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Syzygies of abelian 9urfaces>embeddéd in P4(€).

Nicolae Manglache

Introduction

In this note we coméute the shape of the miﬁimal free re-~
solution of the ideals of abelian surfaces in F4 (see Theorem i3
A natural idea is to use the symmetries of such a aurfaée. But
the computations b@cbme more efficient using the Horrocks=Mum=-
ford bundle E,wh;ch is stronglyArelated to 'all abelian éurface$
in Pé and has more symmetries. In fact we compute also a mini-
mal resolution of B, diecof Y;(E) =@ [ (E(n)) as an S =

% R
=@[Xb{X1,X2,X3,XQ}~graded modiile  (‘see Theorem 1*) and this pro-
vides us with minimal resolutions for all X=V(s),sel(E). Modulo
automorphisms of'P4 these give all locally ceomplete ihterseqtibn

subschemes of P4 of dimension 2,degree.lo and cdxﬁ 0, .To prove

X

this fact one uses the deacription of nilpotent strﬁcgures given'
in [7] and the "uniqueness" of the Hurrbcké»Mumford.bﬁndle,showm
in [2].'Some nonsingular such X's afe_described in [4] and there
are also nilpotent schemes among them (cf,LS]). Oﬂé_obtaiﬁﬁ also
‘minimal resolutions for all "surfaces" .Y (algebraic schemes of
dimension 2) which are zero sets of sections of E(n),any n;;i:

They are locally complete intersections of degree n2+5n+1o.wizh

&JYCiOY(Zn)_(See corollaries 3,4),.

Preliminaries

By [41 ,any abelian surface X in'iP4 = Pd(ﬁ) is projectively

equivalent ta the zero set of & certain section s, of a fixed

X

vector bundle E on P4. From here,the moduli space of abelien

A : : - ) :
surfaces in P has dimension 3 {cf,[AX e6.1.),hence the family



B: H—» H given by @(E)

=
R

of abelian surfaces in-PA Bae dinension 27. By the very construc-
tion of E,as.given in [4] ,E has a group of symmetries of the
form N=HXISL,(Z;). Nemely,if Z_'= Z/5Z , V = Map(Z.,C), &=
mexp(Zﬁi/ﬁ) ané @}Z¥&SL§(£}-ara given in Au?Q(V) by (ox){k)
=xX(k+1) (Bx)(k) = 5ﬁ(k) for any.x<5v,k£;£5,than H is the group
geﬂerateﬂ byscand T and it is realised és én extension

1rw%f£5-~%'H 3 égm%5»~w» 1

th

'Wh&re/uq is the group of 5 rocots of 1. Then the normalizer N

of H in SL (C) is a semidirect product like above.If § is the ge~

_nerator of the Galois group of Q(&) over Q, then we can take also

2. The compcsitxcnsi%gﬁiimaiuw(V)

giVe the representations Bi\/:Vi (i=0,1,2,3) of H. These,together
with the 25 representations of zSX_ZS give all irreducible repre-
sentations of H. The table of characters for SLZ(KS) and the table
6? muit{plication for them are given in the'appendik,for easy

reference, The first one,very well known is mentioned also in

[4] ,the second one can be obtained as a standard exercise. The

Horrocks-Mumford bundle E is obtained as the object of homology
of a monad

v, ®0(2 )__.,ﬁ,w@)/\T_q__a,v @0( b
(A aenap,q are locally spllt and gp= o) where W is a certain re-

'kpresentatlon of'degree 2.0k N/H:SLZ(.5). Thefmorphisms.p.q'being

compatible with the action of N,the buhdle-E.admits N-as'a-ngUQ‘

e o e S i
of symmetries.Remind also that here P is identified with the
space representing the lines (through origin) of V and the action
of N on 0(7) is inherited from the natural action of SLB(Q)jxﬁ,

Because T(G(i}) sidualof VM =V, 00¢ identifies S:=

i ;
,’l,xz,x3,x4l with the syn@etric algebra of V2 « In fact by
[ﬁl';N gives all the symmetries of E,in the sense that the sta=-
bilizer of E -ip SLS(C) is N.

