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REMARKS ON DUALITY FOR COMPLEX SPACES

by

Andrei BARAN

t

To- B, B2 one has proved a duality theorem with "two
argﬁments”, of type hyperext-hyperext, for complexes with coherent
cohomology, which extends the usual duality for cohomology of Ramis
and Ruget [R—R}. In theAcase of a cémplex manifold and two coherent

"sheaves on it, the result is:

THEOREM. Let X be an n-dimensional manifold with countable
topologv and € ,# €Coh(X). Then Exﬁq(x;% &) has a ngtural topo~
logy of type QFS,'Extgnq(X;G ,f<$£dx) has a natural topolbgi of
type QDFS and there exists a natural\paifing (Yoneda followed by
the trace morphisg) which induces a topological duality between

the associated separated vector spaces. Moreover, Extd(x; ¢ , &)

D=+

> (X;@',%iéﬁédx) ig. A similar statement

s separated iff Ext
holds for the pair (Extg, Extn_q).

For the case of an algebraic manifold, the result was point-
ed out in [D;EEG That paper and_[BBj were at the origin of our.
work on duality for hyperext: Golovin found,‘indépendently, thé
result of the theorem under the supplementary condition that the
Sk ;" admit, globally on X, finite length resolutions
with locally free 5heaves of finite rank ([923). We'stress on the.

factVin general one does not have such a property and this makes



- the interest of the theorem in analytic geometry.
- The topologies mentioned in the theorem are the natural

topologies introduced in {BZ}, proposition 4.4, and represent
extensions of the Cech topologies on the cohomology of coherent
sheaves. £

The theorem is most interesting when the invariants are
already separated and. the pairing gives a genuiné duality. This
is always the case 1£.- X is Holomorphicaliy convex (see}:Bjj).
Ef. X is compact, the invariants are finite dimensional and one

gets an algebraic duality.

COROLLARY. Let X be an n-dimensional, holomorphically con-

vex manifold with countable topology and ¢ + & €Coh(X). Then

ExtI(X;% ,F) has a natural topology of tyve FS, Exi?q(Xr?}-%aggajx)"

has a natural topology of type DFS and there exists a natutral
pairing which induces a topological duality between them. A similar

] 2 Eel
statement holds for the pair (Extg, ExE . ).

¢, €coh(X). Then there exists a natural pairing which induces
an algebraic duality between the finite dimensional vector spaces

Ext?(X;% ,5) and Ext"I(x; G, ¢ RO, .

X
In section 3 of the paper, several other consequences of
the theorem-shall be mentioned.
The theorem given above is a particular case of theorem 553
in |B2]. However, the proof of this latter theorem uses duality

53

for the hypercohomology of complexes of sheaves even when one

=

starts with two coherent sheaves. This paper contains a proof o
the theorem, which avoids the use of hypercohomology and the

derived category. The idea of this proof is the systematic use



of ‘semisimplicial systems of,shea&és {(s.5.8.) and of free s.s.s.
(see [-x], [v], [¥]). "

In the paper, we also show that-if X is -Gorenstein {in
particular'a locally éomplete interséction), the ‘statement of thé

Lheoren - de-still true “(in;this cace &3, d5; of couwrse,; the

X
"duality sheaf, and one uses essentiallv the fact ﬁhat it is inver-
tible). '

The same techanigue gives another pfoof of the .general result

o in [Bt} or<EBZ1 which does not‘usé the Ramié—Ruget ddality Lar
complexes in D_,, (X). We also remark that, in the context of KR—R],
-the above approach gives another proof for‘thg absoluﬁe duality ;
theorems, as well. .

\I would like to thank C. Banica for his coenstant help in

preparing this paper.

1. THE NATURAL TOPOLOGY

We shali recall briefly the facts on semi-simplicial systems
of sheaves and on the natural topologies that we shall need. For

‘more.details see [Bf] o {521.

