INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

STABLE RANK FOR CERTAIN TYPE I C*-ALGEBRAS

by

V. NISTOR

PREPRINT SERIES IN MATHEMATICS
No.63/1986

ped 23764

BUCURESTI .

STABLE RANK FOR CERTAIN TYPE I C*-ALGEBRAS

by

Victor NISTOR*)

November 1986

Department of Mathematics, The National Institute for Scientific And Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

STABLE RANK FOR CERTAIN TYPE I C*-ALGEBRAS

by

Victor NISTOR

In [11] M.A.Riefell introduced the notion of topological stable rank of a C*-algebra A as the least integer n such that any n-tuple $(x_1, \ldots, x_n) \in A^n$ can be approximated arbitrarily close by an n-tuple of elements of A wich generate A as a left ideal (if no such integer exists we take the topological stable rank of A to be ∞). One of the reasons to study the topological stable rank is that it can be used to obtain cancellation theorems for projective modules as done in [12, 14, 15]. As shown in [3] the topological stable rank and the Bass stable rank coincide for C*-algebras. We shall denote their common value for a C*-algebra A by sr(A) (the stable rank of A).

It is known [1] that for a separable type I C*-algebra A there exists a composition series with continuous trace subquotients. We shall find the value of the stable rank of A for a separable C*-algebra with a finite such composition series with locally trivial quotients (theorem 7). This result generallyses results from [11, 14]. We also improve a theorem of [11] concerning the value of sr(A) in terms of sr(A) and of sr(A/A) for I a certain continuous trace ideal and show that $sr(A \otimes B) \leqslant sr(A) + sr(B)$ for certain separable C* algebras of type I.

I want to express my gratitude to my adviser, professor Dan Voiculescu for his constant support.

The following facts can be found in [1]. Let I be a C*-algebra. We shall denote by \widehat{I} the spectrum of I and by m(I) the linear span of the set of those xeI₊ such that the function $\pi \longrightarrow \operatorname{tr} \widehat{I}(x)$ is continuous on $\widehat{I}(3.1.5)$,

4.5.2). One says that I is of continuous trace if m(I) (wich is an ideal) is dense in I(4.5.3). In this case \widehat{I} is separated and I is isomorphic to a C*-algebra corresponding to a continuous field $A = ((I_t)_{t \in \widehat{I}}, \Gamma)$ of elementary C*-algebras on I. Moreover a satisfies Fell's condition (10.5.4, 10.5.7, 10.5.8).

Let M(I) be the algebra of multipliers of I ([9]). If beM(I) then it can be identified with a certain function $t \rightarrow b(t) \in M(I_t)$ on \hat{I} .

We recall that for a topological space T the covering dimension, dim (T) is the least integer n, such that each open cover of T has an open rafinement such that each point is contained in at most n+1 sets. If no such integer exists $\dim(T)=\infty$, If T is a compact metric space then all definitions of dimension are equivalent (see $\lceil 6 \rceil$).

We shall suppose that T, the spectrum of I, has finite covering dimension.

Let $t \to a(t) \in (I_t)_+$, $t \to b(t) \in M(I_t)_+$ be two positive elements of I and of M(I), respectively. We shall suppose that b(t) is not of finite rank for any teT.

We shall denote by χ A the characteristic function of the set A.

LEMMA 1. Under the above hypothesis there exists a function $t \rightarrow v(t) \in I_t$ defined on T, for T compact, wich gives an element of I satisfying:

(1.1)
$$\chi_{[1/2,\infty)}(a(t)) \leq v^*(t) v(t) \leq \chi_{(0,\infty)}(a(t)) = s(a(t))$$

(1.2)
$$v(t)v(t) \times \chi_{(0,cg)}(b(t)) = s(b(t))$$

for any tET.

Proof. The assumptions and lemma 10.7.11 of $\begin{bmatrix} 1 \end{bmatrix}$ give for I and T=1:

(i) A finite open cover (T_1, \ldots, T_n) of T, with T, closed.

