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RELATIVE ELITMINATION OF.OUAFTTPTF RS T’OR HENSEILTAN
VALUED PIELDS

?erban A. BASARAB

“\>f INTRODUCT ION

In a well known series of napers, Ax-Kochen [ J [4]and
hov [lf} 20] initiated a metamathematlcal apnroach to some
ba51c ploblems in the theory of Hensellan valued fields. These
papers Were followed by other works of. Ax [l] Cohen £14J
“Kochen- [21] MacIntyre [?3], Robinson [2“] f76] wh1ch contlnm
the investigation of Henselian fields uslna'methods of-model

\ ' ; : o :
theory, recursive function theory and nonstandard arithmetic.

_Further refinements of these results were obtained bv Weispfennit

pO],ﬁZiegler [33], Delon [lS]_and.the author [S];[9], An account

of model theoretic and algorithmic results in the elementarv thec

ry of valued fields, in an approach that uses explicit, primitive

recursive‘quantifier elimination nrocedures as a unifyinae nrinci-

. pleis gliven by Welspfennlng [32]

Eor p—adlc flelos Q and the power series fields P((t)) over
‘a de01dable Fleld R oF characterlstlc zero, Ax Kochen [4? nroved
hy model -theoretic methods decidability and relative nuantifier
elimination, when a cross-section is included in the lanquage of
valued.fields;~A auantifier elimination with cross-section and a
decision method for 0, were also aiven bv Cohen [l4] using ofimi
tive recursive methods. L@ter MacIntvre [23] showed that auantifi
elimioation'for ?p can be obtained without oross~soction,~when_mm
re naLural root=-nredicates are lno]udod in the lanquage. In A nor

algebralc aooroach, this result was extended by Prestel-Roauctte



[?4]Lo p—adlcally‘clo<ed fields. Bxtensions of Macintvre's re-

sult are dlbO contained in Cherlin=Dickmann [13J and Delon 115].

‘Some general results concerning the transfer of model conmpletion

for Henselian fields with finite absolute ramification index were
obtained by Ziegler [33] and the_author[?].

On‘the’other hand, Cohen's idees were etrongly generalized

\
by Weispfenning [éo], {}2] in order to get primitive recursive
rel;tive quantifier elimination Drocedures for Henselian 1Cields
of characterlstlc Zero subject to .a condltlon of moderate gene-
rallty on the value groun

in the laqt Eime the duantlFler ellmlnatlon problem for va=
lued flelds gained popularity thanks to its interest for computer
SCLentlsLs under the aspect: of feasabllltv as well as For deep
app]lcatlons in dlonhantlne questions. Concerninq the diovhantine
appllcatlons, let us mention here CanLOL»Romuette [ll] {é8]
and Rumelv work on Hllbert s tenth problem for the ring of alge-
byalc lntegers, Denef’s paper [16] on the rationality of certain

N

Poincaré series over Qp and Weispfennina’s result [31] en the

o ; z ol . i

~ primitive recursive decidability of the adele ring and idedz:

gfoup of an algebraic number field.
The present paper is devoted to the proo# by algebraic and

ba51c model theoretic methods of a general result on relative auan

-

tlfler ellmlndtlon for Hensellan Flelds oF characterlstlc ZeYO.

. Given a valued field K=(K,v) let us denote bv Ok the valua-

e

tion: ring, by K #he residue field and bv vK the value group. Assu-

\me that the characteristic of K is zero and let » be the charac-

teristic exponent of K. For keN, 1et_gX K be the 1deal {a€OK:
N o - b3 i

on ponsiy

vh)kvp} of -0 In barticular, =m, is the maximal ideal of the

X »»K 0 =K
- =6
valuation ring OK Denote by ?Erk the factor ring O /m LN
: = = =K,k
1s a local ring with maximal ideal_mK/m 0 ol particular; fer
: : : = «'K,k ‘



pelt. OK,k:h Fors alel kgﬁ-

On the 0Lhc:“l1and consider the nullLJl)]iLEH ive grouns

A X et = =
3 == B =l e N = 3 3 :“-." 8y > = =G, =K
(K K K /1ka . fOl kell. LE p=i then C\,P\CK,O éﬁ K /1:1»“K

for

—

al] ch Given keN, the ring OK 2k and the aroup Gk x are related
SNl . ’ ;

e

throughiia naLuLal map O defined on the Subset {aco {f”
' Xy 2k
OK 2k WK k/ h . of Oy o With values in GK K @](aﬁPK 1)
7 L Rt . :

(1+mK k) for anK_subject tovackvp.

N\

= For kGN the valuation v 1nduces a map Vi ngk/GK k"““%
 *+§VKuf«ﬁ; the image v (OKZ]\{C} is the convex subset

VK2k={w%vK:.OSNS2k vp} of the ordered group VK and the restric-

B

£ion v f :Gpy —* VK 1s a group epimorphism. Among other proner-
k GK c Kk . ~ & : ‘

ties, the map Qk as defined above satisfies. the following valua-

' tion theoretic condition of compatibility: the diagram =

3
A V.o
; k
OK,Z}{\ {0}-—-....____.;;. VKZkC.._)VK
= = Sved n
o vk
' | Dy x/ 6
Ny
ey = Dpon SRl 6
e = o oles

‘ ungnud&d, : ey 8 o . ‘ dli" 5

For k§g,.00351der the gystem gk?(oglzk, Gg,k"VK’ Ok,vk) with

5 O' CK et vK, Ok’ Vi as above and call it the mixed k-struc-
7 = :

IR ot

ture assigned to the valued field: K. In'narticular, for p=1,

&l

":gkzg is-the triple (K, C VK)'toqether‘with the exact sequence

'JQ?

wowis.
own

I =R s —sur g

is=



the mixed k-structures introduced above play a kev role in
the model theory of Hensclian fields of characteristic zero as

shows the following clementary equivalence theorem:

Theorcm A. Given the valued field extensions L/K and F/K,

~

‘where K is of characteristic zero and residue characteristic

exponent p, and L,E are Henselian, the necessarv and sufficient

condltlon for the valued fields L= 1o be elementarily ecuiva-

e

lent gver K is that for all keN, the correspondineg mixed K-struc=

‘turestgk, Ek are elementalllv ecquivalent over K

Given é sentence ¢ in the lanquaqe Lk of mixed k- strﬁcture
\kGN one may a581dn‘eFfeet1vely to @ a formula trk(?)(z), wirh
one varlable 2 ~dmothe landuage Loor. valued fields in such a way
that for every Valued field K of cbaracterlstlc Zero and resrdue
licharacterlstlc exponent p, X ‘satisfies - t (v)(p), wrltten

K F tr (?)(p) iff Kk satisfies € . wrltten K . The correspon-

- dence above Q > tr (¢¢) extends naturallv toiia translatlon man.

trk from the arbitrary formulas in Lk to formulas in L.
As a*ebnsequence of Theorem A we get the second main result

of the paper concerning the relatlve ellmlnatlon o nuantlfrers

o for Henselian fields of characteristic zero. i

\

Theorom B Let p.be either 1 or a nrime numbe and denote

s e e

by T the Lheory of Hensellan valued flelds of characterlstic zero

commen W

and residue characteristic exnonent p. For every formula C?(g),

“x=(xl,,.,,xn) in'L there exist k€N, formulés %&&2),.;.,¥1(y) in

Lo o Z:(yl,.,;;ym ), quantificrless formulas Al(X)"'"’lf(é) in

I and polynomials fi, qieg[x], 1¢igm, such that %) is equivalent

with the following formula

L ) A ey (V) (£ () gy ()" i1gigmin) |



- One ﬁay derive Wedisnfenning's main ''heorem 4.3 EEEJ(with rec
sive instead oOf ppimitivcwrecursiﬁé) from Theorem B above; details
Wil be.containod‘in a furthcoming'paper.~In the last section of
‘the present,ﬁork we shall show only that U:esteleoquettc‘theorem

‘[24J on quantifier elimination for p-adically clesed-fields is a

.consequence of Theorem B.