1.1. DEFRINITIONS. Let (X;ﬁk) be a finite dimensional complex

space with countable topology. Let W =(U,) be a-leeally Finite

: i'iel
covering of ‘X with Stein open sets and let " be the nerve of U

(one considers only alternated simplexes). A semi=simplicial

system of sheaves (s.s.s.) relative to U consists of a family of

{5

sheaves (,ég)déﬁ , Where »%iegMod(U# ))and a,. family of connecting

morphisms ( §.. ) ) Sea s \%“iU%~ﬂ~%¢%& ; sudhothat for
- 1“ 2) 1

Kezp

every & , P, -=id-and for scpe Py ool Fuu )= P



A morphism between tWo such sas(s;lrelative to W, ¥ #A —4
consists of a family of morphisms e Ve o o S 2, —> A
which commute with the connecting morphisms. Denote- by Mdd(@i)
the categéry of s.s.é. relative to 4L .

In a similar way, one defines s.s.s. relative to a covering -
Tof X with closed sets, replacing sheaves and morphisms‘by germs
of sheaves and germs of morphisms on the ciosed'sets concerned;

If.U<X is an open set then every¢% € Mod (W) induces, in
an obvious wav, a S.S.s. relativelto ﬁier; denotedlby Lﬁ!U,
For evéry'u%, b eMod (1), the presheaf U— Hom(A (U, & |U) is

ractually a sheaf that we denote by FHewi (4, Q),

Nl EXAMPLES. a) Every & & 1od (X) defines the s.s.s.

@lﬂ.=(93fo ) » With connecting morphisms the identities.

KE W'
1E Ho confusion ig likely, we sball write somegtimes simply F
for T (™M

) Every 9 €Mod (U, ), with xe S, defines the s.s.s.

o~ e S ; o ,
%9 € Mod (U ) with Yp=9|Up 1f p2X and Y =0 otherwise.

1.3. THE SHEAF ASSOCIATED TO A s.s.s. For every Ue X open set

KX (U) *

2 A
ot &2Mod (U) we dencte by -k the sheaf assodiated to the presheaf

let  «(U)ew’ be the largest simplex such that‘UC:U If

AN\
Uk~anﬁ (U). A is the sheaf associated to the gos s, A and

xX(U) .
was introduced by Belkilani [B].
If ¥ €Mod(X) and e Mod{aLd ; it -is - easyv to verify that one

has the isomorphisms:

: S =N
"-j‘ B ( S ! Q/L ’

S e N
Hom( oz , & J—>Hom( 4, F)



AN

Hov, (t; F)—sadlom (B, ).

REMARK 1. Let &° be a complex of anmoduleot

. 2 3 i® )

isomorphism I ]U,of compieyab of ObjCCtb
s i /z\a o

a quasiisomorphism P o o © ol

-~

1.4. FREE s.s.s. A free s.s.s, is a direct sum &

U, s

Every quasi-

in Mod (4 ) induces

é

where. each @; das Cﬂ -free of finite rank  {se& [F—Kj

/

e f"::’
= G%'”) Q‘d

New

or QFQ).

REWARK 2. The sheaf associated to the free SuSe s, o i85

X

7

N\
J“ (E@ da? where é;; is the extension with O to X of

o b’

§Q @Iﬁod(U‘,). IfH €Mod (4L ) then one verifies easgily that

Hom ( T )" ' | o T ’ya"‘ﬂ’h ( "?oL r CTD(.{) ).

e

3 ) i
Suppose now that U (U)er

ﬁz=(ﬁi)iél is a govering of X with Stein compact sets.

has in addition the property that

LETIA 3. Every ¢ ¢ Coh(X) admits a resolution with free

SiaSega. ARaModi{ L), ﬂ&mA~~mmﬁ»%IQ&'waﬁ%G
Proof
(\\F)"' /5(% 07 fﬂ (h /AI 71' ,

As in [F-X] }evely s,o.s"in Yod (%) with coherent components

prew—y

ig: the guotient Gf & frece s.s5.8. From Hed (W V. Then Bre cdn -

Wl ia

strict inductively d - resolution -for Tl

(e ,
L bl

data from the compact sets ﬁ“ te.the open: gets U,

g

of ZIW with free s.s.is.  Fromn Mod ().

Woiwith free s isiis,

1¢

in Mod (%),

K i €Y, w30, which yields, simply by restricting all the

a resolution

REMARK 4. Léemma 3 is still true if 9L is a covering of X with

Stein open sets, dominated by a covering of X with

sets.