(ii) For any j \in {1,...,n} a continuous field (($\mathcal{K}_{j}(t)$) $_{t\in T_{j}}$, $_{j}$) of Hilbert spaces and isomorphisms h, from A/T, onto A(\mathcal{K}_{j}) - the CCR-C*-algebra induced by \mathcal{K}_{j} ([1], 10.7.2)

(iii) For any i,j \in {1,...,n} an isomorphism $g_{ij}(t):\mathcal{H}_{j}(t)-\mathcal{H}_{i}(t)$ for teT_{ij}=T_i \cap T, wich induces $h_{i}^{-1}h_{i}$ from $A(\mathcal{H}_{i}/T_{ij})$ onto $A(\mathcal{H}_{i}/T_{ij})$.

(iv) For any $j \in \{1, ..., n\}$ two numbers $0 < a_j < b_j < 1/2$ such that $(a_j, b_j) \cap \sigma(a(t)) = \emptyset$ on T_j .

Denote by $c_j=(a_j+b_j)/2$ and by $p_j(t)=h_j(\chi_{---}(a(t)))$ wich belongs to $A(\mathcal{X}_i)$ due to (IV).

We shall solve the following technical problem:

Problem (P). To construct for any $j \in \{1, ..., n\}$ a continuous function $t \to u_j(t) \in \mathcal{K}(\mathcal{K}_j(t))$ wich gives a partial isometry in $A(\mathcal{X}_j)$ with the proprieties:

- (a) $u_j^*(t)u_j(t)=P_j(t)$ on T_j
- (b) $u_{i}(t)^{*}g_{ij}(t)u_{j}(t)=0$ on T_{ij} for $i\neq j$
- (c) $u_{1}(t)u_{1}^{*}(t) \le s(b(t))$ on T_{1} .

Let us observe that if we can solve problem (P) then we can solve the corresponding problem with p_j replaced in (a) by q_j such that $0 \le q_j \le p_j$, for $u_j' = u_j q_j$ will satisfy (a), (b), (c) in this new form. We may suppose then that p_j defines a trivial vector bundle of rank r_j on T_j . Then problem (P) is equivalent to:

 $\frac{\text{Problem }(P_j). \text{ To construct continuous sections}}{\xi_j^j \in \Gamma_j \text{ for } j \in \{1, \dots, n\}, \ i \in \{1, \dots, r_j\} \text{ such that}}$

(a')
$$(\xi_i^j(t), g_{jk}(t)\xi_e^k(t)) = \delta_{ie}\delta_{jk}$$
 on T_{jk}

(b')
$$\xi_{i}^{j}(t) \in b(t) \mathcal{K}_{j}(t)$$
 on T_{j}

Let us suppose that we have defined the sections ξ_i^k for k<i and $1 \le i \le r_k$ and that we have extended the sections $\xi_i^k = \sigma_{jk} \xi_i^k$, k<m, $1 \le i \le r_k$ from T_{jk} to all of T_j such that $(\xi_i^k(t), \xi_i^m(t)) = \delta_{km}$ ie for teT. Let p(t) be the orthogonal projection onto the linear span of the vectors $\xi_i^k(t)$ for k<m, $1 \le i \le r_k$. Then $(1-p(t))b(t)\mathcal{H}_j(t)$ defines a continuous field of Hilbert spaces on T_j of infinite dimension in each point. The proof of 10.8.7 of [1] shows, using Michael's theorem [4], that we can extend ξ_1^m, \ldots, ξ_r^m to T_j , or, if m=j, that we can find sections ξ_1^j, \ldots, ξ_r^j with the desired properties. Problem (P_1) is thus solved.