N

1. THE RADICAL STRUCTURE THEOREM

Consider a valued field R=(K,v] of characteristic zero and

residue characteristic exponent p. We define the canonical decoﬁ«
Vfggggigigg of the valuation v as follows. Denowe bv él=:é3K the. |
smallest convex subgroup of vK cbntaininq Vs A =0 iffmp=l, 1a.€0
K is of characteristic zero. Let vK bé the factor group VKAA.?
_1and G:vamééK:ak~>Gé be the groﬁp épimOrphism induced by
V:KX~%>§K. Since A is convex in vK, Sr b it o ke
,ture of a totally.ordered gréub énd hence‘the ﬁap'é is a waluatio:

of the field K, called the course valuation assigned to v. Denote

e by K the valited field (Ry9) . “The valuation'ring Op of ﬁ is charac

P
o

terized as the smallest overring of OK in ‘which p becomes a unit,

i

i.e. OR is ‘the ring of fractions of 0., with respect to the multi-

=

plicatively closed set {nk:k6§}; Note that.v=v iff n=1, and v is
trivial iff uk=d

~Let Qg'be the maximal 1deal_of gﬁ-;.then‘ggf;mgc:ogf:ng De-
‘note by K’ the residue field Oﬁ/m, of the valued field K. For

==k
tacop let a° be its residue in K°. The ‘field K°, called the core

=

field of the valuation v of-K, carries naturallv a valuation whos:

valuation ring is the image 0./
~.:I§ mf( =

valuation and by 50 the core valled field (K’,v). The value groun

of OK. Denote also bv v this
L

vk’ is identified with the convex subgroun 4 of vK and the resi-
due field K° is identified with the residue field K of K. Thus th

; . ' .
core valued fileld K 1is of characteristic zero and residue charac

peey



L e
tepdsticiomponent py I8 = R Ire -1,
Consider a valued field extensilon L=(L,v) of K. Then the
. course valuation of L is a prolongation of the course valuation

L
of K; hence both may be denoted bv the sdme svmbol v. The core

s

valued field ﬂ’ is an extension of the core valued field k

We say that the extension L/k is core-dense Jf for every

<EAN = é% and for every bel there exists ack suchithat v(b ELos e s L

. partlcular 46 43. This is eauivalent with the Fact that for every

: } keN the rlnq embeddlng OK r OK L——%O | OL r is an 1somorphlsm.

In other words, L/h is core dense 1ff the ‘core extension L/K is

denue If p=l then Q/K is core-dense iff L=K.
g - A main ingredient in the-proof ©f Theorem Aic the followina

natural generalization of ﬁrestel-Roquette radical structure theo-
rem [24], Theorem 3.8, xﬂl"ﬁ‘_ A

DRODOSITIOV 1l i ot K (X, v) be a Henselian valued field of

;chdracteristlc zero and L be an aldebralc core-dense extens sion

——

oif K. Then L/K is generated by radlcals, i.e. L=K(T) where

S T=T ={t%L \/t cK} is the multiplicative aroun of radical
: T o
~elements of L/K. The radical value aroumn yT equals the full va=

lue group vL OF L and the valuation -man v: T**%VL induces a oroun

vlsomorphlsm T/ x-¢vL/ K* If L/K is a finite extension then

.[LK] (TK)

Broof. As K is'Henselian and. L/K is algébraic,_& is Henselian

onon

‘too and VL/vK {53 torsion group. First of all ket wus show that

I’ =k° and visyT, let anLa° We have to show that aGOKo. As LO/Ko

o —

'is.algebraic aad K° is of characteristic zero, there exists ‘
f€OK¢E<] such  that f(a)=0 and £7.(a)#0. Let&;@vKovao be such thatiﬂi?vf'(a).

SiHCw L/h is denqo there exists CéO,ngCh that v(a~c)t1. Thuus vf (chry:2vE! (a)=

r«2Vf'(c) and hence by Newton’s leﬁmmj24gp.20,thereiﬂ one and only one bé0, »such

that, £(b)=0' and v (b=c)>VE’ (c)=vi’ (a), (Note that Eo is Henselian

Pt



since K is Uenselian). As f(a)=0 and vla-chhip2vil(@lpvil(a), wo

pred

get a:bGOKo , as contended. Now let aeL”™. We have to show that

Va=vt for some LeT. Ao VL/VK 15 a torsion grouy, a’=b u with beKR,
1 ; - 9 e © . ‘r Xl $ ] :
nyl e . NS L =K S thore exists o EOK sueh that. v(u-u')>20,

yr*},(

i

Consider ‘the polynomial f(x):Xn~uu’—léOﬁ[X]. Since v (L)»>0=vn=v&’

3 :
‘and. Ls is Hemselian: (ds L. is Henselian) there exists t’GLX such

fi

that £(t')=0, i.e. t'"=a"(bu’) "', Let tzat’"!; then tP=bu’ek¥,
N 13 5
i.e. teT, and vt=va as contended.

Censider the intermediate.field L'=K(T) between K andlL..We
-have to show}that =l The value group viLicer L= (L' v contains
yT=vi and hence QL?EVL; in parfiéular, VL'=vL. On the other hand,
L e b e valued field extension é[ﬁ’ is'immeu
. diate. As én algebraic exténsion of the Henselian valued field‘

14
14

e

18 Henselian and hence algebraicallvecomplicte being of pesi.

=

due chaéacteristic zero‘[l] - Droposiﬁion.lS. Since é/éf;is alqé;
‘braic immediate, we conclude that L;=L. |
AS»VTZVL, the valuation v igduces a groun epimorphisﬁ :
‘§¥T/Kx~¥¢vL/VK.-We‘have to show that this is am'igumornhism.Let
teT be suéh that vtevK. Assume that the order of t modulo K ism

and t"=a€k.As vtevk by assumétioh, t=bu with be¢kK, ugoi. Since
: K°=L°, there exists u'€O§ such that 5(u—u'»>0; therefore
té(bu')(uu’ﬁl)er(lfgﬁ). To show that t€K we mav renlace t bvany

oy

.other element in its coset modulo_Kx, SO we mav assume without
loss of generality that v(l-t)>0 and hence v(1-t")=v(1-a)>0.

Consider the polynomial f(X)=Xn—a€O§[k]. As g is Henselian and

P

- @

”vf(l)=6(lwa)>0=v(ﬁ)=§f'(l), there exists one and only one ce€K
such that f(c)?cn~a%0 and 5(l~c)>0. Since this unianueness state-

ment} holds not only in

Hxe

®
but alse in the Hemseltan fileld L and
since f(t)=0, G(lwt)>0, we conclude that t = ceK.'

We'have shown that T/ x¥VvL/ Iﬁ one of these grouns 1s

Kl
finite then the other is finite too and (T:K*)=(vL:vK). On the

other hand, if [L:K} is finite-then_EL:KJJ &GL:JK)=(vL:vK) since



=l

E‘is_algobruically complete and,[LO:Kc:fﬂln We conclude that

[L:x]= (k%)

O.E.D,

The following explicit description of the field structure
of L/K in terms of radicals disg an immediate conseaquence of Propo-
sition 1.1; see the prEoot of [241 Corellary 3.9, .

N

Corollary 1.2. 1In thé same situation as in Pronosition el

S 5 e e

assume that L/K is finite. Then L/K can be generated by finitelv

many radicals such that the product, of their radical exnponents

" equals the field degree:

" The substitution Xih¢ ti (1<i<r) extends to a K-isomornhism of
the factor algebra K[Xl’°°"Xr]/I 5 where I is the ideal.qenerated‘
o ‘ _
by the polynomials X

"—a, (1gi¢r), onto the field L.

L S . \

‘2, AN EMBEDDING THEOREM FOR HENSELIAN FIELDS

iﬁffs well known the key role nlayed by thé-embeddind theorems

in the-iﬁvestigatioh of the model theoretic 5rqperties of the Hen—
‘selian valued Fiblds (see fer instanceA[ZlE, [24] Theorem 4.1, [7]

| Sheerem. 1.2, [9] Rropesition 2.2). In thié secﬁion we prove.a gener-

rél'embedding Ehlcorem . : for.Henselian valued flelds of characteris

tic zero that will be Ethe ﬁéin tool for the ﬁroof of Theorem A, A‘

basic ingredient in the proof of this embedding theorem 1s Proposi-

tion: I.1,

Given a valued field K=(K,v) of characteristic zero, let us



1 ‘; G ' : A = b 5 51 & Dy :
denote by K the mixed structure assilgned to the coars ozf“ Ld
226 .

2 y - GRS pd ° : :
K=(K,v), namely the system (K ,.u& = K“/ , VK) together with

Ltmg

the exact sequence

€
V

1—> K°% = e [ » VK 0

£

txa

2t

Tn fact we shall consider.the core field k° not only as an abstrac:
. - s TR G0
field but alsec as a wvalued field K = Kovowl th the valuation natils

rally induced by the valustion v of K. Thus it seens matural to

& ¢ 5 p
conelider systems s= (M, B, [, 1,5} where VM=(Q1,v] ds a valued field

of characteristic zero whose value group vM eruals the smallest

convex subgroup containina vp, n=the charactericticsexponent of =the
. :

residue field M, H is a multiplicative Abelian group, [ isian adei=
1 : X 2 e e 0
tive totally ordered group, i:M"—? H is a ¢group mMONoOMOPH.LSM and
‘K {wri is a group epimorphism such that the sequence
S

9 st ; : - : :
Ty M —mp g ——=["—» (0 is exact. Call such a system a mixed w s

v o R

oz e e

: :
ture. Thus the systam K = above is the mixet w@-structure naturallw

associated to K . If the residue characteristic of K ig zero then

: i . = B o
K =K is the mixed O-structure (K,G,=K / o VK e Kooy G~ VK-
z0 =0 _ K 14m S

assigned to K.