The cohomology groups of E,as N-modules are computed in {4},

and we recall them :



: : : con
HO(B(Kk))=0 for kg =1,HO(E)=T,HO(E(n))=w@S Y, ~ wEv®Rs™ iy, +

. uvgvﬁgﬁtr*’ve - véébvp*s e
Hite(2)) - v, Hi(E(=2)) = eV, , HYE(-1)) = W@V |

HR(E) = W, Hl{i(%)) =0 for:all other -k i

- r")
HE(E(=B)) = W , BW2(E(K)) = oifor k A=5 ;

5

H™ and bt of E(k) are obtainable by duality.

One considers the element teN,diven by (ix)(k) = x{(=k) ,
whose image in SLZQES) ig (-identity) and denote by G the group

- generated by H and L . Then G = HX4Z, . Again,it is standard to

2
bompute the character table of G (see (6] and the appendix).

have HO(E) = 41 as a G-module,so that,for an? se i (E).the zero

set X = V(s) is G-invariant., If Ix is the ideal of such an X

then the cohomology of I follows easily from the cohomology of

X
E (cf.[6] ),via the exact sequence 1

0:~—20 =% E >l (5]~ 50

an ; 0y = o, e
H (%én)} = o for n<£4, H (lx(ﬁ)) = 81 ﬁa(Ix(é)} = &V, ,

| | - _
HO(L, (3) = A3V, + 4v§ BT B = 23, s 1B, H(1,(9))

#

= 38V + 24v", HO(1,(10)) = 191 + 25 + 20Z ,etc.

o .

HLL02)) = Vo)) o ol | il 4 e o, wba o))

=25 and all ot:hca.r-t«!)l are zero.,
Ha(Ix) = 25 and the others Hzlafe Zero., -

3 - e #
B (I.(-5)) = 31+26+57 , H (I, (=4)) = 1ov2 T
¥ et : i 3 5 : ' 3
HP(Ig(=3)) = BV & 4V, HO(I (~2)) = 4V . H (L 1))

B1,) = 1, WL () = o for nyl.

; e s . ' ’
o (IX" )} = 1 and'H (1,(n)) = 0 for ny -4.

s‘\
D,
FN 3

Recall also that a surface X like above must ‘have degr

{
©

and aox> Qx v 85 E has Chern classes cl~% ca~ie.

=y
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Syzygies

For any subscheme X ofiP4 we dencte Ey I(K)'the homogeneous
idaél I(X) = é?HO(IX(ﬁ)) , and by S(X) the graded algebra G(X) =
SOl e AR s ‘

 Theorem 1. The notations being’those{@ﬁlabove,fﬂr'any-aegT(E),
if X=V(s),then S(X) has a G-invariant minimal resolution évgr By
which,sheafified,is of the form : /

0 ~> 28@0(=10) > 4‘/'{@()(»8) S (5v3+-2v§)®o(m7)-»~\~;

e (3V2Q§O(~6))§930(~5)——5 0 —>0, >0
or,if we do not take into accohnf_the symmetry of X :

B2 20(nlo) —> 260(«8)———» 350(~7) —> 150(-6)30(-5)—>0>0,- 0
Proof . E is 2-pegular in tﬁe sense of Castelnuovge, since
Hi(E(j)) = o for i3> 1,i+j=2. Then Iy is 7-regular and so 1,(7)

is generated by its global’sections (cf. [Sﬁ.lecture 14) ., We

want to show that the elements of {7(I,(5)) are not subjected

to linear relations (i.e. i‘(O(i))Q@i‘(IX(S)) >'T(1X(6j),15
injective). As T(I,(5)) = 31C T, (0(5)) := the space of H-inva-
~riant quintics,this will follow from the following lemma :

Lemma 1. There are no relations of degree 1 or 2 among the
S 2 el : e 3 :
.H invariant quintics in S = GLXO,...,X4J - =

Proof. Simple checking,using the explicit form for a basis

: s : S5 e 5 __.”‘\.,3' | R V

of VnH(O(S)) as Qlye”'1”.$4]' A _.Z_XO ;B m2~A0X1X2 =B =

=N 3 P 2.2 ! Wi oo 22 : = :
= XXXy , € =ZXIXOX) L C' =2 X XXy o D =7 X X X,X:X, ,the

sum being done over the powers of o ., ju

Taking succesively minimal surjections and using a "certain
order"-regularity of their kernels,one obtains that IX nas a