To obtain the function v we shall choose a partition of unity $(\phi_j)_{j=1,n} \text{ subordinated to the cover } (T_1,\ldots,T_n). \text{ Then } \phi_j^{1/2}h_j^{-1}(u_j) \text{ are well defined elements of I and their sum v satisfies our requirements.}$

Let $0 \to 1 \to A \to B \to 0$ be a short exact sequence of C^* -algebras,

To any point teT=I corresponds an ideal $J_t \subset B$ in the following way: the representation t has a unique (up to equivalence) extension to a representation of A on \mathcal{K}_t (the Hilbert space of t). The Kernel of the induced map $B \to \mathcal{K}_t / \mathcal{K}_t$ will be denoted by J_t (remember that $t(I) \subset \mathcal{K}(\mathcal{K}_t)$ because any C*-algebra of continuous trace is a CCR-C*-algebra). See also [10], definition 1.7.

LEMMA 2. Let I a closed two - sided ideal of A with continuous trace. We shall suppose that $\dim(\mathcal{X}_t)=\omega$ for any $t\in T=\widehat{1}$. Then $sr(A)\leq \max\{sr(A/I),2\}$.

Proof. Let us suppose that $s=max\{sr(A/1),2\}<\infty$, otherwise the lemma is obvious. Also we may suppose that A has unit.

Let $x_1, \ldots, x_s \in A$, π the quotient map $A \to A/I$, E > 0. We may suppose that, after a small perturbation, $\pi(x_1), \ldots, \pi(x_s)$ generate A/I as a left ideal We want to show that there exist x_1, \ldots, x_s wich generate A as a left ideal and such that $\|x_1 - x_1^*\| < E$ for any $j \in \{1, \ldots, s\}$. This will show that $sr(A) \le s$.

Let
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_s \end{bmatrix} \in M_{s,1}(A)$$
, $y = x^*x = x_1^*x_1^* + \dots + x_s^*x_s^*$.

By the assumption there exists $\eta>0$ such that $\pi(v)>\eta$. Let $f:[0,\infty)\to [0,1]$ be a continuous function f(t)=1 for $t\in [0,\eta/2]$, supp $f\subset [0,\eta]$, $z=f(y)\in I$. The set of points $t\in T$ on wich $\|z(t)\|<\eta/4$ has a compact complement K_1 in T. Let K be a compact neighborhood of K_1 , φ a continuous function with values in [0,1], $\varphi=1$ on K_1 , $\varphi=0$ off K.

Let S,y>0 to be specified later and let $g:[0,\infty)\to [0,1]$ be a continuous function vanishing off $[0,\delta]$ such that g(0)=1. We want to apply lemma 1 for $M_s(1)|_K$, $a=z|_K$, $b=g(xx^*)|_K$ to obtain a v such that

(2.1)
$$\chi_{[1/2,1]}(z(t)) \leq v^*(t) v(t)$$

and if h is a continuous function on $[0,\infty)$ with values in [0,1] such that $[0,\delta]$ Ch $^{-1}(\{1\})$, $[2\delta,\infty)$ Ch $^{-1}(\{0\})$ then

(2.2)
$$h(xx^*)(t)v(t)=v(t)$$

(we have denoted by z(t) $(h(xx^*)(t))$ the image of $z(h(xx^*))$ in $I_t(M(I_t))$. All we have to check is that b(t) is nowhere of finite rank. Let us suppose that b(t) is of finite rank for some tek. Let B denote A/I, T the operator X(t) and [K] the orthogonal projection onto the closure of the space K. If b(t) is of finite rank then $b(t)\geqslant 1-[Ran\ T]$ and ker T is finite dimensional from the assumption that $\pi(y)\geqslant \eta>0$. This means that T is invertible in the Calkin algebra. Since we have an injection $B/J_t\gg X(R_t)/K(R_t)$ by the very definition of J_t , we obtain that the image of $\mathfrak{X}(t)$ in $M_{s,l}(B/J_t)$ is invertible. Since $s\geqslant 2$ this means that $M_s(B/J_t)$ contain two isometries with orthogonal ranges. R_t is infinite dimensional and B has unit, hence $J_t \ne B$. Proposition 6.5 of [11] shows that $sr(M_s(B/J_t))=\emptyset$ and hence ([11]] theorems 6.1 and 4.3) $sr(B)=\emptyset$, contradicting our assumption.