: 5 - .
Given a mixed w-structure S= (e B L b e obtain the canonig
exaclt seéequence
: o :
bis are
0 -sym = M/ x>——0¢
0
M
where { =H/ e Thus [ inherits a naturallv structure of tetal b
calgn :
M
s : ¢

¢
ordered group with the order given by £S5 iff elther £ </ or

i

Begle v o with wespect to . this order, yM iz {identified with a caons
t

L) .
vex subgroup of | and | xl/um as ordered aroun. Thus the nixéd .
& Vo4 - 5
af — atructure S may be seen also as'a swstom'S'ﬂ(u,H,!,i,u) wWhere

Froes xe

i, are as above, [ is an additive totally ondered arous and



- 1) -

A & : : ' ; SE g L
f:H-> is a qroun epimorphism such that the kerncl of @ed ;M » [°

1g the group Oﬁ Qi unid s of OM and the value groun VMMMX/OX is
o . = : M

idehtified through fei with a convex subqroun ot lF . 1In the vre-
sent section we prefer to use mixed w-structures in thélfirst .
*acccption reserving,the'sebond enuivalent definition forsthe newt
sections of the work.
‘Given tWo mixed w-structures Ei . 1=1,2, an embedding

© ,;__,, 1 = ’ " : = o NE " °
/¢.§ > S, will be a systan_gk M e ) Wherezﬂ’igl"%“¥2 is a.valued

y T field embedding,/M:Hlm%'Hz is a group monomorvrhism and/k":fiwﬁf}

. . is a monomorphism of ordered groups such that the next diagram

: Qe 3—2— 3 5
X i o

'Ml —> H) yl"l.

7 ; /{ 5 l "

* ,- o -

VMZ; : Ul e

2 2

ds commutative.

Lo awiehEehis - preparatien we are now able to state the general

~~ embedding ‘theorem for Hensélian valued fields of characteristic

- Zere.

Theorem 2.1. Let K=(K,v) be a valued field of characteristic

" ‘gero and L=(L,v), F=(F,v) be Henselian valued fields extendina K.

Assume &hat E s lLf - pseudo-complete, where L] denotes the
! ] ® e :
cardimal ity ol L. Given a e embeddina ngb-—>§; @f mixed

@ - structures: thevesexists a g~embeddinq'7:§;ﬁ>f of valued

]
fields inducing the qiven_&) = embeddiniﬂ,. ;
Proof. Consider the family /\ of pairs (L’,?) where L’ is
an Antermediate field between K and: L, and " @yl i3 a K=cnbeds
dingeof valued ficlds inducing the restriction-embedding

P

¢ o : -
ﬁ]f, :Ig-%§; of mixed w-structurcs. /A is non-empty since the nair
Zo = ‘ ,



- 11 -

K,Kees ') belongs tosl. Consider the Jartial onder on /\ .
' > J .
: afiee i : :
A(L',?’)ff(L",w") 1EE Bl e LY and ?':?‘I' + As the non-emptv par-
A
tial ordered.set (A,S) is induetdve there exists by Zorn's lemna

a maximal pair (Lf,y)aA. We have to show that L'=L.

Without loss of generality we may assume that L’'=K, i.e. /\
is the singleton {(K,KL&%F{}; so we have to show that K=L. We pPro-

i ceed stép by sten as follows.

.

NG @ 3 - : ® e
1) Pirst let us show that 5?(K,G)vis Hemselian, Let Ki=(K',v)

= ; e 2 'y ; PR 5
\ be the Henselization of K., As L is Henselian,_&;(L,&) is Henselian

- Ki=(E/v) be the fiegd K’ with the valuation induced by the valuatio

— : ' 6’ o =
v-of L. As the residue field K’° of ‘K4 enquals K2, the valuation
of K" is ekactly the valuation on the field K’ induced by the va-

® e g . v ;
luation.v of K’ and the valuation .v of Eo. Simee W ic Henselian, .

PReSYS

¢ ; 5 5 ® ) T e
F is Henselian too and hence we get a canonic K-embedding.® :K'—> .

In fact Pois.a K-embedding of gf into F. It remains to check that
® o 3 S :
K, = X, in order to conclude that (K’,y)e¢/\ and hence K’'=K byv maxi-

-

mality of K. The equalities K'°=K®, ¥K/-VK are tmivial, so it re-

mains to vérify that Gﬁ, = Cg. Let ReRlE A 5K’=5K, x=ay. with

: X X ~ : - s : X
aek s, wye@i. o, iSince K=K thore is beos

K

follows x:(ab)(yb“l)éKx(lng,). Thereforé'the canonic mornhism

5 A tot

Gg—>Gg, 1is an isomorvhism as contended. ; e e

such that. v(v-b)>0. It

——

| - -

‘g @ . . . i . . c :
Now since K is Henselian of residue characteéristic zero, we
may assume by [l] Promosition 16 that we have the following commu-

tative diagram of valued fields:

%

e [P i




- ] 2

. 5 ¢ (e} - Sy 5 4
Note also: that K,L. and 1oﬁnoe*ivmly K ] are linearlv disijoint

Q
over K

5 ; ;
2} Let us show that K isialgebraically ellesed in 13

v

Let}xGLO be algebraic ovef x° and gf be the field K(x) with

the valuation v induced from %. By linear disﬁointness we get
[K’:K]e[Ko(x):Ko] and hence 3K’=5K and K’OZKO(x).'The corresnonden
ce xhﬁ/m’(x) definee'a field‘Kweﬁbeddinqfz:K'w~wF. Moreover)'z
is a ﬁwembeddin§ of vaiued fields. Indeed, let w be the valuatioﬁ
ﬁofLK’ninduced through'y by the valuatioﬁ Qe It As the residue fied

'of K’ with respect to the coarse;valuation W equalS' K1, £he Qa—
'\luations w and v of K’ induce the same valuation on Kf°9m’ igs

gf—embedding) and §,equals the valuation v of K’, the unicue value
“tion ef K extendlnq the va]uatlon v of K, it follows that w eaual
~Lhc valuatlon vief K' as contended. Thus- it remains.tekshow thet

s ¢ ; _
the canonic 50 = embeddlnglg -+E; of mixed w - structures indu-
w2 =0 = !
: fher ' e e A ! e
ced by 7 coincides with the restriction of/Q to g;. As % coincidr

with/z"on §f°by definition of # and VK’'=vK it remains to show

~that the canonic monomorphisnlng ,—w>G induced by ?,equals the

}:1

restriction of /Z:Gﬁ~“?6§ to Gg, - Let us show that

-

26 (AP

[
P

Indeed, let zeK’™. As UK’=vVK, z=au with a€k®, ueO%, and hence

ey

(l+me ) [¢0+mgwbﬁ+ ”ﬁﬁherefore z(l+m« )GC (K’°)X 2; contended. Now

- Ty e
ooy e

; ﬁhe statemene above is 1mmed1dte ance/ and’i coincide'dn Gﬁ and
(K’O)X by definition of 7 - Consequentlv, ’,2)&/\ and henée
'K’“K 51nce,4 {K Kc%Fﬁ by assumption. As x is arbitrary, we conclu
:de that K° is algebraically closed in.the Henselian field éw, In
.particula%)go is Henselian. ‘

l 39 Moreover, we claim_that K is algebraicallv closed in L.
First let us observe that K is Henselian since g is Henselian gdn
pesdecissdfowsgiary by 1) and_ﬁo is Henselian by 2): Let &’(ﬁ& be

a finite extension of K. Note that K’°=K°? bv 2). Here is the point

where we use the radical field structure of K’/K given bv Corolla-



~

Sy n. n

j\ ""Kr]/l‘ where T is the ideal qenera
L . ' 7

Yoe 1, 1¢igy, with c,¢k® such that c,.t,t=
i : i - oty

l:‘y ]92: I{f“1<(t feeo’t‘ 1\

1
ted by r polyhenitals c.X

i

=l A<l ety T KD 1-; sy t; be the multiplicative groun of ra-

dicals of K'’/K. Consider the chain of isomorphisms T/Kx.ﬁ;vR'/Qrut
i = N

et [ b Bzl 0 Tet us choose yl,.;,;yreF such: that
ldicr i% .
ny n,
Yy (1+me )-/( (l+m@)), l¢ig¢r. We Get Civy el+m” since'cit_«=l, leis

COhSJd@r the Dolynomlals f (X) X l~c Y 1cor[k] Pailar. Ng &fi(l)>0
@ 1

vff(l)=v(ni):0, we get by Hensel lemma apnlled to P some elements

xl;...,xre F uniquely determined by the conditiens X4 ZCile ;
L

()
’v(xi—l)>0, Idignotieius put z =y, Xy Leigr. e substitution

\\tiF9 e (1{igr) defines .a field K-embedding ¢/ :K'=> F. Moreover,

7 :K'—> E is a valued field K-embedding since K is Henselian and
: : e = e :
KR! /K is algebraic. Let us show that the¢§$~ embedding ?:gém«ﬁf;

of mixed @w-structures induced by 7 equals the restriction of

] o @ e §
?ﬂ:;bm}g>to K;. First note that K’'°=K° and 5K’/$K is finite since

the exteneion K’/K is finite by assumption, Conseaquentlv the em-
bedding of totally ordered aroups §K’~ﬁ>5F indueced by 7 equals the
Festuictien of/u":&L-m>§F to §K’ Sk remains =G show that the

group monomorrhism Gs

K’ Gﬁ 1nduced bv ? eaquals the restriction
of /L:G‘-w%G@ to Ge . Bv construction of A aE sufflces to verify
vthe eaueiltf:G@ “Gv Az€§;,.%z- where ?. is the coset of t; modulc
K’ 5 s i i e

