1) if and only if K vemfzes ). In this

case, there exists a one-to-one cor'respondence between -the contractions in

TeK+ Qu(m +1) and the completions of G(K) to (. H @ H' J)—choice matrices
' : i=1 j=1 :
: - n
G(T); the defect spaces DT and DT* can be (unitary) identified with ® Dg 5 resp.
k=1 ik

@D
k=1 kn



" (4:8),

s

Moreover, if X verifies (*)i

" b) There exists only one contraction in K+ Szu(m + 1) if and only if from each

_pair {D 3 x Dp:g }, for max {1, -m}_(_ii.miﬂ n-m-1, n}, at least cne space

i+1, i+m+1" i, i+m
is zero.

e) If the Hilbert spaces involved are of finite dimensions, then there exists one

and only one contraction in K + Qu(m + 1) which has maximum entropy for each row (or

" column); that is the completion of G(K) with zero elements.

'l

Part (a) follows form Theorem 2.4; the algorithm connecting corresponding

clements is that given in (2.14). Part (b) results from the way G(K) is completed to a

| choice ﬁnatrix. Part () follows from (2.35).

We call the completion of G(K) with zero elements — even in the infinite
dimensional case — the maximum entropy completion. : '

We analyse now the existence of isometries in K + Qu(m + 1) reobtainig some
results in [9], Theorem 3.1 (without the finite dimensional assumption). The cases of
coisometric or unitary completions can be inferred from this.

For KeQ,(m), -n+ 1<m<n - 9, consider G(K) the set of contractions
associated to K by (4.3)-(4.6). Denote:

{45, : g mdimD . d:;—‘dlm DG* :

el ‘ 1 Gi'j iy

for max {1, 1 - m}<i<n+1, 0<j< min {i + m, n}. Then we have:

4.9. COROLLARY. With previous notation, there exist - isometries  in
K + Qu(m + 1) if and only if the following conditions are fulfilled:

f z Tt |
d. ar o+ A A forall 1<i<{n+m,
- m,j k=1 k,0 =1 j-m,] o
(4.8) 4 v i )
d. sk d < d d. .
Coger M enimat n+1] ks j L
if m<Gy0r .
il g S e 0

2d3,3+m~2 ’]+ o forall 2<i<n- m,

if m>0.
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In this case, there exists a one-to-one corresponderice between the isometries in
K+ Q.u(m + 1) and the completions of G{K) to (® His ® H;l__j)-choice matrices with Glj
i=1 j=1 :

(1<j<n) being isometries.

PROOF. Note first the following fact concerning two-by-two matrix contrac-
tions. Suppose that the (1,1), (1,2) and (2,1) entries are given, i.e. e

>

A DA*Pl

I'ZDA % g

(4.9)

with A, I‘ls.and I', contractions. Then' the (2,2) entry can be chosen such that the whole

matrix to be an isometry if 'and only if

(430 ~ Tyisanisometry and dimD[ <dimD x .

1 2
This follows from the structure of the (2,2) entry as being —I‘ZA* Iy _DI.*I‘DI,, , where
2 1

T'e L(DI; ; DI.*) is a contraction, and from the fact that the defect of the matrix is
1 2

unitary equivalent with D

2 I

I’Q@Dl‘ (see Theorem 2.4). ' ¥ ‘
Coming back to the situation of the corollary, we will need the notation from
(2.30); we intertwine the indices indicating-the rows in order to emphasize the Away we
are looking at the matrices in this section. : -
Let K be given as in the statement, and let ’G(I()'ité associated set of
'contract.ions (by Corollary 4.1). For clarity, we analyse separately thé case m <0 and

the case m > 0.