Stein compact



REMARK 5. Suppose % &Coh(XVy has finite tor-dimension (Eabidy

&7

(for instance ¢ is locally free of finite rank or X is a complex
manifold and ¢ is any coherent sheaf). Then for U sufficiently’
small, the free resolution in lemma 3 can be chosen to have finite

length (see [B2], proposition 3.3).

2

1.5. Free resolutions with s.s.s. can be used to compiite
Equ(x;%),ﬁf)'if ¢ ,F €Coh(X). To this end the following

7

"projectivity" property of free s.s.s. is essential:

If @ :4—=® is an epimorphism in JMod (W) and if ker ¥ has
components acyclic on Stein open sets (i.e. with trivial'cohomolo~
gy.. on.Stein open: s€ts) , then for every free s.s.s. o EModIL ) the o

morphism Hom (&, vt )——=Hom(Z , ) induced bv ¥ is surjective.

-

LEMMA 6. Let XZ° be a complex of free s.s.s. in Mod (U), boun-.
ded above (e.g. the resolution of a coberent” G;—module) and &
an-exact complex. ¢of s.s.8. of Mod(@é}, having components with

oY )

trivial cohomology on Stein open 'sets. Then Hom ° (&7, 2') is exact.

Proof

Using an st sequence argument, one proves that thé Shéa?es‘
of cocycles of & have also trivial cohomology on Stein open sétsf
Now, acdording toithe "projeectivity” property.of free s5.5.8., 1t
follows that any morphism of given-degree~from‘&" tot % is homo-
topic to O (the proof goes exactly as if & would have projective

components) . -

fid o & e , P o . : ) 2
Let % €Coh (X), ¥ be an x)X—module acyclic on Stein open sets,
; co® ‘_ ' ? = i " o
&L —>% be a resolution of & with free s.s.s. in Mod (W) and

& ~—=-9" a resolution of @ with injective sheaves. Then all the



s 7 e
morphisms in the diagram below are duasiisomorovhisms:

O oy ¢

© 53 o ¢ * 1-’ . < //" # of 14, @y & L]
Hom (&7, & )————>Hom (@f,.7;wwwwHom(¢4,J )@~mmeom(2i,? )

(let ©° be the lapping cone of the morphism & ——=7°, according

to lemma 6, Hom® (X", ¢") is exactand consequently «f is a quasi-
;isomorphisﬁ; from section 1.3 it follows_that ﬁ is an isomorphism;
" remark 1 andrthe ack “that J'is an injective-resolution imply
sthat ¥ is & quasiisomorphism_), Since the cohomoloﬁy groups of

o

Hom ® ( *¢ ,?') are, by definition, Extq(x;'ﬁ, +J), it follows that

one can also compute these groups from the complex Hom® (x°, F)
IEC G Coki(RY, el sl b & resolution offﬁ'w;th free
S.s8.8. in Mod (% ). One.can prove easily, usiné lemma 6, that the
cohomology groups of Hom°ﬁ£f,,$3also compute. Ext¥(x; €, F).
Replacing Hom® with JEWH°_in the. diagram above, one obtains;
‘much ih thé'same way, that the‘cohomology sheaves of the coﬁplex
S T2, T }odre ‘E’oc.?;q( AR -
One can prove (see [ﬁZ], lemma 2.11) that theAcbmponeﬁts of

"J 20

Hom*(L*, &) are M(X,«} and ,?;(X,«)~acyclic; Consequently, the

Ag D s

cohomology groups of YﬂC(X, J&wu°(£°,ﬁ')) are Extg(x;g S

1.6. NATURAL TOPOLOCY. TFf w},{ﬁs;WOd(@i) have coherent com-

ponents then Hom (4 ,% ) carries a natural topology of type FS

(Fréchet-Schwarz) (it is a closed subspace of ‘r ] ?w(U&,gmegi&fh;}}
Xe g
. el i ]
In particular, if ¢,F €cCoh(X), keeping the notations of the

previous section, Hom® (%, &) is a complex of FS spaces. Hence

{

one’'gets a topology of type NOFS. on Extq(X;:?,5¥) called the natu-
ral topelogy {see {ﬁi}, broposition 4.4). This topology is inde~
pendent of the covering Y and the resolution " » it is functo-

rial in? and &, and is compatible with the restriction morphisms.

