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THE TOPOLOGY OF SOME AFFINE HYPERSURFACES
by
Andrds NEMETHI and Alexandru ZAHARIA

51. Introduction. Statement of results.

Eetr £ Cn-—~e C be a polynomial map. Let us define the bifurcation
points Bf of f as those points of C around which f is not a € locally
trivial fibration. It is well knmown that the set of bifurcation points of
f is a finite subset of C ([4T,037,08 7,04 )) consisting of the set
of all critical values of f(denoted by 2_ f) and perhaps some other points.

A fiber f~1(c) is genmeric if c ¢ B; and special if c € B.. Let

-
= -1 = i) : =
96. Sp - f (0) —> S ,95(2) = 4f(z)lbe the Milnor map at infinity,

where S&f:{zznz](= R} with R sufficiently large.
We;consider the following questions:
(Q1) How can be determined a.) the bifurcation set Bf ?
b.) the topology of the generic fiber?
c.) the topology of the special fibers?
(Q2) When is the Milnor map at infinity the projection map of a smooth fiber
bundle? (in analogy to the local Milnor fibration [?1])
(Q3) What is the relation between |
a.) the generic fibér of £ and the fiber of this fiber bundle.
b.) the monodromy of f around the bifurcation points and the
monodromy of this fiber bundle.
The purpose of this paper is to answer these guestions in the case of
some speciél classes of polynomials.

We recall some definitions and notations:

y ,
Let £ = 2 a,Z be a polynomial (where VY = ('Vl,..., Yy ) and
Yeinh? ~ 2



o

of {QE V) suppf} C Rn+ where suppf = {'\)é Nn:ag # O}. The Newton boundary

I () of the pelymemial £ aft infipity is by definition the union of the
closed faces of the polyhedrn I (£) which do not contain the origin. We say

that f is nondegenerate on the face A if the equations 3 fa _ :ZZﬁt

Ze o

. s ¥
have no solution in (C*)" (uhere f,(2) = > a7 ). The polymenial £

vea
is called convenient if the intersection of suppf with each coordinate axe

v

is non-empty. We consider the following classes of polynomials:
vyzvﬁzif’e CE{], £(0) = 0 and f has a nondegenerate Newton principal
part at infinity, that is to say f is nondegenerate on every face
A of F(f)}.
LAf@::{f € Ccfz] | telWNW'  and £ convenient}.
These classes of polynomials were introduced by A. G. Kouchnirenko in
[_4 1 and he also apswer to (Q.1.b) in the case of N 1:4-, Theoreme V:}.
On the other hand, S. A. Broughton in [17] has answered to (Q.1.) in
the case of tame polynomials:
CT': {f 6.8[2] l there exist no sequence {zk} et wih }igﬁhkﬂ= 00

indt(z) = 0 § (unere 32 =( &£ ... ‘o 0

d e
e a7 3z,

In [ 8] A. Némethi has extended the class of tame polynomials to the

class of quasi-tame polynomials and answer to (Q1):

g% {j e cz] \ there exist no (£,07)- sequence }
where for any subset A of Eandite C{z] an (f)A) - sequence is a sequence

2 ) C A such that limfiz, {| =00 , 1imdf(z ) = 0 and
{ k}k : t‘?mu K n ‘—)aa3 K

{Ck}k :{fuk) = <Zk"§-f-<zk)>}k is convergent .

Therefore, there are two possible approaches in the study of polynomial

maps: the first is to use the Newton boundary, the second to consider beha-
viour of 2f(z) at infinity. In this paper we unify these two approaches

and we extend the results about the local Milnor fibration of hypersurface

=6,



singularities.

We introduce the following notations and classes of polynomials.

Let feC[z] and denote by suppf the convex closure of suppf. A face A

of suppf is called bad if there exists a hyperplane H with equation

= e e e
@ Xqte. ot =0 (xl,...,xn are the coordinates in R+) with:

N n
a.) there exist i and j such that af<<) and aj)»O
b.) H ) suppf = A\

c.) the affine subvariety of dimension = dim¢\ spaned by /\ contains
the origin. ‘
N(M) ={f€ clz] ’ fe W‘W‘, f has only isolated singularities on
gz f_l(O).and gaggf'without bad faces }
(/%Ta{fé(l[z] \ there exist no (f,M(f)) - sequence }
jDT ={f6C[z] \ if{zk} is a (f,M(£)) - sequence, then
msc-od
Here M(f) = {zeCn \there exist  \€ C such that df(z) = )\»’z'}
Tefesf e;vW€5“ (respectively f €5:P£TJ ) we say that £ is M - tame,
(semi-tame).