Case I: m<0. We try to construct an isometry in K + Qu(m +1) by completing

induetively the contractions IVI’n"rln’l
, ]

the last step will be to complete M

to H' - valued isometries, 1<i< n + m. After this,

LAY an isometry defined on H. The first step is

n,1
to complete the column M{l}--lm,l to an H'-valued isometry. From (4.8) for i =1 we have
” 9
(4.11) e Sedte (e ] adimen)
‘ 1 s R R k

which is exactly the necessary and sufficient condition for the existence of an isometric
letion of ML~M,l i o R S .
completion o to a matrix M., via an isometry W, : D s X H . We
n n,1’ A 17 L Hye A

: ~ i-m,1 k=1
have, in general, that (see (2.3))



: ; ~m
"!— ;“? 1) Ed = *
(4.12), dj _pp,1 *Gim Dy ;Z1~dk70’
in case d is not finite, we take W, such that
1-m,1 1
: »}pﬁ :
(4.13) dimD.__x = SR
1 v : Wl Koy K0
The next step consists in completing Mﬁ»lm,z to an H'-valued isometry, respect-
: )] :
ipg the already chosen M#%' After obvious identifications, this reduces to a problem
o]
similar to that presented in (4.9) and (4.10): in our case, one can take A = K2~m 1' , 1‘1 =
i
=Gy maT9=@Gy 145 Ddi_m 1Wl)t- The operator I‘é is in this case an isometry
9,

because W1 is s0; thus (4.10) implies that the necessary and sufficient condition for the

solution of this step is that

(4.11) cdhiid cat +dimD .

2 2-my2—"1-m,1 Wf
From (4.12)1 and (4.13)1 it follows that (4.11)2 is equivalent with the relation (4.8) for
i = 2. Denote by WZ the isdmetry from DG inte DW* which appear in the structure
2-m,2 1
; -m,?2
of the upper-right corner of the completion of MIZ] 1 “. Then we have
; b
3] i e = O : :
(4.1,)2 d2»-m?2 +dim D, % = dim Dy s
; 2 1

oy o seae ) 5 .
in case dz_m,2 is not umtc, we take W2 _such that
(41.13)2 dim Dwf’ =dim Dy

: 2 1

The proof of Case I can how be completed by induction.
Case Il : m > 0. From (4.8)4, it follows that Mrll’;n L is -already an isometry. The -
3

proof can be now done in same manner as in Case I, completing i.nductively the matrices
] o m H ' 1,m+]
4 (2 < i<n- m) to H'-valued is omotnes, respecting the ex15tmg M -part.

n,1 1,1

The last part of the corollary is immediate from Coroliary 4.1.

. 4.3. REMARKS. (i) It is easy to show that in the finite dimensional case, the

conditions (4.8) are equivalent with those appearing in Theorem 3.1 (ii) from [9]. For

example, if m<0 the condition in (4.8)_ for i =1 is equivalent with dim D g
. ?
; Mn 1
-m
£ 5 dim H'k , the condition for i = 2 is equivalent with dim D st ? dim H'

Mn,l
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~and so on. Some other quantities appearing in [9] can be computed from the choice

matrix. For example, in [9] there were introduced the partial rank. indices rpu

L

(1 <p,q<n) by the formula:

O e i e
pa~ %pg " ¥p,q-17 ¥pt1,q " Pprig-1’
where e
¢ = dimker D
pq P4
_ n,1
for 1<p,q<n, and Do 0 for p=n+1org= 0. From Theorem 2.4 it follows easily that"

rpq = dim ker DG
: Pg

(ii) It is plain that when dimH? =dimH} = g < for any 1<i<n, the conditions
in (4.8)_ and the second line in (4.8), are automatically fulfilled.

(iii) The form of the conditions (4.7) strenghtens the importance of the "last
diagonal" in this completion problem.

(iv) The analysis of completions can be very well understood on the diagram of

the elementary rotation of the whole matrix (see (2.17)).

5. UPPER TRIANGULAR CONTRACTIONS

~ This section is devoted to the presentation of a variant of Theorem 2.4 for
lower triangul-ar (square) matrix contractions; this structure theorem will be used for
the description of the realizability of such contractions as transfer operators for linear,
unitary, time-variant systems. In faét, ‘the realizability theorem will provide another
form of the algorithm in (2.17). '
The structure theorem given here will take into account the simplifications
introduced by the zero elements of the upper triangular matrices. Its origins may be
found in a similar analysis for lower triangular Toeplitz contractions which appeared in

the study of contractive intertwining dilations (see [3] and [14]).