7w



Let 74 be a locally finite covering of X with Stein compact
sets. If ¥ , (5 €Mod (K ). have coherent components, then f”c(x,j&wthf,%)

carries  aipnatural topology ©of type-DFS dstrong dual of-a FH space)

(it.is a‘elosed ‘subspace in —

NE

- ey e e A &l ¥ -~ ) 5 . A ™
sl =gl s a gesolution of ¢ with free S.9.8. in Mod (/<)

then one proves as in section 1.5 that the éohomology groups of

PC(X;ELhU(ﬁ”,GI)) are Extg(X;%fJ‘f). Since T;(X,ﬁ%wﬁ(ﬁ”,§°)) is
a complex of DFS spaces one gets a topology of type QDFS on

Extg(x;f-,@:),called the natural topology. It is independent of

i om0 " v IveY P, " o 4 )
the covering W .and the resolution -, it -is functerial in "z  and
&, and is compatible with the  extension morphisms. Moreover,

one can prove, by squeezing U between two locally finite coverings

¢ -

of X with Stein compact sets that Y;(X,;&vwwéf,’r)) also induces

on Extg(X;% , ¥ ) the natural topology'(see EBZ}, remark_4.3).

2. PROCF OF . THE: THEOREM

First we must describe the pairing. Since we do not use
derived cateqroy, the description will be rather awkward and a
bit long.

Lek talm])

et be: & locally finite covering of X with rela-
tively compact Stein ppell. sets,. such that £ , F admit reselutions

RS, s i

) ' o ey . o
of finite length,«< gl ===\  with free s.s.s. -in

v - % e e . < < ) r
Mod(U). (see remark 1.5). Let o be a resclution of oJX
with injective sheaves.

The composition of morphisms yields a pairing:
A A S
)& © 1 e/ e W « ,\'A ; A . M 4 /' 9 ® - ",i"; A \
AR LQ(\ > : { : /‘) 'l’x‘ ( ¢ A ( L b} &5 Bee X /j ot "", ¢ A \'&” )“‘- La%d !—'&,,‘-"/}



.Taking cohomology, respectively cohomology with compact supports,

of degrees q and n-g, in the tweo factors of the left hénd side

term, ohe.gets a pailring, called the!¥oneda pairing {see gB-Sﬁ

chapter 7, .81):

>
GG s oy e 0 (2 o
. extd(x; €, 5 )xth LT, B Oy Et X e LB, )

Consider now the diagram:

» 3 /\;0 A ‘-/T‘u (A
Sl («‘L{: ;(k)x) Gﬁl\); g /.'j('[.‘f\n\ (:Xf ’ L & {“‘”\9 X) .

i W
® \':\' [ » (": 8 \A (f\ @ ,,1)

Hem” . XL ., \)X,x) & ‘,fjx ~——=Hom" (Y% LB X,x)

%EX,&J X).and

(—'}'.

&0 13 ) it follows that the
; X, X

vertical morphisms above are quasiisomorphisms. Morecover, since
. @ . . . ;e . - : : ’ . v 3 :
ol -has finite length or since Loy is locally free, one verifies
4 ‘
easily that the lower morphism in the diagram is an isomorphism.

Hence the wupper morphisms is ayquasi}isomorphism.

One has the following sequence of morohiéms:

ey e | At
o (L X Lvuga)*rW'-wﬂ Hon \, Ly &L
e
~ L, & -~ © . -\ ;& ® b -y &
: P o ¥ b ) e g .
Rl I (,'/\, y 9 C,\' a8 = (/"

Since the first morphism is a quasiisomorhism, taking cohomology

with compact supports we obtain a natural morphism:
‘I'i g .';f N A X o, 1711 A
EBxt (X3 T, & QL)) —S—=H (X,

The pairing in the theorem is obtained by composing the

Yoneda pairing, the morphism ¢ and the trace morphism



V:HC(X,AGX)4WWW%@'(see [R-R]; here, since X is a manifold, Tode
L Y 3
induced by integration).

The pairihq for the couple (Extg, Extnﬁq) is defined in the

same way.

2tep. 1) There exists a topology of type QDFS on

s

; 19 T 7
: EXtC 4 (G ’ < (X (JX) gl

#

A not necessarily the natural ene) , sueh that -

the statement of the theorem is true when on Extq(Xzii,@f) one

considers the natural topoloqy.