.l+mK, ’ 15i{r. In order to do this we have to show that the canoni

group mifphlsm T—»Gs, is enlicn Bt dibe om ol o of 0T A
T/ xc{vK /$K : thu ;ith teT, u60§, s aSince NS u=u’a with
;u €OR ' agl+m«, . Thus,z=(tu’)aeT(l+me,) as contended

:We have shown that (K’,? 6/4 and hence K=K since/ﬂ=§K,Ka»Fgc

! being arbitrary we conclude that K is alagebraically closed in L
4) Now it is the time.to show that KG=LO. Assuming the con-
trary, let el KL ne R e aldebfaically ellosed in 1.° by 2),
% 1s transcendental oVer.K(i Let Y’ be the ratiemal function fiield
K(x) with the valuation induced by the valuetion V.of L. Accordiﬁﬂ

to [10] Ch.6, flO Pronoeition 2, the restriction oF v to Kr is th



S

; % v - » : 'y ! (. = » )
unique valuation ot £t extending the valuation v of K subrect Lo

@ 0 ‘ ’ : . O - O LI I8 T
vx=0 and x =x transcendental over K . Note: that vE!=vK and K' =K (X

gtherofore the corréspondence xr&#’(x) defines a valued field K-el=

. ; ¢
beddinq’j:%ﬂm%gya It remains to verify that the 50—.embeddinq

~ D

; €&
v }<~W§L‘ induced by % equals the restrictien of/k to_gé insors

o

: > ) o
derstergelt (K’,y)é/ﬂ eontrary to:the fact that,A ng,Kc& Fb. as 7

and}a ébincide on §’°.byadefinitipn ofz;,(and 5K’=3K, it -suffices
to ogserve that G« —G (K’Q)X{ Indeed, any elemeht zeK’X can be
-‘\wrltten in the form z=aw. with aCK uCOK, since 5K’=5K.

5) Let us show that vL=vK. As K° L by d) i suFFLces to
verjfy that vL=vK Ass uning the contrary, let hCL‘\K be such that
“vxﬁvK Bs Ko is algebraieally closed in L by 3) and K%=1,° - the fac-

-~ tor group vL/wK is torsion ‘free. Indeed, let V€L be such that
e nel

nvywva Wlth aek’ ‘>l i.e. viy:a )=0. Since’K °=1°, yna l=bu with

b€0% s BElame, As I is Henseélian of residue characterlstlc zelo,

sb

=

Fu=g for some z€O ;: therefore (yzrl) =abeK. Since K is alqebraln'

CHEtex

cally closed in L, yZ. “lex and 6V:§(vz“l)€GK as contended.
5 Let K’ be the rational %unctlon field K(x) with the valuation
vlnduced by the valuation v of L. Since VK’ /e %0 is torsion free

. as a subg:oup ou vL/e . 1t Followg bv [}O] b6 §10; Proposi-

==

tilon 1, thak G vK & Z VX and v(z_ a,x )=m1n(vai+i§x) for arbitra=
: ; i=1 1 :

ryga.GK, 1¢i¢l. Let us choose an element yeFx_whOse coset modulo

1+m* is ﬁ. } ) oin particular Gy;ﬂ"(&x) isSef winfinite order

B
L
modulo VK and lience y st transcenacntal over K. Thus the substitu-
tion x+» y defines a field K- embedding va K-9»V We claim that

@ & % 3
nz:K'w% F e 2 yaluation field K embeddlnd such that the induced

vK-embedding vaw4-vF equals restriction of/c" to vK’'. Indeed,

let f(x)=Z?a.xléK’x. Then Gf(x)=min(§ai+in). Oon the other hand,
Sl

[]d} @l O §10 Proposition 1 may also be annlied to K(v) instead
of K'=K(x); we get vf(y)zm1n(va.+ivy), i.e. v(y /L )y

1
as contended. Morcover, as K= k% = L v Y iq jipisiact a K ombcddlnn
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(GG

&(x~a,)3w},§‘<l . Then a=

of the valued field KR! into F, Thus it remains £o show-that the

€ S : N @ 5 ° > :

Komomboddlng 7 MU{w%Pg of mirxed w-structures induced bv i ecuals
o el et : S

@ 2
the restriction of,k to gé in order to obtain (K',?)g/ﬂ' conbrars
to the assumption that /\ :ﬁK,K@% Fﬁ, Since K’°=K” and vK'sVK ®

A i)
@ va we obtain Gy, = G¢ where x is the coset of x modulo

Q2
I{' “w 4

l4m§, ; therefore 7‘ and/é coincide on C 5 by definition ofz;.

v

56) Finally we are ready to prove that Kel / hssuming the-con-
trary; let xeL\NK and Y’“K(x). The element x is transcendéntal ove:
K by =R ) by 4), vK=vkK’ by 5);'consequently, we. aget also

@ ¢
K’ and hence K =y' - Thus it remains to shew that there exigt

‘Ha K~cmbeddLng 7 K ->F‘1n order to qet (R!n)e contrarv to the
17

assumptlon that A :ﬁK,Ka@;Fﬁ, As K =K’,, it suffices to show.that

prenq R

e
there exists a K-embedding ?:K'mﬁbﬁ
; : : _ :
As the valued field extension 5'/5‘15 immediate, there ex1ctt

. ¢
a pseudo convorqept sequence a= in 5,:K$ LK], w1thout

e

pseudo—llmlts in K. .such that x is a-pseudo-limit o+ 3. Indeed, let

e

c= { (2=c) :céK}; we. show that C has no qreateét element. iet

o( v(x CrE@s ﬁhen there exists b&YX such thaﬁ@(zéb, since VK=vK’
Also there is c{€O§ such that v(d (y c)b~l)>0 since XK °=K’% Conse-
‘quently, v(x—(c+bd))>a’, giving a greater elemeﬂt ef C. Thus there

‘exist o limit ordinal Ag < |k} and an increasing sequence

oy
) en
‘of elements of € chinal with C. lLet us choogse a ek such that

¥

is & nseudorconvergent Seauence

eyl

rand Xdisica pseudo limit of a , written a-x .ilfa->b for some

b€k, then v(x—b))cx? for all $<A, wontrapv Lo the fact that

'WT)Y<) is cofinal with C. Thus, a has no nseuda=dimit in K.
Let us show that a is-a transcendental éenuence, i.e,

fla)=(£f /%O for all f(K[X] &ﬁ' Assuming the contrary,

i

let féK[}J O} be a coudnterexample of smallest dearee: f£la)~-—> 0,

n=deg f minimal. Obviously n#0. Morcover nyl: Tmileed, 1€ 0G0

=c (X-b) with békK, c€k® then a"%; contradicting the fact that a
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has no pseudo=linit in Ko If L(X}=g(Z) (X} would bo reducible then
its factors g,h iave smaller degree and hence f£(a)-—£»0 since
Jo> 0 oand hlan 0, contrary to the choloe o0f f, Thus £00) 15

ifreducible and she factor K-algebra MmK[XJ/ is a field exten-

X
sion of K of finite degree [M:K]xn)l. Now we define a proloncation
w of the valuatizn v of K to Mopeidin such a way that the extension
- - A . |
(M,w /K is immecd:ate. Pdr each qEK[X]ﬁb} ofidegres - <-n there is
@
</1 such thas Vg(a ):Vg(az(g)) fok Bl ? A.uubject to T (gls {

e

¥

since g(a)-% 0 Br assumption; as §Qf>x we obualn Vq(x)~vq( Z(G)

- Foxr ewvery such‘g ilet us pﬁt w(q(X)mod £ () )zgq( ) . Thus we dget a

~ such that tymax(t(g),z(h), Z(r) C (), \?f(a), )>VE (a

e “and vi(x)>VE (a

+@f(a

map wiM® ~%avK su\;sfylng e DrODthLeS of valuatlons excent poasL

bly the multiplication rule w(gh mod L)*w(a mod f)+w(h mod f)

. for g,heK[X]Qp}. We claim that this rule is also satisfiedu Indeeex
fet g,héK{X]\{Ogtf degree < n. By Euclid’s:aldorithm‘we obtain

vogh=gftr with g, L\YX] of degree <n We havo to show ihat vr( <) =

=Gg(x)+$h(x), Obviously, it sufflces to show that Vr(X)<Vq<X)f
. o % z o 5 £ 4 % g
+vi(x).. Assume the contrary and let us choose an ordinal v <A