G-invariant minimal resolution of the form.:



s ey

, 250(~10) Saelcal oo
(7’;) O > L4 = @'7 S Lg = : 3 i#(?ﬁ — L?n =
. AO(~9) (4v;+8)0(-8)
i Co(=7
BO(-8) = : g@? _
= .o e 5V20(m@) == L0
(5Y,+2V34C)0(~7) oD i
o ' 30(-5)

Here we use notations like V,0(-6) instead of VZQQG(wﬁ),@tc,,aﬂd'
A,B,C are undetermined representetions of G. We shall show A=B=
=C=0.

‘By the minimality of the resolutioh,a,b are of the form
o o _

* 0 :
( \ and ¢ is of the form (* *3. Indeed,we have the followina
X ¥ ; ; o e : b

easy and well-known lemma :

Lemma 2, If X is a scheme and A P—>M,B : P—> N ,
Cos e o 1 N-J}N‘are Oxwmodulés homomorphisms ,with U an
isomorphism,then_the exact sequence :

7 : : e : :
o->KerA=K —>P@&N LS MON —> Q = Cokerd —> o :
(A @ : :

where A= & Lﬂ .18 the direct sum of the exact sequences

0o —=>K—>pPLA M—>0 0

X7
0 — 0 —>N-—"—">N —>»0 —> 0

A - CU—18 =

43

where A
’ /

Proof. All follows from the commutative diagram

A
PEHN —> M@N

T e

_ PBN —= MEON R !
S 0\ . . . o =
. O = - ?
where Y = ( i - g = : _
T ) 5 \G'e s\({\) O- Sl
The resolution (%) of Iy givgs,via the exact sequence (1),
a minimal free resolution of E of the form :
' eo(=7)
o Vs e 4D %
(%)' - o ==L, 2%>L%-e>L2-*% Ll = N 0(=b)=2 E(-5) —=0
&7
4O(=5)

This resolution must be in fact Neinvariant.Ho(G) m.T,HO(E(l)) =



o

i

i T+U)V shows that L° CO(-7)® UV, O(-6)B TO(-5) .
2 1 7 (-

Lemma 3. HO(E(2))

i

(L+2T+T7 4U) WV,
s , Gt :
- Proof. we have :° H°(£(2)) = WRS"V, - WQVES VY, +

5 a4 5 : !
+U@V. VSV, -~ V&SV, . One usas the formulas from the appedix
= 2 o) 2 & 4

A
with the remark that.VSQﬂZ can be computed with the substitution

Z=VOV, - I . a

>

Using HO(E(2)) we get L,=BO(-8)@ (LV#WV,+C)0(-7). In order -
to determine the repfeéentation of- N which restricted to G gives
the term 4V¥ in Ly ,.obserye that this 4%?'15 in fact the exce-
dent of the part' H°((5v3*2v§4C)0(1)) of HO(LZ(B)) compéred with
HO(Ld(B)). As N-modules this means the excedent of
AHO((LV3+w93+C)O(1)) compared to’HO(Li(B)). Using the appropriate .
fornmulas from'the appendix ,one sees that 4vzicomeé from f%i yiaf
we separate the sequence (X)' into three short exact sequences,
one_obtains‘takihg their cohomofogy H4(L4(5$)§ Hi(E):‘Wf .

Thus,the resolution (%)',twisted by 0O(5),becomes :

w'b(és) Ao(~4)‘ ot BO(~3)

R ae & . @ o a8 o
AO(-4) (THV,+B)O(=3)  (LV4#WV,+C)0(-2)
co(-2)
@

s Uvzo(»i) =B 0
: & A :
TO

We want to show A=B=C=o. It is suffucient to show A = o.
Indeed, A=0 and the minimality of (x)" implieés that the kernel
ik Of.Ll-mw E contains aichtorIBO(»S),namely we have an exact sSe-
quence - wo