¢

Let (Cﬁ}h/ew be the family of free sheaves that defines

e

- g i S . i BN ol oo (&
the. free Sy5.5. 2" in . the resolution & AR

BExt 4 (Xe b

the FS complex K'=Hom * (&°,F ) having components

e Wt &

k=ton? (2", )=Hom (¢™ ¢, T )= | iff*ujﬂ » Hown @29, F)).

Using the duality theorem for Stein manifolds, one obtains,

by . dualizing X*, the complex of DFS: spaces L' with

&

L== J’E Ext (Uy 7 Howm (@7, 9 Jrbdyg)

SN T et 8 LEE ey
o {’:g':_" EXtc(DL< By e éux)
e

(L9 is in duality with K 9).

To prove step 1 it is enough to show that for every g the
cohomology of L° in degree q is Ext™ ¥(x, T, %&(EAUX). P i

end, consider the double complex

£ o o g 1
NE! ﬂQ;TC(UA e (ﬁ',@?:gyf Y)=
&4 ;

3 ] T v’.{“' = ) { 3 - “:"’\C "‘,i = r
:6';;3 i c (UL’\ FARUA 4P ( AL th-T\ (;gﬁw;, g ) 7 L ) )

o o, 4]



- with differentials in the r- derbtJOH deduced from those of Ef and
differentials in the g-direction defined as those in il
The cohomoloqy of N3t along the r-direction s

0 e : : for: r#n

b

1 n o« €T d e TS "
%%,Extc(U% ,Q‘,\f Ba) L for gt

as follows imﬁediately from ;he usual duality theorem for a Stein
manifola. Hence N;, the simple éomplex assoctated to the double
complex-(qu) is quasiisomorphic with L°fn] . (i.e. L° shifted to
the left with n positions). Consequently we have to verify that

the cohomology of N° in degree q is Ext?(Xg@_,‘ﬁ Gl )

X
Since Wik s a 1e6ally fivite family of relatively com~-
pact open sets, (v J,t/fzﬁﬁgr)h, is a locally finite family

of sheaves and one has the equalities:

B

L(

= P, [T oo & 0P F5[F )
d . 5

where \X means extension with O to the whole of X.

P

. e T R ; DN
Now, since ﬁ i1s injective and Q&K is free of fln;te rank |
2 /

X A 4 . & ~ V6 » ¥
?PQ@J» is also injective and Wow. (4 ,Gf%yﬁx) is flabby and

06 ” (o, J
in particular,soft. According to EGOJ,'theorem Febletae: ; :
e G e Eod T D e B
JLHWk(U"‘%PCg;,); is also soft and so is 1 r‘thL x 'GEQQE’)’)Q :

: e ;
Consequently, the components of NPY are FC\X,u‘)—acycllc.

; ot i o : . . ;
Since ¥V is coherent and ;{pw (% ,¢) commutes with taking flbers)



one verifies easily the equalities:

{for the last equality see remark 1.2).
Since: &L has finite-length)the following direct sums are

finite and one gets:

\o-

= ) R S ol S
= & }my NPT Q ) X, Heon (F PR F
PHT=g. i pike q -

1]

; : e SN
rc (X, J{U\‘\l (CP s Kit%b—} (el p@j}/r) J =

A
0 o1 Lo " e
:‘ C(X' 4 bv‘\'\q( I, 8 (’\?J ))

«w
B e A R oI PR P W X B i mleta 1 L) o i ”’) A S
: z % J\\r’h"‘\ L X > ‘\"Vu( & dz /} ; e ] L s (\\T > (\_ UL’( & (,'/V / ‘1 /) T
i< ! e I ;
e T e iR e B WO ol "ﬂ>\ .....
o l J{ g (_(‘j— | C,,U( , 2 (/, e u/’}(.("’\—’\/l i !\}— N i i & l\if(“' 1 9 ¢ St
% e
2 g ol y : v R > ST T 5 f‘. X : o ik
g e TN A X s %\ — 7 i £ (7 l L}(/,\ {/ ) Lo
R (i —«zi:.-m ( ) A { ) o ERRY o (SIP \J U7 LY U ar
ey £V VEU B / (X ARG b VA ¢ /
/Lp R 5 Q?ii Al ol = ) z s = ;
; N
reis Lo < S,
R e Ty )
= WAL (k J D ”Z/ )f:j J 3