R

i

) for t¢¥<A . Such a T exists since

§

f(a)-—> 0 and a—rx: therefore f(g)—% f(x) by coptinuity. for nselts

. e . eore

convergence. For 'S¢ A we get Gr(a§)=§flxx>5q(x)+5f(x)>Gd<a¥)+

y)e Consequently, for ?<‘§<‘l : we obtain §q(a§ )+

® 3 o L @ e R . LRI =
+Vh(a}):vg(az)+vh(az)=vq(a2)+vf(at)aVq(df)fvf(éy)“vﬁ(a?)+vh(d¥), a

contradiction. Wo ctonclude that w is a valuation of M which extend:

the valuation v of K and wM=vK. It remains to verifv that the re-

sidue field of w cquals K°, i.e. the extension (M,w)/ﬁ‘is immedia-

te: let‘gEKfX}{b} of degree {(n be such that w g mod € (X)) =
z&}(X)z(); as K’= N’O there is beO R such-that w((a(X) -b) mod f(Xf)z
r=‘(°r(g(>:)—lf))>0. in‘n K is algebraically comnlete (as a Hensellan
field of residue vharacteristic 3ero)'and (M,wf is an aldobraiC'
immediate extenglon of g_we obtain K=M, contradicting the fact

{M:K]:n?l} We conclude that the sequence a is transcendental.
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: - : : .
Hereslt 'is the point where we use ‘the assumptieon that IF  dis

'L] = pseudo=conplete;  thierefore @ has a pseudosldniie v in P, As &

ls  transcendental, its pseudo-limit v is transcendental over K: thus
the substitution x}»y defines a field K~embeddiHQf7:Kﬂw&}?,fwa

< ; ] = : . i;’ 2 @ :
claim that 9 1is & K-embedding of the vafaed flelde it iinto M. Indeed,

let fEK[X]\@}. As a is transcendental, f(a)-/>0 and hence there is

4

<) such that VE(x)=vE <‘a}>=\;f (r)ifor el Ee F i
0B D.

The next embedding criterion for Henselian fields of charac-

teristic zero is an immediate consequence of Theorem 2.1.

T
“

Qgrollarxw2.2.ALet K=i(K,v) be a“valued field of characteris-

e

el zero and‘£=(L,v), F=(F,v) be Henselian valued fields extendina K

: . : :
Suppose that F is'{LI = psewdo=complete. The neeessary and sufficien

condition for L to be K-isomorvnhically embeddable into Todle thet ehe

& [ ; e
‘mixe W=structiure . 1s K - embeddable . in F .
— o : :

S e S e =0
=

3. Mixed structures
.. '/‘ «

We have introduced in the previous section the so called
mixed @ - structures and we have seen the kev‘role nlaved by these
“onestin'embedding problems: for HemseliansfieldstefSeharacteristics

L 5

& # : : i Rt
zero. The mixed w-structure Eo assigned to a valued field.gf(K,v)
of characteristic zero is iconstructed with the helwmieof the coarse

i 3 : B : . 5 E .
valuation v induced by v and hence it is not an elementarv obiect

assigned to K, except the snecial case when the residue characteris-

o,

tigvof K 15 zero. As ithe model theoretlcinvestigation of Henselian
fields requires more elementary invariants, it seems natural to

@ t '
approximate the global obiject K, above by a family of suitable

objects that are definable in elementary terms. Possible candidates

for thcse,elementary objects  are the mixed k=strauetures Ek’ keN,
] e e o) i s YIS TR ] o



defined 1n Introduction.

In abstract terms, a mixed k-structure (keN) is a systom

ek

B=(A M. ,0,v) where A is a commutative ring with 1, H is a multipli-
cative Abelian group, [ is an additive totallvuordered agroup, © s
a partial map from A into H and v:(A\{O})C}Hwﬁ,F is a map subiect

to the next conditions:
‘l}l) For a,bEA\{O} , a divides b (written aib) 1L BE vaavio:

e L) Her a,béA\{OS such that ab#0, v(ab)=va+vb- ini particu=
ot va>O Fox all acA\{Oj and vu=0 for all unlts nens by 1. 1), set

by convention vO 20 with the usual rules For the svmboles;

N

©1.3) For a,b¢A, v(atb)ymin(va,vb); thus A is a local ¥ ing
with maximal ideal‘@A¥{a€Afva$O}; Iet:o be the cliaracteristic eXpo~

\ﬁeht of the residue field'X=A/m 5 Sue g e

~1.4) The image vA:%v(A\{O}) equals the _convex subset (;k
'?{Xﬁfmdlgw$vp2k}'off~; congequentlv, A\{O} {acA alnzk} the charaes
terlsblc exnonent of A is ka i and A=A iff p=ls '

D) The restrlctlon vh H«;[“ is a Group enlmornhlsm,'
3 1) The domain of the martial map ®  is the complement in
: 2 Sl o e = COEShGRSER
A of the ideal EA’k.—{aCA.va>yp },_ . el e
3.2) The following diagram
A ’ ? V{A 'r
vy

Sl T

"A\gAk

. commutes;

3.3 For a bgA\m such that abgmA K » @ (ab)=0(a)O(b) ; in

=,k

particular(%Ax:A,vvyéiis a aroun MOrphism;
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3.4) Ker(v ‘“)\t_‘@(i\x); in fact we have .couall L'._\r oz 43000 )

,GHa)ﬂGXhﬁ'iff V(ﬂ”; vp bvb; thus

305 ) Tor aLh é}'./\\ LN

& Ker (v } by gad,

H)

Note falso that the image of fne man C} cquals-{hcn: OLvhgvn .

o

For supose’ acA\m

s r e va{ka; wea qet‘vO(a)xva{vpk'by 32 )

Conversely, let heH be such that O{vh{vpk. Bv 1.4) there is'aEA

such that va=vh. As a;ém y We get v Glal =va=vh sz i3.2) . Thus

A,k
h@ (a) CKLT VIH and hence h()d) :L/Q) fox some bCA long 3ad) I£
follow h=0(a) O(b)=C(ab) by:3.3). .
Given k,k;€§, kol an Abelianitotallv'ordered groun r]
‘miXed k-structure §=(A,H,r}@,v) and a.mixed k’-strueture Af=

=l T D ) such that A and A’ have the same residue characte-

ristic exponent, say p, a rezStrietion manfﬁké->A’ is a man

ﬁf ALJH-O%A CIH" subject to the neyt éonditionS'

%ﬂf is an unitary ring morphism flom A onto A' Wthh 1ndu—

"ces an isomorphl Sm A/ e N L partlcular,~%7 induces an iso-—

Da, 2k’ 2

morphism of re%idue~flelds AZA;

A 2% then vazvﬂﬂXa); in. pactienlar, for kis0,

we get vp"v’p{

7/

et 9?? is a group enlmorphl‘m from H onto H: such that

L h= V'L (h) e e

f 1v)9¥@ =T () for all aéA\mA k’.;

. Note that the restriction man Y’lnduces an 1somornhlsm

H/@ . JYH' . Bemsinpoganechiiy | /;W-M{WMWﬂfmﬁgmx /Am
27,k

For suppose agl+m

13

Uy o ; i .o v(a—l)>vpk . Bv ii) we get v'ST(a-1)>vp

and hence @' (f((a))=1 since Alx/l#m -
=Al, k!

”,).by 2 .5), On the other hand, L (G(al)=C4 & a)) =1 by L1u).

g7’ el
1.e. 9 (a)e l4£ﬁ\’,k’

Ker(v'i

Conversely, let héll be such that J(h)=1. In particular vh=0 by iii)

and hence there is aeA®™ such that h-0Q(a) since A /14 "’ROT(Vi”
: : WA ke

By 1w}, we ebtain

k
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forltésff and~ak e

" phisms between such ohjectq. : o
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(}l f(g(a) ):lﬁf( C?(:\) ) :a9f111):3} ' therefore Alalel + 1n]\, or Accordina i()
& ’ & ¢ d [

Ad)elt ol lows agltm "as contended.

e o

By a pro jective svstem of mixed structures we mean

'a'system‘éf(ﬁ ~%&,€) ‘ ‘// whero 1 (A , Hk, T‘ C) o s

Jeid LN

e

-~k

‘mixed k-structure with Fm Tfor all 1CN andiﬁk E:A —mﬁ‘A for
o

a«,f is a restriction man as defined above such thatji‘ p&ﬁ a°32 #7%;

v E"i
A
2k

R To a mixed ajnstructure.S:(m,H,rZ@,v) one assigns

naturally a projective system of mixed structures P (S)=

L = . '.ﬂ .

S 9 Q)}\CN k<«£ WhGI_e §,,k (O_r.,lerer{:r: k'vk) with

.O—I-\g’Zk QM/ ; H/@ ,«M K o Qk : \mM k/@;w 5};’% Hk'
i "'Di 2l = ,a

@

ALY A W el z7 i‘r)"“"‘\, e o

y\\-‘[ )Fr\[) 7/\ < : ,MI 2k
by @ M QM%H viH-—>1, and-f£ g M€~M>S for]<<£ are the canonic

"LJIi ~w% rﬁu{ﬂﬂﬁinduced respectivelv

»restriction maps. Note that P(Q) is ldentjtxed with’ S if the resi-

due characterlstlc of M 1S Z2ero.

= s

As we are interested in organL21nd the nroiective

‘systems of"mjxed otructures into a cateqory we have to deflne mor-

Flrgt we define the embeddings of mixed kmstructures

for given kgN. Let A=(A,H,r o) i A’=(A’ H’ v 9 ,v') be mixed

k-structures. An émbedding'@:A~f}§’ is a maw‘? AL/HLJr;?A CIES

subJect %o the next conditions:
-l)(P!A is a ring embedding of A dinto A’;
id) ?iH is a group embedding of H lnto Bl
L) W&[‘ is an ordered oroup emb9dd1nn of [ inte | 4
ivS v/ ¢(a)=%(va) for all aélh;
v)v’%ﬂh)=4%vh) for all heH;

V10’ (¢ (a))=@O)) for all a€ANm, .