In trying to keep track of the different classes of polynomials it

may be helpful to look at the following diagram of
Inclusicns: — . =
ANCIUS1CAS: L/Vqég — C, — (;Lir‘ & UA4Z\/

N 0

: @
e = s
N :
NN

(the proof of the non-obvious ones will be given in the sequel)

By the following examples we prove that these classes are distinct (fﬁ?ﬂﬁfkég
excepiihg QT< VT ).
Examples

(r
1) I £ = xy + x5y2 X2, then te MUV, but ¢ ¢ PJ
and £ ¢ u\ﬂ/lfo.
2. If £ =xy  then fé{lv, fet Vﬂ‘/‘(), but £ isn't convenient.



-

2, then £ T , T is convenient, but f é\/\/’c/\/),

Mkt i = x2y + xy2 + x5y3 + x3y5 then f‘£C{I' but fgﬁﬂd

Sl e y2)2+ y

11

5 If ¢

We prove the following theorems:

i

Xy +><y4, then f & ‘\/\'/‘(/\‘/‘O (hence £ € I ) but ¢ ¢ VT

Theorem 1.
M) it £ e MT | then }
a.) B = 2: = {cl,...,org and f_l(oi) has only isolated singularities
(say at the points z. " for 3= 1,...,k,) for all c; € 5 £
D

b.) For any o e,Zi;f there exists a closed disc centered at Cy

4
and a deformation retract r : l(D )-—«—% £ (o ). In addition there exist

closediballs B. - such-thats £ £ (D l) = LEJ Bl:J X D

fibration and f : (f_l(DCi —{oi}), £ (DCi—goiS)(ﬁ L~5J Bij) -9‘Dci—lci} is

. w . .
is a C trivial

a COo locally trivial fibration of pairs of spaces. The fibers in the balls
are exactly the local Milnor fibers of the isolated singularities
(f—l(C-) z..) (with Milnor number /Lk(z

c.) The generic fiber f~ (o) has the homotopy type of a bouquet of /bb
spheres of dimension (n-1). The special (singular) fiber f~ (o ) (o E 2 )

has the homotopy type of a bouquet of /LL 2 M(z ) spheres of dimension

(n-1). The number can be calculated by

= clz]
/(A = //(z = dimg <9 f(z)>
€5). - f GfJ , then .
s = U {o}
bs) e & B, —{O} , then £71(c) has only isolated singularities
with proprieties as in (M.b).
Theorem 2. ‘
@) It et , and R is sufficiently large, then the Milnor map

at infinity gﬁis the projection map of a smooth fiber bundle.
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M)~ It G;V¢@f7#, then in addition we have the following resultsc
az) SR has a natural spinnable structure (open book decomposition).
In particular the closure of each fiber ¢~l((]) in Sy is a smooth(2n-2)dimen-
sional manifold with boundary with interior ¢—l(69) and boundary
K = £71(0) N . .
b.) The space K is (n-3)-connected
c.) Each fiber has the homotopy
typé of a bouquet of /z' spheres, where /Z = degree of the mapping

2f(z) ; il
z P“%“EEYESR from SR to the unit sphere of C'.

Theorem 3.
) If f e MT and R is sufficiently large, then
a.) The generic fiber £71(c) is diffeomorphic with the fiber ¢f1(€9)

of the fiber bundle. In particular M= /47 .

1

b.) The fiber bundles ¢ : Sp - £7(0) —> ' and £ : £7(sh) —> !

(Sir :{;c eC }ICI = r} ) with r sufficiently large are equivalent bundles .
(8). Let £&PT  and D be a disc cen%efed at 0 € C. Then for R
sufficiently large ¢>: SR - f—l(D) =2 S1 is a fiberbundle equivalent
with the fiber bundle f : f*l(S%)-—<> Si (with sufficiently large).
In partioular ¢ (8) - £7X(D) is diffeomorphic with the generic fiber £-1(c).
Remark.
In general the generic fiber is not diffeomorphic with (¢"1(9 ) im
the case of the semitame polynomials. For example, if we take f = x2y e
them e ; Bf ={U}, the generic fiber is diffeomorphic with C* and
?&%9) is diffeomorphic with C -$two points}.
What can we say about the general case or about the polynomials with
nondegenerate Newton principal part at infinity? The answer to our questions
is far from being simple, but we can answer partially-4e (G 1.9