Now take £ &7} - It has obviously the same cohomology as ‘i & eI x

,/"\ Y :
'and, since X has free fibers, it has injective fibers. Since
A
is coherent it follows that Wow'(F ,Z2°&])" can be used to
&8 i # . s A ;F Q 3 » . o 7 T T
compute Uit (F,¥¢® AJX) (is a representative for RJJ(F , £ &
E ! y = g - A X o -7 e .
Taking into accebmpt ‘that the terms of e (F ., 2 ®4) are

FLKX,o)~acyclic we, deduce that the cohomology of N*® isg

Extg(X7@:, g QQ(QX) whdch ends: the broof of step 1.

In a similar way one can prove:

1 n
=



Step 2} There exists a topology-of type QFS on Extn”q(X;QT,

;;Qy) (not necessarily the natural one) such that the state-

L2
&

I£%)

ment of the theorem is true when on Ext?(Xg&i,@l) one takes th@

natural topology.

>

Step 3) The "duality" topologies introduced at steps 1 :and

N= i ¢ o = 6 D= ; % b A = . . .
25 On Extc q(X;ﬁ?, 2 .D.,) and Ext q(Xﬁm%, pt an)x) coincide with
the natural topologies.

According to step: 1 one has a duality modulo separation:
5 i - n-—« T i , 5 n g i - :
Extq(X7't ,Er)XExtc q(X?B3gw&wX)~wbEXtC(X}‘f, 4 C&KUX)'W"ﬁ <

and accordlng to step 2 one has a duality modulo separation

e r— # % .4 ~ P 4 | ~\
Ext, Ax:F, £ @%wt.)x)xExtq(X', T BLy, ¢ ow )@Ext?(xz F FRI )¢

X

where the left hand side factors carry the natural topology and
the sright hand side. ones, the “duality"'topology.
Let u:Extq(X;%.,§7M~w~aEth(X7 G“”x' CQL! ) be the natu-

ral isomorphism (since X is a manifold, &

% is ;nvertible) and

2

let v be the identity map of EXngq(X;ﬁ?, £ ®Wy). One verifies
that u and v are eaoh the Llansposed of the other with respect
ﬁo the Yoneda pairings above. According to lemma 1.4 in iR~Rj,
this implies that v is continuous and consequeotly,-that the

B

"duality" .topology on Fxt (Xs F, % ®0,) is weaker than the

=X

naturél one. On the other hand,fsince u is an isomorphism, it
follows that v maps thh clo ure of IOJ in one topology bijectively
on the closure of. {O\ in the other; this mell es that v is a topo-
logical iSomorphism and so that the "duality" topology and the

)

n—c X s
,natura] topoloqy coincide on EXLQ {(X,L PO



: Wi p i s h : X :
The statement on Ext 1(&7:#, &\\/hX) can be verified in

the.same way and this ends the proof of the theorem.

Proof of the Gorenstein case

'H Let X be‘a pure n-dimensional Gorenstein space. In this
case we consider the dualizing sheaf Qﬁx which: is an invertible
sheaf and.coincides with the sheaf of holomocrphic n;forms in' the
gsmooth case. ‘ . : f

Since X is no longer smooth, not every coherent sheaf on

X admits a resolution of finite length with free s.s.s. in Mod { ),

This condition was used only in the .proof of sﬁeps 15and 2; so
we havento-give alternative proofs - for these steps. As above,
we shall verify only step 1

Let & —s¥f, M"—>F be resolutions of ¢ and & with P
s.g.9. in Mod (W ). {(see lemma 1.3).

Resuming the notations and the arguments in the ?roof of

the theorem, let:

P g T & 0Ps.) né
g B s and
L7= @) Bxt (Uy 7 80 0y Sy ;
((( (,\/1 . i :
pr

Y‘ c (U‘Q{ ¥ \}{U(ﬁ‘i ( (}— 7 \}.) Jp @} r) )

A& u"f

The Clmple complex associated to the double complex Np has
the same cohomology as ’In}  and we ghall werify that the coho—

mology of N° in degree g is-Extg(X;fﬁ, p 6@;@X).