& [6.0] <o
Let Hi=s@if. ; Ht="0 HE and let T ={T..).
Eerahes - e

which is upper triangular, i.e., Tij:O for i>j (in other words, TgQu(O) in the

o . § '
Lo be a contraction in L(H_,H )

terminology of Section 4). For such contractions it is useful to give (besides the direct
application of Theorem 2.4) a structure theorem, which, in the finite case, is obtained
by moving the zero entries in the left-upper corner. This means that for each finite
secti el ; re { i - H' ®...®H"

section (le)lgl,Jgrx of T we change the order in the codomain to be n@ @ 1 and
apply Theorem 2.4 for the resulting matrix contraction; then we put together the

obtained information for giving the structure of T.

©
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- This procedure asks for the following considerations.

5.1. DEFINITION. A O H @ H] hozce cotriangle is a set of eontractlons
i=1 =1

Gzl ) ,i~1"0{°L(H 1 ;) for 1=14,...,( = {0}), and for .

ij'1<i<j+1

i<} Q. isinL(D B 1 R,
” Sirl e it

¢oov Where Gi

To each choice cotriangle we associate the following objects:

- . a) the row contractions Rij((}) = Rij’ i>1,j>i, defined by

: Rij.HH@)...@HJ.@Hl@...@H ®D,;  @...®D, i

I‘, (5.1)1 - l+1 i - : l+1,J
] j-1 times '
T O (R W B e ) )
| b Al | b st G Rkl ¢ Gr, Vi
_ 11 11 1,j-1
b) the column contractions Cij(G) = Cij’ ixlad2d where
. i H,—H, )
Cyy ¢ Hj H]_l® H, @DG“ 1@ @D J :
] (5.2)i. ! 7 9
| ! j-1 times : ;
- aliC e B GG D yorsh D enp gt
| : & st e i ntls B il akley o R o H
| ' j 57 LETC G i
! : . :
: : ~¢) the generalized rotations Uij(G) = Uij’ i 1? j>1i, i+j > 2, where
: (543} 15/ Hj_1®...@Hl ok H1®...®Hj~1

0 i

is, for each j2 2, the operator of reversing the order, and for j>i>1,

e S
Ul @ @H @D @...@DG* e
i , : Jd 1 i+1,j-1
| : o C—H . ®...0H0H,®...®0H, ®D ®...®D
._ ' Tl e L i Cit1,5-1
(5:3).. ﬁ .
U..#J .
730 o. OHOH,©...OH, ;1]
| "I (Giyq "Je(Gi+1,j 1 1+1,3@IDG* )

_ it1,j-1
* where the conventions are those from (2.16).
These are, of course, the forms of (2.14), (2.15), and (2.16) which are necessary
for the present situation. Thus, from Theorem 2.4 we obtain:

P=Y



operator ofT) acting between DT and ® D

X7

5.2. THEOREM. a) There exists a one-to-one correspondence between the upper

. : <o e © s}
triangular contractions T L(@ H ® H') and the set of (® Hi’ @ H')-choice
1=l =1 sl =l

cotriangle G = (G..) Between corresponding elements, the fdllowing formulas .

ij/1<i<j+1<

hold: j
forii =159, . Spandifor Feigjce,
(5.4); TS By 05iChn ; * Dgnr o Dgge 6D e o

ii et 0 e 4G

where R. . .=R.. |H!  ®.. OHOHO.. @H ,®D ®...®D :
i,j-1 ity , Gx+1 et Gi+1,j-1 :
b) Moreover, if T and G correspond to each other then there exists a unitary

. The identification of D

¥ can be done

n=1 Gln

using the method from [14, Theorem 4.3] where the Toeplitz case was considered.

e¢) The algorithm (5.4) _and the cell-structure of any finite part of the

- elementary rotation of T — can be read out on the mfmlte scheme:

H - H HL o H H % H

[1~ jl o6 2 , i3 i
D-Gllg__fJ(.Gll) J(Gyq) L ‘ J(‘G33) e
(5.5) DG12Q J(Glz) : J(G23) _ —
DGlg.g ' J(G13) e J(Gz4) fre
D G ) SO
< .
oS 14
D G .)
G154 15"

5.3. REMARK. In the Toeplitz case, a slight modification of the diagram (5.5)

produces a transmission-line structure (see [30]) which is the "flow graph" or "block-

. diagram" of the classical Schur algorithm (see [28]).