o~4»'80(a3)@?q iy Li(S)—;» §\~§-0
%

where from : o=H E(—Z))iéH4(BQ(v5)g;Q(«Z))a,B. Then B=o and

also C=o0.,



Assume Ago.A iimitation fé{ C can be obt@xn@d using again
Lemna iﬁlﬁdgaﬁ,thw inj@ﬁtivity of the .natural map V(ix(ﬁ))@??{ﬁ{ﬁﬁ
= Y(0(7)) and the exact séquanéé»\i)-ahows the injectivity of
TRl 0l TED) . As TUE(2)) = (Ls2Te] ‘+U)v and
T’(E}Q&Y“(G(E)) = TQ§32V2 = TUV . » (L+T+U)V, , follows C{;(TWT§3y_
e separate the exact sequence (%)" twisted by 0(41) into
short exact sequences an% take the cohomology of them., With the
Anformation obtained from the others (one uses the cohomology of
E),.the cohomology of the firsf gives the exact,seduence :

: =
0 > W'V —= WVGA — A —0

where Ay ='H4(a(~1)) is of the'form (4 o). Then A = W'V,

A similar computation for ()" twisted by 0(-2) gives the

exact sequence

(TFv, sV, ) . (Tﬁv1+f v +TV1)
o we>W'V1~% - & —_— -F§ B-—>o0
(TFv +r v, +TV, ) (f#v1+9 )

: : e ,
where A, *® Hd(a(«Z)) is of the forn (, ,B and ﬁ being
, * % S
H4(b(n2)) corestricted to its image is of the fOrm f% Solgt o),

‘One obtains from here TV, B TV +UitV +Tﬁvﬁ ;

Playing the same game with (3¢)" twisted by 0(~3) ,one ob=-

talnq firstly C . BV and secondly an exact sequence $

W (LWt V., WU (eveey
2. &Xb . ')3 :
s W 2 G 5 B o
WUV, (THvv,+BV) (LV3+WV3fC)
; 2 47 % o AL ({-—O 5 3
where ¢\3——(* j>, e %>. The special form of-u(3 ; /33

gives a decomposition of this long exact sequence into short
ones,which, introducing new repr entationo Ko,‘...,K,i s can be

written as equaliti&s



U (Tagit ) (U V5, T(UT )V

T

2 . (o : w; *
K o +K,+3V., = W' lL+Wt )V
0 k3 (4

§.+
4(1»53v3 = WeUTVV, ;;

K +K +BV=C = W'U" (U+~°\vﬂ
K3+K4 = LV3+WV3+$
V‘éfﬁth g = O Or 1 .

4 '
Ag"we have seen, B (T+s”‘+¢Y“)v1 £, @ being algo o or

1 . Using this and the multiplication table from the appendix,

the third relation becomes :

K *+K +Tv3+<(>(t._+mu'+W+T#)v3+g(1+r«1+u‘)v3 = (T+MaTPaUt )V, + C

&

From here q7a o ,-as the right term contains no L,.Thﬁnt»c.m
= (T +& T")Vy ,with &= o or s ‘The 1nequa11ty cCgBY

(Tegw® )(Usw* )V, , in which the second term has no T'V gives C=T,

s,
"

We continue the game with (#)" twisted by 0(-4). Taking

into account that Hj(E(md)) = o for all j , ene obtains a sur-

jection -

H (BO{~ 7))§9H ((LV +bV +C)O( 6))'2;H4(b0( 6))@v“ (UV. ﬁ(uJ))

with 3m= {i_i) . Then we must have-;H (BO(»?))ng {CO{-56)) ; which

meanS-.B(HO(O(Z))Y 2 C(HO(O(i))f{ o or,equivalently : )

5 e This relation is impossible,becaﬁse

the second member contains a factor V'Vz and'fhe fiéQt does not;
By this we have’proved Theorem 1 and also : =

A

Theorem 1°. The Horrocks-Mumford bundle: has an Ne-invariant

minimal resolution of the form

#y 1D(~3)»¢»(L+w)v O(~ )”%'UVZO(-1)€§T0~%>E;€>G

l g'n%.x'a(wa)muy T
Corollary 4 11 & dssrhe Horrocks~ﬁumford bundle,then E(1)

is generated by its global sections,

Remark. By [4] , E is generated by its global sections out=-
o .-

side the set of 25 lines whose ideal is generatdd by rﬁ(ﬁ(%)} .