Let Sf = {c = ] there exist a sequence {zg}kéiM(f) such that

in3£(z) = 0 and Lin (£(z) - 7,31z ))) = ¢ §

200



Theorem 4.  let £e C[z]| . Then B, < S,.
Remark.
In [81 is proved that BfC«—/\f where ‘Af = gLC € C\ there exist

a sequence {zk“g € ¢" such that lim 9 £(z ) = 0 and 1im(£(z, )~ <zk,:§—£(zk)> ):C}

k D00
It is clear that Sf C_/\f and in general Sg 7 [\,f. If we take
f = xsz2 + ><5y3 + ><1ly322 + X, .than —54 %éﬂf - Sf.

It fe t/\f“UUO, then S, can be specifiedin the following way:
Let B = Stthe set of bad faces of suppf} . It A< B, thenwe define
the set:
— _ 0 0 : :
Z_A—{f/_\(z )} Z A0 fopeadl 1
if isclear thot 5 e 7 ., hepee. 7 isua finite sets
A £, ya
Theorem 5. Suppose that £ e AW . Then
B B doio ) 5,

AcR
: §>£ Proofs.

i

= n-end }}fA(zo) = 0}

An important tool in the {)roofs is the Curve Selection Lemma :

Let £1,...,8 5 Gp5---50p> hl""’hp e RE(I,...,XH] be polynomial
maps with real coefficients. Let U:{x e R": £,(x)=0,1 = l,..,k}and
V =3x & Rn:gi(x)> 0 i:l,...,l}. Suppose that there exists a sequence
& UV  Ehat 11 =00 g Limslh =EE =
{Xk . NV suc a -;(E“Xk“ an kﬂn" J(><‘2 (3 p)
Then there exists a real analytic curve p:(0,€) ——> UnV with
lim[p(t)|| =c0 and 1lim h.(p(£)) =0 (3=1,...,p) and of the form
tyo e J

44
plt) = atd + a,t i AL,

Proof. We consider R? in natural way in the projective space P Rn,
and we use the Lemma 3.1 of ['r’j in an affine neighbourhood of an accumu-
lation point x of the sequence {xk}k :

A1 5" :

Lemma 1. Let £ e ¥9°  (respectively f eu/%f or f € C[z]) and
we take c € C —{0}. (respectively c& C, or c € C - Sf), Then for a small

closed disc DC the set f_l(DC) N M(f) is bounded.
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Proof. Let fe®T , c ec -{0} and we choose D, such that D (\§OE g.

We assume that the assertion is not true. By Curve Selection Lemma we
find p(t) € £71(0,) A M(E) such that £(p(t)) = b + b t! +... with b £ 0.
The contradicti_on is obtained exactly as in proof of LemmaZ, the case F= 0.

It feM-ﬁT or f € C\:z._\ we act similarly.

Proof of Theorem 4.

Let ¢ ¢ESf. We take a small closed disc DC centered at ¢ and R suf-
: sveh =
ficiently largév%hat D N S¢ = W, 1(0') meets transversally Sp for all

plic U Sont 1(D )N M(f)ﬁ{z Wz \z,R = . By Lemma 1 the vectors Z

and 2f(z) are C - linearly independent vectors for all e l(DC)(ﬁ'{z:uzuz

therefore there exists a smooth vector field vl.such that <yl,z>y =0
and <yl,§E(z)> = 1. This vector field can be extended by Ehresmann's Fib-
ration Theorem [2:] on a smooth vectof field viiom f—l(DC) such that

<&, 5}(25> = fopsall {z: “2“4:R}. If w is a vector field on D, then
’V(z) = w(f(z)).v(z) is tangent to Suz“'if izt » R and dfév(z) =Wkt
The integral curves of the vector fieldfv may be used to construct a

trivialization of f over DC.

Proof of Theorem 1.

(M.a) and (S.a) is an immediate conseguence of Theoremé.
The proof of (M.b,c) and (S.b) is based on Lemma 1 and is almost simi-
lar with the proofs of [j_] or I:S > § 5]. The difference consist in the

construction of the vector field in a neighbourhood of the infinity
heve
(andwe use Lemma 1).