Let us give now the realizability procedure mentioned at the beginning of the

section. Consider the linear, time-variant system
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= %
n An n+1 Bnun

=C 2 Dy, a S
yn NN+ nUn‘ ; =2

(5.6)

" where u, eu (the input spacés), ¥ e‘-Yn. (the ou.“tput' spaces), and x € Xn (the state
spaces), and for which the operators i

(5.7) ¢ . n n+1@U n@yn 3
7 AR
o n n
n
Cn lDn G

n>1, are unitary operators. It is easy to show that the transfer operator of the system
(5.6) is an upper triangular* contraction T, where

(5.8)

is given by Tij =0 for i<j, and
(5.9).. T = Di ; (1<i< ),

(5.9). il

i,i+1 1 daki] C’B

i+1 (1 < i<=),

and for Liindy =1

(5'9)1',3' e Tij=CiAi+1---Aj__1Bj'

n

(Tisa contractlon because the part of T actmg between @ Ul and @ YJ is a part of a
i=1 J=1 ]

umtary matrix between X +1®(@ U,) and X @(@ Y]) for each ne N).

_ j=1 o
_ Conversely, consider T an upper triangular contraction acting between
4 o0 - o0 y = . 3
o i -
Hi= 1@1 H. and H'= Sl HJ.- , and let e Fied )1<1<3+1<m be its associated choice

cotriangle. For the infinite row contractions

R,:H,® @ D 2l
~(5.10). T
sk
= D
R'i (Gii’ LG;Gi,iﬂ. ,....)

we repeat the analysis of defect spaces and. of the elementary. .rotation done in

(2.20)-(2.24) and (3.13)-(3.16). We are led to consider the spaces
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. 2 g < ’ ) [e'e)
K= . FR)DOFR)OFR,)®...OFR)OH. O @ D,
(5.11), - ' S AR L
Ki=...0FR)OFR)OFR,)®...OFR,_JOHIO® D,
i 1 1 2 =1 1 i=1 Gij
iy
and the unitary operators: By : ‘
. ) . KTl ]
(5.12); WK, f*Ki, g :
which act as J(Ri) — via the identifications of defect spaces of Ri — between

FR)OH;® @ D

(e ¢] s
G, ) and HO®® D, and as the identity on the rest of
j:i+1 2

i*1. =1 TLj
components (see (3.15) - (3.16)).

The,system attached to T is defined as follows: take

:
] Un :Hn’
{523y i {Yy =H
n —— n
Xn :K;?@H}],

\
for each n> 1. Note that for n> 1, we have

’ g oo v Poras
(5.14) % —KnQHn =K __OH__,.
Finally, define for eachn> 1
. i
K!
N, :
An : PXn Wnlxnﬂ
1
o n
| B = PXn wnl U,
(5.15) S .
_ n.
C, =Py wnlxn+1
: n
: K=
Then it is clear that
. An Bn v
7 — ¢« Y - = !
(5.16)n “n = 5 i : /\nﬂ@Un( Kn) - X_n@Yn( Kn),
n n ' w3

so the system. defined in (5.15) is a unitary one.

5.4. THEOREM. Consider an upper iriangula% contraction T and the spaces and
operatbrs defined from T by (5.13) and (5.15). Then the 'system (5.6) (with the spaces
(5.13) and operators (5.15)) is unitary and has T as its transfer operator.
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PROOF. Remark that {w}_1

operatoxs which appear in the Kolmogorov decomposition of the positive upcratol

defined in (5.12) are not exactly the unitary

associated to T (sce Theorem 5.2 and Section 2); hdtiever, they differ only by some rows
with the only nonzero entry equal to the identity. Moreover, t.he way of obtaining the
transfer operator of a system (5.6) requires .exactly the same.computations on Wn as
those appearing in Kolmogorov decomposition of T (see also (3.17)), and the theorem

follows.

.. 5.5. REMARK. (a) The formulas (5.9)'are — via Theorem 5.4 — another way of
looking at the Schur algorithm for T c'on"tained in Theorem 5.2.
(b) For time-invariant systems (i.e., when T is a Toeplitz operator) such kind of:
state-representation of T was obtained in [29] using the Naimark dilation of T. '
~ (c) Several other notions and facts from system theory have interpretations in

the setting of Theorem 5.4.
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