Now, given the projective systems of mixed structures

@,




N e

P Y

A\:

Hom (A, B) ;‘:Eﬂc ~nt 03’:’ embeddings of A into B.

w20 e

i! iz * A3k r ,.““{.,\‘ -.l-- " C
FAE e €T SR G S0V 2 1 M(;)\(“N ke an

N

©

- ‘. F q
(mnd A= (A €

= (Ay 19T kEN, Lal

i3 into A is a famdly ‘(’),:A]_ > Al et embeddinas
M e I\ BTN

embeddi:

-
of mixedi-sizuctures, k €N, subject to the compatibility condits
exras 4 <
1% o for k< L,
i ‘

4

A,B are respectively mlhc&) k-structures,
w-structuregarojective qutems @f mitced Structures, denote by

ot
iy

gall a mixed w-structure S‘—‘(}jﬁi,H,eraV) comnlete

P Tei———
perd

1f M is i'aac:f' complete, i.e. O ""qulm-OM k ; dand o ois Cauchy
-mmv-‘ “ feomendiny, 4 .

complete WL TeSp ect to the tonoloay q;_ven by the system of

Fladein Wl

open neighbzioods of 1

la{“ﬁggpk_)}k@g’ i.e. H & 1im H/Q (14 e

n g o
L ™ % -
The nesx% Jemss are immediate.



- lation procedure.

oGS

Lemma: 3.l Given a miscod @-struckture -8 thert exist d comnlote
e PN

e ~ Ko / o :
mixed @-structure § and an ewbedding 1:$-» 8 such that for cverv em-

s s i

bedding ¢:8-»5" with S' complete, there is a uniaue enbedding

AT s - « P

A .
YiS —>35' subject to ¢=¥i.

A e o R A

L A &
Call the mixed #w-structure S .above the completion of §; §

is unique up to an isomorphism over

tn

&

Lemma 3.2. Let S and S’ be mixed w-structures and assume % is

s a—

e

coleotc The canoniciomap Hom (S .S7)—sHem{P (S), RUSL) ) is bijective.

w4

qiven k€N, the eategory of mixed k-structures, with embeddincs

k

We may consider the mixed k-struc

as morphisms, can be seen as the categorv of models of a theory T, in
a suitabletfirst iorder language Lk'
tures. ac one-scorted struckurecs, as well -as (finitely) manv sgorted -

structures with sorts for the ring A, the qrou; H and the orderéd_

“group F; we choose in the following the manv-sorted anproach. The

languages L, ; k€N, are related each to ether thanlks to‘the'next tran:

Lemmu Sd Let k,ZEN be such that kg{. Given an &kmformula

V(é), x=(x l,.e..,xn), one may assign effeefively 0 it an ge = formii-

la trk e(Y)(x;y), where v is a new variable of sort A, in such a wav
¢ oo 3 St o e - .

that for every restriction map SC defined on a mixed 4— structiire Ao

residue characteristic exponent n with valueo into a mixed k-struc-

ture A’ and for every a*(al,...,an) iﬂ A of sultable sorts,

AEY( (3ia)) doe il e p (asp)

Prools Weidefive sEhe “ﬁranslation map trklezgk-f>}%‘ by indue
tion on the complexity of the'formula?’.

1) Aséuming Y atomic, we distinouish the next ca364:

i)?’:=(f(é)=0), where fEﬁ[ﬁ], é=(xl,..‘;xn) variables of sort
A; let us plt trkﬂg(Y)i:vf(§)>vv2k; |

11 = (t=1), where t is.a term of sort H; 1.e. & ts a word



SR L
sy 5

W with n
Batetiuug

lr-ee,lm(u.dnd Wy has either the form Q(f(x)) with

fgz[x!, ﬁﬂ(x],...,xv) variables ‘of st L, or 4t i varialble o¢

sort H; define Lr E (92) (v ’“1)>VV )A “t{} vhere

variable of sort A;

Zoils A omen

iii)\f:=(§20), where E is a term of sort f: i e

§ ”2” e a’ with Nyreooyn €7 énd;{i has'either the form &f(é) with
fEZfYJ §~(xl,.=.,xn) variables of sort A, or the form Mites, whe;e =
1S a term of sort H; let us p#et tr}fg(W):=(?=O)7

. iv) ¥ o= §>O), where ? is a term of sort/ﬁ set trk'éﬁﬁsz
. au(wmmw)

3) try.E7V =]tr, E(W) :

4) try ((az)\{’(z) ) :‘z(BZ)t-rk"B (&"('z) ) .

Similarly we may 1ntorpret the cateagory of nrowectlve systems

of mlxe&,structurcs, with embcddlnqs as mornhlsms, as the cateqory

of models of a theory T in a suitable first order @ - sorted lan-

guage L with sorts for thelﬂna Ak (kCN), the aroun Hk (k€N) and

the orchey}oup f 10 next ]emma is an immediate conscauence of

Lenmu; 303.
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‘

Hemha 8 di. el \{/(><:L pos e pX ) be a1 - dotnmila, oy

R i b e n e L)

l/\ 5

Laidn, %OE

£

S el e e o ot N ol
e e 'i_ }& pesiaie] k ‘
m, =

B E e of sont |

One may assiqn efifieatively to #’a natural nunber mgmax(mi) and an

: : : ; : it
L. = fornimlasiely e o i2z) in such a 'wav that for everv nroiective
% 1! :

g AT Tl

system of mixed structures» A=(A. : % of residue characteris
system £ ruc o= k;f)kQN, ked 2 e

tic exponent p and for arbitrarv Ayree.,a in~Am ol suitable sorts;

-\2. e 2
ARV m(al>,u.,9:

- (a )) iff A %Q?al,“.,a e
l’ b e A

n

leen an uncountable cardinal K, a nrojective system of mixed
ctrucLures A~ AR is S e A 7 ¢> £
structure ( ],Jk,—)hCN L K aturat ted 1f for every set Of
Qo formu]ao with parameters from A (i.e.ainvolvinq constants For
L3

4

‘elements of A) the following hold: if <ﬁ has cardlnalltv less than K
and every finite set of formulas from 95 is realuzed 11 o5 then all

formulas from gﬁ are 51multaneou91v ledllzed in A.

Lemma 3.5, Lét & i H O, v)c.;;»& i M(i),Hu),(‘(i),@(‘i),x}(i)),

A=1,2, bé embcddan“ oF mixed & - Structurés@ Sunnos e that S( ) is

complete and P(S(z))

e o

is K-=saturated fOr some cardinal

K){i(ln =|H { - The next statements are equivalent:
(1) (2)

, ,.- i HOmS(S s ) is non-emntv;

11) Hom (Sél), é2)) is non - empty for all k(N
: k = ; .

Proof. The implication i)—3ii) is obvious.

ii)—~» i) As 8(2) is complete, it suffices to show that
Hom (S)( (W(l) E(S(Z)) is nOn*emntv, according to Lemmé 3e2.. Lek
X«{x aCﬁ( (l)) NP )} be a sct OFf L - variables such that X has’

the same sort as a, ané consider the oet ¢>oF alil ‘basic L ~ formu~

las (atomic and noqated aktomic formulas) %(xa ERRTE N ) with narame-
n

- ters in P(S) subject to P ( "(] ) E%a 1,,..,an).10bviouslv,

Homn(g)(P(§<l)), P(L(Z))) i1s non-emnty iff qbis realized in
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e By Resaburation plroporky of Tig s TR R e

.
Lo L

: : ak e
that cach finite subset of $é ilsireallzed on h(‘-i(“)). Let
Poee g X ) e 1Sigm, be formulas from 9‘ According to, Le enma
il 9h

3.3, we may assume without lossg of qonox;‘alitj\f that there is keN

such that all Paraneters. occuring in Q}, 1{i{m, denote constants

b : : 0 :
from SP; we may. also assume that Ayreee @ belong to Sé ). Since

el =k

S 2y - > .
Hom,, (3k e ) is non-empty by assumption, we conclude that
=k ' ]
!

o (5 . . L . .
the formula Wlﬁ%éfﬂe°aﬂ¥h is realized onisé ) and hence it is also
realized on ?(S} ))s

4, Proof of the main results

i

Denote by L the first order language of valued fields,

whose vocabulary contains, besides the logical. symbols, constants

0,1, function symbols for the field op@ rations (+,.,?,’{ with

convewntion O l=O) and one unary predicatecQ,Which in a valued field

1s; Intewpreted as the valuation rina. The axioms of valued fields,

as well as the axioms of Henselian valued fields can be formulated

in this' language.

The language L and the languages gk of mixed k-structures,

~kéN, introduced in Section 3, are related via the following transla-

~tion procedure.