As we have seen

D 16 A g5 47 lr"‘ :A: 7 iy
NP e T (X, Ko (F 4 XL PEFT))

Consider now the complexes:



BRSO R, Neraes: r
W T, fon. (2, 2P @ FR))
C <
Pay
Dg I ? LS I et SN 1
D = i X ) S ‘i 4 V% A
'C( / / ‘,-i(‘. r v L 'Ax))

C - ~ . i A T
R 1= f o (X, Jlown (il q v x.{1 Y o X) )
s - £
and let M'= Gj{A PAE pt= (jﬁ’?pq
p-g+r=1i L EgEL

The cohomology of yPar along the q;direction.is (see 1.5):

0 s for g#0

-

P

P @ e o gl

Hence M® -and N°® have the same cohomology.

The quasiisomorphism

fibers and uﬁq is a fres s.s.s., a gquasiisomorphism

e IS, Lo : P -
hdy, mein e induces, since %% has flat

A

; 2N . s - ) e e
o oo A4 q y < "p {’ éf y ) S, 9 7;’(6,7,3,\’( g b b &0 /L )

Hom. (vl B¢

s d

Since both sheaves are F;(x, * )-acyclic, one ¢ets a quasiisomor- .

phitlem P
./\6
.o S )ﬁ) h":)Céf
In the same way one.shows that the quasiisomorphism < ~ > <
L

induces a quasiisomorphism P°'———R". Since the cohomoloay of R

in degree g is Extq(X,H?, L &) (see 1.5) we are done.

3. SOME CONSEQUENCES

3.1. The Malgrange, Ramis-Ruget-Verdier separation criterion
((ﬁ~R~V}) helds for the invariants Ext;(x;% , F) considered with

their natural topologies. In the same way as in the Appendix of



'_€R~RwVf, we get from our duality:

COROLLARY. Let X be an n-dimensional manifold with countable

topology, connected and non-~cempact. If Z.,F €Coh(X) and Z is

without torsion then ExtnéX;'&,‘?)=O;
3.2« COROLLARY. Let X be a Stein manifold and U«<X a Stein
open.set isuch.that (O(X) —— f%cﬁun has dense image. Then, for

every %, € Coh(X), the natural morphisms:
Extl(Us % ,F ) —=BExt (X1 &, F)

are injective.
\Indeed, using duality, it is-sufficient tg show that the

restriction morphisms:

i s bt 3 S i ol
11 il b G £ PERK- Qﬁxjx)wwm~*>Ext (Uy %, ¢ é’&]K)

. 7 A} . B s ok
have dense imace. Since X and U are Stein, Ext™ (Xs &, < & “)X g

P B, et RS ] so) ] emd E};tl (U3 &, €@ y) 2=
e B ot (F, fffbugx)).Now the statement follows from the

fact that for every . €icotitx), the restriction morphism

F(X)=—=>} (U} has dense image.

3.3. Let X be complex space and A<« X an analytic subset. For

every & &Coh(X) one defines:

profA(ff)zinf prof ., &

p4
XeA el 4

where ] is'any coherent ideal such that Supp(éy/;f):A (see, for

ingtance; | BrSjip.la) .



COROLLARY. Let X be an n-dimensional Stein manifold, <

rdingie et L SR

T ¢ Cohi(X) and let A=Supp & Then Extg(th JF FE0 for q?nwprofA(‘ﬁ).

Proof
'g  Using duality it is enough to show that Extt (X3 F , ¢ @)5&X):O
for i<prof,(£). Since Ex L xF, YA )= HE (X, $xtT(F, € 8w %))

one has to verify that Yx¢ (&, € ®¢J ) =0 for i<profA(%i)‘
Taking fibers, this reduces to a known result of local algebra.

(see for instance [B-Sj theorem.2.1.17).

In particular one obtains:

COROLLARY. Let X be an n-dimensional complex manifold, Uc X
a relatively compact Stein open set, % ,F & Coh(X) and let
A=supp & T profA(?i)3n~1 on U, then‘every extension

e &

% —> % —»0 on X\U can be continued to an extension on X.
Indeed, the.statement follows by applying the prévious EHHTO b=

lary in the exact seduence:

Extj( o M

7 =

)— Ext | (R3U3 €, F ) —s Ext 2 (U3 £, F)
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