Let £ ét/%;T > C4 (S Zf. We take sufficiently small closed balls

Bij centered at Zij>a small disc DC centered at Cy and sufficiently large
i
R such that in Bij we can apply the Milnor theory of isolated singularities,
£(c') meets transversally SR and %‘Sij Gl K ) focali-e! é:D : and
‘ s
f—l(DC ) 0 M(E) ﬂ~{z:ﬁzﬂ > R} = 1. We construct the smooth vector fields on
i

% C. )() {7 izl > Rr as in the proof of Theorem 4, on

7

R}



fo (D ) ﬂ%z lz\ £ R and z éf B. 75 by Ehresmann's Fibration Theorem, and
on f l(D ~— SLC &) N B, . by the local proprieties of isolated singularities.

For the other details see [i , Theoreml, Thboremﬂ. :
The relation z G i, is proved in :
. = iy C =
i 1)
14 proposition 1.14 ].

Proof of Thegrem 5.

\:e

Let £ e W/ .Let p(t) € M(£) an analytic curve with 1imaf(p(t)):0

and c(t) = f(p(t)) —<p(t) ; 9f(p(t))> convergent. If lim p(t) = zo_e g2

+t20

then £(z°) = 0, hence c(0) & /___f Suppose that Jclim fp(t)lf =co . We may
70

assume that p(t) = (zgtaﬂ...,...,zEtaM...,0,...,0)(20%0 ...,ZO#O) and a;<0.
Since p(t) € M(E) we have '§—§ (p()) = A (EMp. (1) and A(B)=0 iff

f(p(t)) = C(t) = constant & Zf' If }\ (t) %0 then /\(t) = >\ ‘tO(X)
+ higher ( .>\o # 0) and suppf 0O RS £ g (Rk = {x e R" \xk+l:...=xn=0} T

Consider the continuous function la(x) = Z:ajxj on suppf (’\RK and let A
I

be the unique face of suppf () RK where 1a(><) takes the minimal value, say d.

Then £(p(t)) = fA(zO)td + higher and ,a—f\(p(t)) s (299" 3i+higher
dzy dz;
If d Y 0, thene(t) = c £%..., hence 1imc(t) = 0.
0 +-%0

Ifd = 0 and ch € 0Sforegh-it =1 .o e, Shen f(zl,...,zk,O,...O)

%ﬁ—l(p(t))’i 0. Since pl(t)‘%; 0 we obtain

not depend on the 215 hence

A (t)=0, hence C(t>62£ -
Suppose that d =0, there exist j e {l,...,k} with aj) 0 and A is

not a bad face, or d ¢ 0. Then A is a face of ,\: (E). Singe-f i --non-

degenerate on the face /A , there exists 1 € {l,...,k} such that ’%%3_(2% #0
1

(evidently d-a, »0). Let T ={i|a; =a}. Ifiel, thnd-a; = o(ay,

otherwise d - a; < o(N) + a. , hence for i ¢ il gf"—(zo) = 0. By homogeneity

l )

a : 7 o I fa (%) = det (22 T 9<.0, then by the convergence of
il T 132 A



' e
c(t):fcx(zo) = :gi:: - S 2(49). Hence in both cases we obtain the absurd
e °21
equality -
B ;Z~~ 2 0= >\ ZE::‘ZO‘Z
iel i i€l
Tfisg = 0 and ®/\ Vi el fase ihen %gﬁ(zo) Ofor gl i1, ..k
1

(otherwise we obtain a contradiction as above). Hence c(t) = fA.(zO) ot %

Thusclim et = {f (zo)l and Z)fA (2% = O}'.
. t-0

Proof of Inclusions

The proof of inclusion (/V?A/'CZ:PSW is contained in the proof of
Theorem 5.(If N\(t) = 0, since d1m81ng £ (e(t)) 1 = eb)i=20).

The proof of inclusion NS e

Let p(t) € C" an analytic curve with gpf@(t)) = 0 and
%igﬂp(t)ﬂ =o  (we preserve the notations of the above proof). By conveni-
encecondition there exist m, € N* rsuch that (O,...,mi,...,U) € suppf,
hence d £ mia; Eorsall]l 1=l . 0. lhereforesd <0 [ ai; 0, then d—ai< 0,

ift a0, then d<ma-¢a. . Sipce 1im Qf“(zo)td 3i+...) =0 we obtain
i e £ 92

that “A(zo) =0l fex all 1= 1, ... ,n. in contradiction with the neadegenerate
=
condition on A.

The other incusions are trivial.