Given a valued field K=(K,v) of characteristic :=zero and a

natural number k, let us consider the canonic mans %A k:O e
. ) 3 4 oy
~»0p 4 = Y/ ; ﬂH I{:I{X% Kx/JL+ -
ot ueK k ’ MK k

; SEi
Lcmma 4.l et kgﬁ ﬁﬂi-v(xl""’xn; Vyprsee e }lra-olfl)g

be an L, - formula, where the x:’s are variables of sort A, the

e e el i ot

yi’s apc variabiles ‘o mort Hoand the 71’5 are varkables of sort r.

One assiqns affoetively to Y an L=formula trk(%)(21’22’°°°’Zn+m+1+§

1o cuchinaa way that flor every valuecd ficld ef ichamacter] st iia verg

1
I
o,
o




ey

o

and: resndne alinractarl sitvl o Cxpolentan s sanc BorRueh i toare g i‘{ ()}, Elial
& , : L o ¢

X e : : - g :
KT (n+ <nbme f RV e el ) tn+lgigntmg;
a, k™ (n+lign+m “)’ﬁyk %‘“(A,Zk(dl) l&isn; ;”,k(al) n l\lsnlm,
: .
va, sntmtl i éntmt Clliere s e e
va, sntmtl$igntntl) iz ok }Ltk(l)(d}, ,fnlm*ﬁ, P)

The proof is immedi atc.

The next embedding theorem for Henselian fie Idn of characte

2N ; ;
X ristic zero is a consequence of Corollary 2.2 and Lemma 3.5.
: - = ‘ ‘
e ~ \§ : gggor@m 4, 2 Lét Kz(K,v) be a valued field of characteristi
Zero aﬂd L,F be Henselian vaLued fiel ds cwtendlnq K Supnose that
the valued field F is K-saturated for some cardinal K>|L} . The nec
\

f—~A A Sary and sufficient condition for the valued field L to be K-embed

deble dinto 0 35 that the mixed k-structure Lk ii'gk - embeddable

P ihone() fk e a2l keN. . ; s

==

P .

Proof. ‘An implicatieon is trivial. Conversely,-assume that

FomF (;k,Fk) ig non-emnty for all keN. By k— aturatxon DroneEtv e
g s , OTY N . |
k e o

- it follows that the mixed a)~structurekﬁo is combiete, the nro?

8 - e
~tive system~f(§@) 1s K-saturated and the valued field F is |L]-nse

]

do-complete. Accordinq to Lemma 3.5, HomK (R ¢F ) is non-empty

and ‘hence’lL is K*embeddaale into F by Corollarv 2 2.

o
)

o)
(4,3) Proof of Theorem B from Introduction

An implication is obvious.Conversely, let us assume that

the mixed k-structures Lk' " are elementarilv erquivalent over
K} (written L X _Ek) for all keN. We mavy assume without loss of
P e = k e | < )

generality that F is K-saturated for some cardinal_g}‘L[. For othe]

wise we may consider a V~saturatcd elementary oxtonqion BLof

decording to {29] Theorem 16.4. In order to aet L“V ﬁ e Sufficcs

to show that there exists a K-embedding e [r~%h auc% that -the in-—

Py



-

. duced K, ~ombedding of mixed k-structures ‘(H.,: Ill, s 18 an clemeniany
2K _ : ¢ lales ol
he fort-oal Lhkel s lor fin tnlscase Wi may. constyuct by itergtion an

infinite commutative diagram

= I L S
N, : - = = =
where l+l)/I F(lflb/r(l) are elementary extensioné,'g(l+l) is

mFi\+ - saturated, F(l) is lLi}+ - saturated and.@(l) él) _g(l)
%’(l): Eél)“v% él+l) are elementary embeﬁdlnaa for all kéN. Let

'Fia»xlip f(lj “}iﬂ L(L) ) By Tarskl Vauaht Theorem [°q1Theorem 10,1

(
(0)/L and F( )/F are lementarv exfenblono and hence L”K o

e
ey

Thus it remains to qhow that there ex1qts a K~embodd1na

@ : Lw%’F with the required UIODPItho. As and F, is K-satu-.
= k K}\ - k =k =

rated, K){L{&g}yi, there exist elementary ﬁk - embeddinqsﬂ%k«mg>Fk.‘
Tifor. all kEEf’therefOre; by a slight adjustment of Lemma 3.0, we
= @ & @ ] .

obtain a Ko~ embeddinq<§ :Ibm§E; of mixed w - structures inducing
¢ k- 3 (5 B o =

elempentary K, = embeddings @ : L e b for all k€N. It remains

s

. to extend @ itola X -embedding @- —» F by Theorém 2.1.

- 0.E.D.

(4,4) Proof of Theorem B from Introduction

LeL p be either l or a fixed prime number. Denote bv ED the
L~ theory of Henselian valued flCldu oF characteristic zero and resi-

due characteristic exnonent n. Let Clx), A=(Xl;...,Xn), be an.l.-for=

mula. Denote by W the set of sentences in the.lanauaae L auamented



L e

~

with the constants c=(cy ... ,C ), consistina of:
1) the axioms of ?p;
~11i) the sentence G(c);
1ii) the sentences of the form
" i ; . : _,4 5 -
T MeAtr, () (£, () a, () :1¢igmip)] ,
- where A(g) Istas quantifier=less L=formula, k dis a natural number,
‘,\ bl A » . .
/ : i S = o :
j(g) Wlth:ZT(Yl""’ym) isan L formula and fl,alcz[kj Tedgm,

“such that Tk [A(atr, (P) (£, (g, (o)7L - <l§m,o) >

Hx

We claim that W is inconsisteht..Assuminq the contrarv, let

us choose, bv Godel'’s comnleteness theorem [29] Bhieoren 7.1, @ model

(g,g) of W. In particular, L=(L,v) is a Henselian valued ficldaof

characteristic zero and residue characteristic éxponent p, and

n

g=(cl,...cn5€L_. Let K=(0O(c),v) be the smallest valued subfield of

L containing the c,’s. Dendte by D(K) the diaaram of K, i.e. the

set of basic sentences (atomic and negated atomic) in the lanauaage

D -

of K that are true on X, and by D(L/K) the set of 'ell sentences ha-
ving the form trk(W)(g;p), whére kEN, Yfz) with X=(vl,..., Yolvis |
,an ék - formula and g=(al,...,aﬁ)€Km such thapﬁi;(g) makes sense
(i.é. aiEOK 1f Ve issa variable of sont A aiEK% it i is a variable
of sort H or[ ; thengzk(ai) is ieépecfivelv~$Aﬁkfai),9§h£(Qdva) and
Ly Fw(ﬁk(g)). According to Theorem A, the theory S=TPUD(§)UD(E/§)
islcomplete;’thérefore Sk%(c) , since L =S and LI—Q g . Conseaquently

_there‘are finitely many sentences A A €D(K),

l’ ® o o

Ql,...,QtED(;/g)-guch that T F/\l A/\Q —> @(c). Let A%f) be a quan=
i = :

tifier - less L formula such that A, )@/\3. On the other hand, by

Lemma 3.3, there exist KEN - an. I_Jkuforrnu].a W(X) i Z:(yl, e ,ym) . and

(C)(" (C)nl:l<i<m;p)<-m}

Lol o Ry

some polynomials f.,q,égﬂz] such that trk(Y)(f

/\vj. ﬂuﬁ 1‘# [l /\tr () ( (T)qi sl icms PJ »pQﬂf) since

¢ dees not eccur in ED; thorofore L %7[1 ALY (?)(Fi(c)ﬁi(g)



s

151gm;p)]- since (L,c) is a model of W, a contradiction.
We -conclude that W is dinconsistent and hence . there oxisit

quantifierless L-formulas ll(g),.,.,ﬁg(x), natural nunbers kl,...

..[,kf, Ly ~. formulas ﬁg(y), 15js£ Y= Ve rVy D and molvnomials

.

E g c Z[xj, L&, seh cklhiat o LT k~@ > V/ [1 \L\LA ()
L n s 3
: _ A8i< D
(fi(§)gi(§)"l:l<i$m;pi]‘ Using again Lemma 3.3, we mav assume that
'kl k cf =k,
: o

5. Application to p-adicallv closed fields

In: the last section Q. f the work-we shall show that Macintvre

 theorem [23] on quantifier ellmlnatlon Eor D adlc fields and its ge:

nerallzatlon to pradieally eleosed fields due 0 Prestel=Roguette [2«
Theorem.5,6, can be obtained as consequences of kthe qeneral Theorel

Br 3 e b

- Letius fix ins the féllbwinq'a prime number p. A valued field

T

(B E, o7 s <eal led powalued if Kds 0f characteristiq‘zero,‘the resi:

: due field i is of characteristic p and the Fp -snace O /nO is £ini:
: : : ; ; K
te. Call the dimension of the snace OK/eO the n= rank of: the Deva-
coe=on K

Tued faeld K.

‘The above condition implies that the residue field K is fini

e, s ay K”F w1th i pf b =[ﬁ'F ] amdithe absolute ramification

inxex e of g, ieen the number of nositive elements in vk whlch are
SVYpPy. 1s find kel Thie n= rank d.of the p=valued F1eld K satlsfles the

==y

relation d=ef.