o

‘an exact sequence .}

‘the minimal resolution of E

.must be a curve CCP” of

=t

Corollary 2. If Xiis

.‘i;
"]

closed subscheme of P ,of
then the syzygies of X look

Q. — ?U(-—'(it)) =oete I.QG(*’ J}

a locally complete intersection

dime

nsion

8 ik‘f}‘\I
sl

‘j

350(~7)

©

2 o degree Jo and W=D
s X X

—> 15 50(~6)@ 30(~5)~» 0> 0»¢
*

Proof. By the correspondence between l.c.i. subschemes o

: : 5 s 4
codimension 2 in P’ and vector

we have a rank 2 vector bundle F

bundles

with

- 4
of rank 2 on P’ (see:

¢

A2

22

A.i[ }3

c4(F) = 5, ¢,(F) = 1o and

b N

We want to show that F is stable,i.e. HO(F(nB)) = 0. In any case,

since a X 'like above cannot be contained in a hyperplane, HO‘F(wA}}

=0 . Assume HO(F(-B)) £ o . Then any ¢8Ct10n of F( 3) would vanish

in ¢ odimension 2 and its scheme of zeroes Y would have degree =

= o5(F(=3)) = 4 and. 20Oy

e

(~0)

®

' s : : ‘ : :
Lemma 3, In P there is no l.c.i. subscheme Y of dimension

2,degree 4 and W [~ 0,(-6)

A

i

- e

This lemma settles the corollary 2. Indeed,by it F ‘is

Stable and all stabla rank,2 vector bundles on{P4 with c,l Sty

c,.= 1o are pro*“ctlvcly equivalent thh the HorrocL s-Mumford

“

P

give

s the

minimal reselution of I

bundle E , by a theorem of Decker and Schreyer (cf. EZZ)J.Th@n

e

Proof of Lemma 3., Any irreducible component of Y must cut -

‘the other components along a

Qf Y (sée ES], 3.9.).Thg.s

£

curve.because otherwise Y would be

degree

‘disconnected removing a point,contradicting the Cohen-Macaulayness
ection of ¥ with a generic hyperplane

4,with 03C390C(~5),h@ﬂca with

the Hilbert polynomial 2(C{n) = 49+1o.This shows that C,and also

Y,must have a nilpotent structure.Observe that C cannoct contain

points of C,l not in the-other components of C to have C = C

a8 line or a conic as an irreducit

le component C, such that in the
T a;

i



~ L=

we should have an exact sequence :

T N s 2
0 21 /I, T2 1. /10 —» 1. /(1. 41} =P >0
& Li G Cq ﬁi Ci Cﬁ c
wherer P is concentrated in a finite set if points;then ‘QC\C o
5 * »” 2

N A .~1 T ane @detP= W _ & detP #£ This shows
CAaks 2 @waet ( CI}./.&C )u:, Get - LU G ey P fhis s .FUWJ

(‘“Es) ®
p- i 0y ; o

that Y cannot contain a plane or a quadric as an irreducible com-

_ponent Yﬁ such that in the painfs of Yl not in other components
. to have Y = Y1 i1t foliowa that Y ds .8 l.c.;. structure of degree
T4 on s plane or on a quadric (may be degenerated br.singular). By
[7}, Remarks 3,4(p.|564),1f'the support is.a quadric X,the struc=-
ture Y'on it can be obtained by the soﬁcalled:“F@rEahd doubling“,‘
i.e. there is a line bundle L on X such that to exist an exact
sequence -
g gl L 1,/12 —> c;}x;@x_ S

1

where L&LU; = OX(G). Téking into account that IX/12 c

X : X .
'ﬁfdx(-1)6§d*(~2) and téxffox(-S) ; oﬁe sees that the exact séqyenCﬁ‘
from above is nof possible. (In fact the oﬁly double structures

on globally complete intersection surfaces‘in\Pélare.globaily_

- complete intersections.) If the support of ¥ is a plane‘x,then

by [?] Thearem'ﬁz'fhe structure Y is_obtainable in a process
A_déscribéd.by exact sequences :

2 = 2 % - 3 > -
0 = IYl/IX _— IX/IX = E0 SN

G IY /IXIY —_— IY‘/IXIY s Er?_> o
r+l r r r :