Proof of Theorem 2

(S). The model of the proof is [;z’ é 41 . We begin with some lemmas:
Lemma 2. Let f €fT (respectively f e T ) and p:(0,6 ) —> C"
analytic curve (as in Curve Selection Lemma) such that iimﬂp(t)” = ;
the number f(p(t)) is non-zero and the vector grad 1ogf(p(;)) is a complex
multiple A (t)-p(t). Then the argument of the complex number A(t) tends to

zero or ;U (respectively to zero) as t — 0.



=0

ol
Proof: Let £ € $T . Consider p(t) = af + a L., (&< 0, af0)
£(p(t)) = bt" + bltp+l+... (b # 0)
P ¥+l
grads E(pitt)) et ¢yt e o# 0)

since graf £(p(t)) = A (t)-p(t) £(p(t)), we have p(t) € M(f) and

¥ - - &
ct + Crédl Huee = A (D o R
: = Af-A-p 5 = - = i |
Hence A (t) = >‘ot§ B .. andie - >\}EL From the identity —a%—=(a%3gra\f>
: -1 o 2 - =T
we obtain ‘5bt§ e M&Vﬂl*kébt . e (3 0

o+ 21, hence lim (£(p(t))- {p(t), E;}(p(t))>» = b in contradiction
with the definitior&%? £t &¥J . Therefore p%— 0, hence [5 :o('\\a\\r)-\o, which
proves thét A = is a real number. In the case of £ é(ﬂij': /%(’0, hence
X q is a positive real number.

An immediate consequence is the

Lemma 3. Let fe¥J (respectivély féhﬂﬁf}. Then there exists a
sufficiently large Rocs(O,c@ ) so that for all z é.Cn—f_l(O) with “Z\U;RO
the two vectors z and grad tog f(Zz) are either € - linearly independent or
else grad log £(z) = \»z where A\ # 0 and |ImM<|Re Al (respectively

T x
734))

Proof. We use the Curve Selection Lemma and Lemma 2.

arg \ € ¢

(See also the proof of Lemma 4.3 from Lemma 4.4. [# 1)

Lemma 4. Let fe T  and RO as in Lemma 3. Then for each R}RO
there exists a smooth tangential vector field v(z) on Sg - f_l(U) so that
for each z e Sp - f_l(O) ; . the complex inner
product<&(z), i grad log f(i)> is non-zero and has argument less then V/4 in
absolute value.

Proof. The proof is similar as the proof of Lemma 4.6 [;Z], with a
minor modification.

We construct the vector field locally. If the vectors z and

grad log f(z) are C - linearly independent, then we find v(z) such that



=

(y(z),z> = 0 and {v(z), i grad log Rz - 1. If gsad log fitz) =)z, we
take = G iz With G'Gijl,—i% such that Re 4?12, i grad log f(z)>> > 0.
Using a partition of unity we obtain the desired vector field.
If we replace Lemma 4.4, Lemma 4.3 and Lemma 4.6 E?} by Lemma 2, Lem-
ma 3 and Lemma &, we obtain the proof of Theorem 2 (5), as in X:? ,% 4}.
(M). Let £ ¢ MJT. Replaceing 5 B 21 by Sp all the arguments of
§5; éé, é'7 E?] remain valid. (See the proof of Theorems SEE S 6.,
7.2, Appendix B).

Proof of Theorem 3.

(M) The proof is similar with Theorem 5.11.[?iL

(S) We use a variant of Lemmas2 and 5

Lemma 5. Let e and D a closed disc centered at 0. If R is
sufficiently large, then there exist a closed disc D' centered at O, D'g; 0
such that if grad log f(z) = Nz, then either f(z)é? D or f(z)& D' and in the
second case arg >\E£G2% ,?£).

Proof. Let p(t)-yoe  such that grad log £(p(£)) = A(t) p(t). If we
preserve the notations of Lemma 2, thenesh £ 0. If (>0, then

f(p(t)) —> 0, otheﬁwwise f(p(t))=>oo and )() _cdal

el
e e e PT ,the .functions a@ﬁﬁag(z> = log\f(z)\ used by Milnor
in éS has two typesof critical points. If we consider the restriction

on
of a on Sp - f_l(D} respectivelly a;/%g - f”lCD), then the arguments
of § 5 remain valid.

§3. Stability of Milnor fiberings at infinity

The following theorem is the global analogous of the local case
proved by Oka [ 9] ,,T_«oj)Ui\].