Denote by $u=\varphi v \in I$, $x'=x+\gamma u=\begin{cases} x_1 \\ \vdots \\ x_s' \end{cases}$.

(2.3)
$$(x'^*x')(t) = (x^*x)(t) + \gamma(u^*x + x^*u + \gamma u^*u)$$

 $(\eta/2 - z(t)) - 2\gamma(||x|| + 1) \ge \eta/4 - 2(||x|| + 1)\gamma$.

For $t \in K_1 \varphi(t)=1$ and hence, by functional calculus

(2.4)
$$(x, *x')(t) = (x*x)(t) + y^2 u^* u + y(u^* x + x^* u) \ge$$

$$\ge (x*x)(t) + y^2 x_{[0, \eta/2]}(x*x) - 2y || v^* x || \ge$$

$$\ge y^2 - 2y || v^* x ||$$
for $y^2 \le \eta/2$

By (2.2) we have

(2.5)
$$||v^*x|| = ||v^*h(xx^*)x|| \le ||h(xx^*)x|| \le 2\delta$$

Let us choose γ and δ such that $0 < \gamma < \epsilon$, $2\gamma(\|x\|+1) < \gamma/8$, $4\delta < \gamma$ and such that $\|x'-x\| < \gamma$ implies that $\pi(x_1'), \ldots, \pi(x_s')$ still generate A as a left ideal. Then (2.3), (2.4) and (2.5) show that there exists $\lambda > 0$ such that $(x'^*x')(t) \geqslant \lambda$ for teT. Let ϕ be a pure state, π_{ϕ} the GNS representation associated with ϕ . If $\pi_{\phi} \in \hat{1}$ then $\phi(x'^*x') \geqslant \lambda > 0$, if $\pi_{\phi} \in (\Lambda/I)$ then $\phi(x'^*x') = -\phi'(\pi(x'^*x')) > 0$ since x_1', \ldots, x_s' generate A/I as a left ideal (ϕ ' is the induced state on A/I). We may conclude then that there exists λ '>0 such that $x_1'' x_1' + \ldots + x_s'' x_s' \geqslant \lambda$ ' and hence that x_1', \ldots, x_s' generate A as a left ideal. The following lemma is an unpublished result of f. Nagy.

LEMMA 3. Let $0 \to 1 \to A \to B \to 0$ be an exact sequence of C^* -algebras, such that sr(1)=sr(B)=1. Then sr(A)=1 if and only if the index morphism $\delta: \mathcal{K}_1(B) \to \mathcal{K}_0(I)$ is zero.

Proof. Suppose first that sr(A)=1. Choose u a unitary in $M_n(\widetilde{B})$ and $v \in M_n(\widetilde{A})$ a lifting of u. Choose $w \in M_n(\widetilde{A})$ an invertible element close enough to v such that $\pi(w)$ represents the same class as u does in $K_1(B)$. Obviously $S([\pi(w)])=0$.

Conversely, we know that sr(A)=1 and only if $sr(A \otimes K)=1$ ([11],

theorem 3.6). Let $u \in K \otimes A$, E > 0. There exists an invertible element $v \in K \otimes B$ such that $\|\pi(u) - v\| < \mathcal{E}$. Since $\mathcal{E}([v]) = 0$ there exists an invertible element $w \in K \otimes A$ such that $\pi(w) = v$. Let $w \in K \otimes A$ be such that $\pi(w) = v = \pi(w)$ and $\|u - w\| < \mathcal{E}$, then $\|w\| = 1 + K \otimes 1$. Choose an invertible element $x \in I + K \otimes I$ such that $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ such that $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ such that $\|x - w\| = 1 + K \otimes I$ such that $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ such that $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ such that $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$ then $\|x - w\| = 1 + K \otimes I$.