_where Eo‘Ef (r = 1,2,,..,€j are vector bundlies on X, Yt+1:: Y

,Vang rankEO+.;.+r8nkEr = 3, Using the constructions d@@cr;bed.iﬂ

lZ] . one sees that all l.c;i. structures of degree 4 on a plane

in P -are globally complete intersections.lLemma is proved. T



Cnrn lary 3, If Y is a locally complete intersection sub-

4
scheme of P of

dimension 2,degree 16 with u}thQY{E) and
Y(Iy(z)) = 0 , then QV has a minimal resalutian of the form :
0 - 20(-10)—> 2@@(@8) -»~-‘-*;v?_§5‘d{ ) -3 1&(1{,«()) ® 40(~5) — ’) M)O »»»»»»» > &

Proof. A surface with the above invariants gives rise tc an
exact sequence

0 — 0 — E(1)—> I (7)-~m
“mith E a vector bundle with Chern classes cﬁ$5.02=10. One has
'HO(E(04)) = H (IY(Z)) = o and then HO(E(nB))'m o by lemma 3. This
“shows thét E is stable and one applies again 121 :

Remark., In fact the condition Y”(IY(Q))fz o is superfluous.
One.ican prove this obsecving that,if HG(IY( ) )4 o then H® (E{~4))
4 0 and HO(E(mB)) -~ HO(IY(i)} = o , so that any section of E(-4)
would vanish in codimension 2. This would give an extension

ek Bl Tl

(-

with Z a surface of degree 6 with (d =0,(-8). The fact that E(1)

_ - .
‘has sections vanishing in codimension 2 implies HO(IZ(zj) #

One shows that‘there isno-sunface Z witﬁ fhé above properties,
Firstly,one shows like din lemma 3 that Z has no irreauciblé com-

. ponent 21 such}that P Zi in the points cutside the other irréé‘
duciBle camponen%é;This éhows that Z is a multiple structure. and
one anaiyées the various possibilities depending on the irreducible .

components of Y . Some of this are dlrectly excluded using L?]

_ red
and the others cutting Z with. a qeneric Jyperplane H and smawiﬁg
that the mu}txpl@ curve 7ﬂ%4c¥40f degree 6,'Wlth L & O( 7} has
contradictory properties, :

Corclléry A, If Y is o iocally complete intersection sur-
face in P4 of degfee nZ+Sn+lo : with'aJYﬁon(Zn) and V(IY(n+i)) .
— o,then OY has a minimal resoiution of the form : :

0 520(=n=-10) >200{=n=8)> 0(~2n=-5) 350(-n-7}>150(-n-6) R 40(-n=-5) :

> 0 > OY-} 0



Proof. Like above,we may assume the exact sequence

0 —>0— E(n}) —> IY (2n+8) —= 0
the Horrocks-Mumford bundle. If g

by

is

where E

—> E(-n-5) is the minimal surjection from Tleorem 1' twisted by

"
O(~n=5) ,we have a minimal surjection p:l50(-~n-6)& 40(~n-5) — i
and an exact sequence :

o —>Kerfg) = Ker(p) —> 0(-2n-5)~> o

Which splits.From here one obtains the resolution,

APPENDIX

I The character table of SLz(zs)

: g fl o\ /2 03(% elE o F 2} gl o
i (o 1> o_w1> o 3/|-1 2}\;1 3/ % 1> o 4 Q)—ﬂ)ip »1)
#C, 1 1 e e Bs 0 dWn o e
. 1 e G4 1
/%5 e 5 L] =1 -1 o o o o :L
yg ' 6 ) 0 o o 1 1 -1 -1 M
o 4 e A aae g T
‘.f' 4 4 0 9 <1 -1 Wl 1 'ﬁ ¢
: %3 3 3 —1A' 0 o‘ =) ',?‘ - | ;7/ u
,}g o T -1 o o f7’_ -7 ;fv' - U
= o o s s & W
L e s o g

t 150(~n-6) ©40(~n=5)->

Here £ = exp(2wi/5),w7:_g+ 24

formulas from this appendix one uses also the

- |
\

+ 34
X

P

elements in SL_.C inducing
i 5

in SLZ(Zde N/H ,namely‘ Ax( 1)
.;112 : _
) =5

x(1) ,

o

A
44

(=1 .4
A w<0 -/l>

: .
ST
(s

>
<

Lx(i) = x(?i) .