Theorem 6. Lot £ € YWE . Trhen the Milnor fibration at infinity is deter-
mined by the Newton boundary ff(f). In particular is independent of a particular
choice of the coefficients of £(z).

In fact, we prove the following result:
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Let £ 6104/%3 and a closed disc,D ,centered at the origin such that
;Z% < int D. Then the diffeomorphic type of the generic fiber of f and
the monodromy action of the fiber boundle f:f_l('bf)) —>JD depend only
on the Newton boundary of f.

Proof of =~ . Theorem&. -

Suppose that we have two polynomials f,g éc/vag ~ such that
fr(f) = Eg(g) = f’ . Because the non-degenerate condition of the Newton
principal part is an open condition ( [ 4—, Theoreme II, iii])} we can
take a piecewise analytic family F(z,t) such that F(z,0) = £(z), F(z,1) = g(2)
aid Flz b)) = Ft(Z) as a function of z is a convenient polynomial with
non-degenerate Newton principal part at infinity and Ft<0) = 0 for each t.
We denote by Eit =‘{the set of critical valuesof F, }. Then F, is a
P locally trivial fibration over the complement of Zfito_
Lemma &. There existsa compact disc D bentered at the origiﬁ such that
7, cint D for each t.
Proof. Assume the contrary. Then using the Curve Selection Lemma
we can find a real analytic curve (p(s), t(s)) such that

gFt(S)(p(S>) = 0, and 15];“3}?13(5)“8) = 6@ . Henhee g_i_g]“p(s)“ =00 . We may

assume, that p(s) = (z?-saﬂ...,ﬁéa*+...,O,D,...O)(al<0 j2) Ao 20 £ 0)
t(s) = t% + higher. Since f is convenient r(\Rk #¢ and we consider
the continuous function 1,0 on I ARS defined by la(X) = AgXpte. ot X,
(where RX = ix e Rn:xk+l =S 0}). Let A be the unique face of

V'(\Rk where 1a(x) takes the minimal value d. Then ;%;—(p(s), fis)) =
37

= 9 -
= 3%;%{20,t0)5d aj + higher. Therefore :%gé~(zo,t0) =0 forallage 1, ...k
] ]

which is in contradiction with the non-degeneracy assumption for Ft°(2)‘
(Note that F ,(z,t) is a function of Zyseees2Zy and t)
Lemma #. Let D a compact disc as in Lemma &. Then for R sufficiently
large Fil(c) meets transversally the sphere SR for each t and c € D.
Proof. If the assertion is not true, then by Curve Selection Lemma

there exists an analytic curve (p(s), t(s)) such that %igﬂp(s)h = 00,
-,?



i

Ft(s)(P(s)) & D for each s and

’aFt(S)(p(s)) = Als). ple), wiere Nis) €D st n(s)- >\Oso(>\>+“.()\0%0)

V
: N~ %
If we preseve the notations of lemma &, then

L ey, 1)y = e ogbydray, 5 menWey,
'azj a»zj ; 0 J
lfet I = {i \ d—ai zanle ) oy ai}. Then i#EI iff -%gﬁzo,to) = 0.

o~ )
By conveniente assumption d < 0, hence A&l (f). Therefore by non-degeneracy
assumption for Fto(z) we get that I # §. On the other hand F(p(s), p(s)) =
= Fa (zo,to)sd + higher € D, hence FA(ZO,tO) = 0. By homogeneity
) > o 2Ea(,0 19) = duF (2,19 - 0.
iel il

But d # o( A\ ) because d - a; & a( \) + a; and a; < 0. Thus we obtain the
absurd equality - S

@ oFa, 0,0 0.2

0 =7 z; :—f;{z o) - >\0- E \z;\

<
iel iel

Let Ft(z) an analytic family, where te J = [U,l] . We defire
n : ;
E ={(Z,t)V=C ] Fi(z) € 3D, lzli< R}, ﬁf: E —320 by ﬂf(z,t) = Ft(z)
and I B =270 by i@ t) =<t Then ky is a fiber boundle and 7T is
non-degenerate on each fiber of Lf’ . Thus using a fiber - preserving vector

field for 7T we have the following commutative diagram

Ho

3 i
B 0E, > BN o

F
%DL

where ﬁ‘ is a diffeomorphism and BR ={z iz W4 R} . By Theorem 3

there is a fiber-preverving diffeomorphism ‘*{/i Ci=0.1)
-1 : ;"[1' . -1

.v %

9D =

This completes the proof.
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