We shall study next the opposite case, namely for I a twosided ideal of continuous trace such that the associated field of elementary C^* -algebras $J=((I_t)_{t\in T},\Gamma)$ (T=1-the spectrum of I, $I_t=I/Ker$ t), be locally trivial with I_t a finite dimensional simple C^* -algebra. Let $I_t=I/I_t$ be the set of those teT such that $I_t=I_t$ ($I_t=I/I_t$). By the assumption of locally triviality each I_t is open. Since $I=\bigcup_{n=1}^{\infty}I_n$ I_t is also closed. Let I_t correspond to the ideal I_t I_t I_t I_t is the I_t I_t I

We notice that for a separable C*-algebra I of continuous trace the spectrum $T=\hat{1}$ (wich is a locally compact Hausdorff space [1]) is a separable σ - compact metric space.

We shall use the following technical result due to A.J.-L.Shen (14), proposition 3.15):

LEMMA 4. Let $\{J_{\lambda}\}_{\lambda \in \Lambda}$ be a net of closed ideal (ordered by inclusion) of a unital C*-algebra A with J = the closure of the union of J_{λ} 's. If K_{λ} are closed ideals of A such that $J_{\lambda} \cdot K_{\lambda} = 0$ for all $\lambda \in \Lambda$ then $sr(A) = \max \{ sr(A/J), sr(A/K_{\lambda}) | \lambda \in \Lambda \}$.

LEMMA 5. a) Let A be a C^* -algebra, ICA a closed two-sided ideal as above then

(5.1)
$$sr(A)=max\{sr(I), sr(A/I)\}$$

b) If I is separable then

(5.2) $sr(1) = sup \{ \{ (dim(T_n)-1)/2n \}^2 + 1 \}$

(Here {x }' denotes the least integer m, m>x).

Proof. a) Let $\Lambda = \{UCT | U \text{ open and relatively, compact in } T\}$, J_U the ideal of A corresponding to U, K_U the ideal of A corresponding to AU.

We have to prove that UCT.

In the following exact sequence

$$0 \twoheadrightarrow (1+K_{\mathsf{U}})/K_{\mathsf{U}} \twoheadrightarrow A/K_{\mathsf{U}} \twoheadrightarrow A/(1+K_{\mathsf{U}}) \twoheadrightarrow 0$$

A/K_U has the spectrum U and $(I+K_U)/K_U$ has the spectrum $\overline{U}\cap T$. Using the compactness of $\overline{U}\cap T$ and the local triviality of J we obtain that $(I+K_U)/K_U$ has a unit. This shows that $\overline{U}\cap T$ is closed in \overline{U} and hence closed. Since $\overline{U}\subset \overline{U}\cap T$ it follows that $\overline{U}\subset \overline{U}\cap T=U\cap T$ and hence $\overline{U}\subset T$. We obtained isomorphisms $A/K_U\cong (I+K_U)/K_U\cong I/I\cap K_U$. Theorem 4.3 of [11] shows that $\operatorname{sr}(A/K_U)\leqslant \operatorname{sr}(I)$.

 $\label{eq:weak_solution} We shall use lemma 4: I = \bigcup_{\lambda \in \Lambda} J_{\lambda} \quad \text{and hence } sr(A) = \max \left\{ sr(A/I), sr(A/K_U) \mid U \in \Lambda \right\} \leq \max \left\{ sr(A/I), sr(I) \right\}.$

b) Suppose first that $I=I_n$ and T_n is compact. Cover T_n by a finite number of open sets V_1,\ldots,V_m such that $T_k^TV_k$ is trivial for any $k\in\{1,\ldots,m\}$. If J_k is the ideal of I corresponding to $T_k^TV_k$ the last statement is equivalent to the fact that $I/J_k=M_n(C_k^TV_k)$. By [8], corollary 2.7

$$sr(1)=sr(1/J_1 J_m) = max { $sr(1/J_k) | 1 \le k \le m}$$$

By [11] Theorem 6.1 $sr(1/J_k) = \left\{ (\dim(V_k) - 1)/2n \right\}^{\ell} + 1$. By the sum theorem [6] $\dim(T) = \max \left\{ \dim(V_k) \right\} = \left\{ (\dim(V_k) - 1)/2n \right\}^{\ell} + 1$.