Sy

e

U

e
J

(1)

=st 33 . In CGmputing,sdmé

explicit form of the

2 03@-mf1 g e
o 8)i) Sl dl ¢ By Jg
PR E ()
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13 Multiplication table for irreducibles representations of SL.(Z)

Sodufe

il 5 :
L@L = T+2L+2T+UsU* , L@M = IMe 2T +Waw® , LT = 2L+T#UsU*
.,,;’ . .
L@ THe 2MaTlaliew' , LOU = LaT4UsU* , LBU' = LeTeUsU® , LOW =

o e LWt = MaTIE

]

MEM T+3L+2T+2U+20° , MRT = 2?‘*%2‘?'#-9«?14"«’&‘ ‘ M@T’;ﬁ' = 2L+2T+U+U" ,

e s St :
MEU = 2MeTaws , MEU® = 2MeTHaw , MEW
Ho T
TEW =MW, TE W'

H]
&

LTt M@ = L+T+l 3

= H- i
Tl eTslaut TR =aamT T, TR

&
B

L-'#'T“*Us ”""{“{EU. = La+Tel ]

M+

Tul aTaiel! = T#@ U = M*T#"'\'ﬁ ; T#@’ LR ={”‘"5+T#+W. ' Tﬁr@ W= La+U,

§

f#égT#

4]

‘i:gC Ry
uQu

Lol

-

i

Tl @ LT e =TT, WEW T w M

BRI = Talal® UtEW = M, W oW = Thewe

L
o
B
€

W QW , WRW® = T

@t = TUT -

113 Some formulas over the normalizer N of H in SLg(C)‘. e ‘
The formulas given here involve the irreducible representations of
: # : . =
PLQ(ZS) = N/H , the irreducible repr@sentaﬁlonf Vi , and Z = VCQV, C S

(@hich is irreducible overiN and decomposes over H in the sum of a}l

.24 nontrivial characters of Zr><2r\:

. V@V: (l \u)v . henc@ . V'1® \‘.”'l (U+”‘)v2 . V2® o (U *_w)v :
V@V =(UH )V :
VEV, = (UsWt)Vg hence V,&V, = (U*+W)V :‘\fg@v3 = (U"’";““)Vi ‘o
RN = LYV . "
2 Sore B el 4 :
[\ Vi:: W RV Tl /\ Vi s ‘('fQQV.i+3 5 /\ V. = Vl+? ¥
St‘?v = U'QV,,- 5OV = (La¥i' )RV st = cmﬁww@ v ‘
oty Mg 7 : St b e

B

S5, = usuraz@(UeUtsI)
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IV  The character table of G

; )\,d)) M on Rons, o
1 : 45 I
gt o
b% ( ) o (¥ (C\ ) Vi.
. - e 5
2 sn+tm +;Em5n~tm : Zé,t
5 X o >4 %
2 S¢(X) o g {x) ¥
T e k 'f 2en m ok :
we write (o ,m,n) ar <(34 g o (dCMr i o, nE:Z :
k = 0,1 ), then H%} is the class COﬂtdlﬂlﬁg only the central element
g@gf% - there are 12 classes m ) (a(~ Ny ol j=m,=n) x%/AS% and

(

5 classes C,J< = q(q ,m,n)L\m,n<;Z5(-.

We have the following formulas @

. :# . .
i i -Z; 5 i“' & A Srist iy = \ 5 & ‘. % z e
vicgvi ‘v1+1“ Y1+1 £ V1Q©v1+; 3JL+3Q’?Y1+3 2 V169V1+2
- 12 v'(?‘s . v# V.07 =12V @1’2\/# ;
= Ry i et i e
S@S =0, SO =Z
Z®Z = 121 Q125® 232
2e . o 3 L pane
A s e ) s e Y,
otk 3 ' gl A ¥
= ! = Ay 2 S =
SV s B oY, =Bl OV B e Bl DAy
& = aigsr , O 26V.@16V#. s7v. = 38v.®28vf . etc,

(NO‘L"v Heat Z dfawmrosw TUth 6 Lkm '%;sum»
o‘j:/. C’LQL Zs‘.’h e) :

/L‘ 4
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