The general statement can be obtained as follows: $sr(1)=max\{sr(1_n)\}$ $n\in N\}$ ([11], Theorem 5.2). All we have to prove is that $sr(1_n)=\{(\dim(T_n)-1)/2n\}$ +1. We shall use Lemma 4 in the following setting: let $L_1, L_2, \ldots, L_m, \ldots$ be

compact subsets of T_n such that $T_n = \bigcup_{m=1}^n L_m$, $L_m \subset \mathring{L}_{m+1}$, $\Lambda = N$ J_m the ideal corresponding to L_m in L_m , L_m in L_m in L_m . ($T_n \cup \{\infty\} \setminus L_m$ in L_m) and $T_n \cap L_m$ in L_m . ($T_n \cup \{\infty\} \setminus L_m$ in L_m) and $T_n \cap L_m$ in L_m in L_m) denotes the algebra $L_m \cap L_m$ and $T_n \cap L_m$ in L_m in L_m in L_m .

$$sr(I_n) = sr(\tilde{I}_n) = max \begin{cases} sr(\tilde{I}_n/K_U) \end{cases}$$

$$= sup \begin{cases} \{(dim(L_m)-1)/2n\}' + 1 \} = \{(dim(T_n)-1)/2n\}' + 1 \}$$

since $\dim(T_n) = \sup_{m \ge 1} \dim(L_m)$ by the sum theorem [6].

DEFINITION 6. Let A be a separable C*-algebra with a composition series $\{o\}= I_0 \subset I_1 \subset \ldots \subset I_{n+1} = A$ such that each of the subquotients I_{k+1}/I_k for $0 \le k \le n$ is of continuous trace and it satisfies either:

 $l^{o} \mid_{k+1}/l_{k} \text{ has only finite dimensional irreducible representations}$ and the corresponding field of elementary C*-algebras is locally trivial; or

 2° I_{k+1}/I_k has only infinite dimensional irreducible representations and the spectrum $(I_{k+1}/I_k)^{\circ}$ has finite dimension. Then we say that A satisfies condition A.

THEOREM 7. a) Let I be a separable C*-algebra of continuous trace such that the corresponding field of elementary C*-alegebras is locally trivial, $I=c_0\oplus I_k$ with I_k homogeneous of degree k. Then $k\in NU$ $\{0\}$

$$sr(1) = sup \{ s_{\infty} \} \cup \{ \{ (dim(1_k) - 1)/2k \}' + 1 | k \in \mathbb{N} \}$$

Here $s_{\infty}=1$ if dim $(1_{\infty}) \le 1$ and $s_{\infty}=2$ else.

b) Let A satisfy condition \mathcal{A} .

If $sr(l_{k+1}/l_k)=1$ for $0 \le k \le n$ and at least one of the index homomorphisms $\delta : K_1(l_{k+1}/l_k) \to K_0(l_k)$ for $l \le k \le n$ is not zero then sr(A)=2, else

$$sr(A) = \max_{0 \le k \le n} \left\{ sr(|_{k+1}/|_k) \right\}$$

Proof. a) follows from lemma 5 b) (for I_{∞} we use an identical device and [11] theorem 3.6).

b) follows by induction on n using lemma 2, lemma 3 and lemma 5.

THEOREM 8. Let A and B satisfy condition ${\mathcal A}$ then

$$sr(A \otimes B) \leq sr(A) + sr(B)$$

Proof.Let $\{0\} = |C|_1 \dots |C|_{n+1} = A$ and $0 = |C|_1 \dots |C|_{m+1} = B$ be composition series as in definition 4 then $A \otimes B$ has a composition series with quotients isomorphic to $(|C|_{k+1}/|C|_k) \otimes (|C|_{e+1}/|C|_e)$.

If $\operatorname{sr}(A \otimes B) \in \{1,2\}$ then (5.2) is obvious. Let $\operatorname{sr}(A \otimes B) \geqslant 3$ then $\operatorname{sr}(A \otimes B) = \operatorname{sr}((|_{k+1}/|_k) \otimes (|_{e+1}/|_e))$ for some k and e. It is obvious that $|_{k+1}/|_k$ and $|_{e+1}/|_e$ satisf $|_{e+1}/|_e$ of definition 4. Let $|_{k+1}/|_k = c$ direct sum of the ideals $|_{e+1}/|_e = c$ direct sum of the ideals $|_{e+1}/|_e = c$ and $|_{e+1}/|_e = c$ direct sum of the ideals $|_{e+1}/|_e = c$ and $|_{e+1}/|_e = c$ direct sum of the ideals $|_{e+1}/|_e = c$ and $|_{e+1}/|_e = c$ direct sum of the ideals $|_{e+1}/|_e = c$ and $|_{e+1}/|_e = c$ direct sum of the ideals $|_{e+1}/|_e = c$ direct sum of

REMARK. Theorem 8 answers question 7.3 of [11] in a particular case.

REFERENCES

- 1. J.Dixmier, "Les C^* -algèbres et leurs representations", Gauthier-Villars x^{ie} , 1964.
- 2. P.Green, "C*-algebres of transformation groups with smooth orbit space",
 Pacific J.Math.72(1977), 71-97.

- 3. R.H.Herman, L.N.Vaserstein, "The stable rank of C*-algebras", Inventiones Math. 1984.
- 4. E.Michael, "Continuous selections", 1, 11, Ann. of Math.63(1956), 361-382; 64(1956), 562-580.
- 5. P.Muhly, J.Renault, "c*-algebras of multivariable Wiener-Hopf operators", Trans.Amer.Math.Soc., 274(1982), 1-44.
- 6. J. Nagata, "Modern dimension theory", North Holland Publishing Company, 1965.
- 7. G.Nagy, "Stable rank of C*-algebras of Toeplitz operators on polydisks", in Operators in indefinite metric spaces, scattering theory and other topics, Birkhäuser-Verlag, 1986, pp.227-235.
- 8. V.Nistor, "Stable range for tensor products of extensions of K by C(X)", J.Operator Theory, 16(1986), 387-396.
- 9. G.K.Perdersen, "C*-algebras and their automorphisms groups", London Mathematical Society Monographs 14 (Academic Press, London, 1979).
- 10.M.Pimsner, S.Popa, D.Voiculescu, "Homogeneous C*-extensions of C(X) ⊗ K(H). Part I", J.Operator Theory 1(1979), 55-108.
 - 11.M.A.Rieffel, "Dimension and stable rank in the K-theory of C^* -algebras", Proc.London Math.Soc.(3), 46(1983), 301-333.
 - 12.M.A.Rieffel, "The cancellation theorem for projective modules over irrational rotation C^* -algebras", Proc.London Math.Soc.(3), 47(1983), 285-302.
 - 13.J.Rosenberg, "The C*-algebras of some real and p-adic solvable Lie groups", Pacific J.Math. 65(1976), 175-192.
 - 14.A.J.L.Shen, "The Cancellation property for modules over the group C*-aldebras of certain nilpotent Lle groups", preprint.
 - 15.A.J.L.Shen, "Classification of projective modules over the unitized group C^* -algebras of certain solvable Lie groups", preprint.