A p~valued-field K of p-rank d. is-eallied ?"adicallv closed
{f K does not acdmit any proner.pwvalued algebraic extension of the
same p-~rank. It turns.out by [243 Thecrem 3.1, that a p=valued fiel
5 is p-adically clesed 1ff K is Henselian and lts walue aroup vk is

a §~droup, i.e. the cearse value qroup Vi is digflsdble.



.41. (d)

) (d)

Giveon papd a2l ‘let us eonsidor Lho augmentation L

“ecirven

of

the language L of yalued fields with d=1 new constants Ugpece Uge Th

" class of p-valued fields of p-rank d is axiomatizable bwv universal

: : 2 e T i : I
axioms in the language L( )‘ln such: a wave that for-anyvy n-valued fiéel
K of’o~rank d the constants u]=l, uz,...,ud denote am P~ basis ©Ff
0 / < Wikh respect SO Lhc modified language L( ), everv substruc-—

ﬂﬁte of a p-valued field of p-rank diis magaln o e -valued p1eld ©f

p rank d. Note alse, bv [2{] Theorem 3. l, that the class of p-—adJ~ al

1L closed flelas of ip-rank.d is axlomatlzable in Liand hence in L(Q)

(@) = ;

Now cxtend again the lanquaqe L by unary nredlcates

PnlnéN) and add to the L( )~ax10ms for the thedry TD a of np=adical=

P i

'ly,closed ;i fields of p~rang d the new defining axioms

Pn(x)<~>(3y)xyn =4

The basic result of Prestel Roguette [?4] Theorem 5. 6 including

Mac1ntyr9 s result EZBJ as a sne01al case, can be stated as Fol1oww

.
R

(a)

_ Theorem 5.1. In the lancuage L

e e e o Y e

extended bv unarv predi-

cates P (mENJ., the theexrv (T together with the defining axicms

p.d

above admits elimination of auantifiers.

The main goag of this sectioen 150 show that Theorem 5. l
&g¢aéﬁgnsgqaeﬂca/@fﬁ?hemymmza@{ dsiva consenuence of Theorem B. FEirsi
of all we state an equivalent version of Theorem 5l .

Extend the lanquacge L
(a)

by unary predicates W_ ., (n, kéN) and

I

add to the L ~theory T of p-adically closed fields oF p=rank d

p,d

the defining axioms
W, G0 @) g™ s Oy e 5
£ S = 3

We shew that Theorem 5.1 is equivalent with the followina statcment
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heoren S.lia. In thoe languadge ]g((1>

e m o e AT

oxtonded by tnare pradi:

cates W Sl ey ke theguy T toagother with the defining axion

EL S e Ll el

above admits elimination of fiH(ﬂltiinjirS.

Proof 'of the eguivalence (551)é¢(5.l.a):

: (S,l)->(5al.a): Given néEN, ]ot fLN be such that f 2)%(n),
- ' ; - ) :

'where‘ﬁp(n) is the p-adig¢ value of n, i.e. n=p .WL v aiswith
(m p)=l. By Newton'’'s lemma, Pn(k)¢¢ W Q(X) on anv Hensell an valued
. fleid of characterlstlc zero and residue characterlstlc P in party

G i : Pl
cular we obta;n‘Tp,d}~ B x)éf»wn’i(x).

(5.l al—s(5.1) s+ Given n,kEN, Lot feN_ke suel that ﬁ)

' max(k,Zﬁpﬁﬁ)). It suffices to show that T W (X)ér%

p.,d n,k

EZ*% 0 x)ﬂ\v(l } q 1 )>kvpj where *S= {(Ni}a,g

e d)és e 1

OQ.u},dd)GZd\(O,...,O):05“&5’p£~i(1$15d{}. Let-§=(K,v) be a p~adica

ly closed field of p-rank d and ul=l, Usyeeerly be the given cons-—

tants in O. defining a basis of 0./

X7 £ shlels
5‘ : e X POK . Clearly, the uy s dgflnv
.also a Z/ 3 - basis of O / 20 . Gliven aeK,let us assume §AFWn k(a
N‘ ::: .- K ‘ el 7
i.e, v (1-ab” )>kvp for some b&K. ‘As'ab COK,tkere exists («l,h....
,..‘,d YES such that v(1l- §:£% uy ‘ab )>fvp. As f>7>% n) it follows-
SR Tres -
/" by Newton’s lemma that (2§ o Uy a) (be)=1 for some ceK, i.e.
- i=1 :
(2: diuia). On the other hand, v(l Z:?w u, )=y | (1= 2w<¥ uy ab i

- =1 : e - 1 l i=1

e
(zz:diui) (1-ab {})kVp since v ( éz‘d ) =0 and f>
=

=1
Conversely, let us assume that there -exists (wl,;.g,dd)és
a S

guch that v(l~2; >kvp and Ez_d uy ab" —l For some b€K. Then

: i=1 - : a i=1
ab?€0¥ and v (l-ab™)=v(ab" (2 ot u;~1))>kvp, i.e. K Y, ().

= i=1 S
(@} 10r 8]
As the residue rings O =0 o/ kCN;,are finite with

K,k _L ® oS

Kk



(k1) - e . : ‘ '
‘0 !\p L) , any sontence about such rinas is cqulvalent to

a quanLiELorless sentence involving the constahts uiml,uz,..,,ud,
Conscquently; Theorem 5.1l.a. is an Jmmgdiatp conscauence of Theoxem
B and of the elimination of quant%plerg for the structures defined
as . follows.

~Given a finite Abelian group A, let us consider the systems

(H,[ ,v,t) where (H,51) is an Abelian groun, i, F,<&,0) is a totally

"

ordered Abelian groub, G:fﬁ%fﬂ is a groun ebimOIbhism and t is an
\élgment of H such that Ker vo A and Wi 1s the smallest positive. e]
- ment of\r . The class of these systems can be ax1omatlzed by univer
sal agloms RN e fivst: ordel language LA whose vocabulary contalns
symbols for group operations on H and r. a nledlcate for the orde
on f G functlon symbol for the map v and constantq for the ele—
menté @f I, ¢ the neutral element 0 of rland the distinguished ele-
ment t of H . . ' S - ' - -
- Denote by T the L.-theory whose méaéls are the/systems (FL

[,v,t) above satisfying the subplementary condition that [ is a

Z-group, i.e. L/, is divisible,

v

Now extend the language‘QA by unary predicates Rn(nég) and

add to the axioms for the theory T, the defininq‘aXioms

Rn(x}<e>(3yEH)lx=ynh

O = % .
Propocltlon 5 2o Inakhe landuade_LA extended with unarv

predicates Rn(néN), the theory TA togqether with the defininag axiom:

. ‘above admits elimination of cuantifiers.

Proor. Let Hi=(H' " ' v,t); g"=(H",r",v,t) be models of T,

——

and H=(H,[ ,v,t) be a common LAwdubstructurc o WL 1T such that

I'nn H= H"n/\H for all'we§; According to LZG) Theorem 13.2 we have

<

to show that U ”Q”



Denote by T(U’/H):Z\&H’ \v/ X LH} th groupof the torsion e

nyl
ments of M'% ovexr I, As an L,-structure:, T(H"/H) is a model of TA
sinea S’ S eloash .fna'c‘: i S for al SINE Sy ~
nce 1l /T(H’/H) is torsion free and [ /nr' M/n% Eor all n(ﬁ RBies
of all we show that T [)e "l‘ I”/II Lt Guffic—ﬁé to show that T(H’

= H
isjﬁ#ombeddable intedl . For suppose thiakie: T H'/H —> H" is a H-em
bedding, .and let y€T(H"/H); we have to show that veIm(e). Lét acH,
nyl be.such that yn:a, as H''hB=H""hH there is xeT(H'/H) such that
§n=a.'It follows Q’ -1 n~1 and hence @(x)y GA=Ker'v. As ACH, we
éét yG;Im(?) as contended. :

v Thus it remains to show that E(H’/H) is H—embeddable into HE
Slnce the equation x"=a with acH has flnltelv many. selutieons i in HE
(aosume X CH’ is a solution of the equat%on above ; then any other
solution has the form X u with uéA), it suffices, bv a standara com:
pactness argument;lto.show that any.infermedia;e«grouﬁ G between H
and T (H'/H) which‘is finitely ggnerated over H can be embedded over
;gi(as én’gg~structufe) inte g". Let G bé sucﬁ a groun. As G/H is £
nité, let us consider a direct decombosition into fiﬁite cyclié :

‘groups: : e e T

G/H = Cy x Cy x...xCy. - o
Let %ifbe'ﬁhe order of Ci; then nqy ..nﬁ n:=(G: H) et XiEG be such
that X, generates Civmodulo a5 then Xy is of order n, modulo H and

hénce'xilzaieﬂ, léiSf. By assumption thiere sexisic yieH" such that

»yil=ai for 1<i¢?. The substitution Xy > yii(lSisf) defines. a groun

morphism over H,:G~>» H". First note that (¢ is injective. Indeed,
let 7ze6 be such that @(z)=1. In particular, Q(zn)=l and hence
zn=Q%zn):l since z"¢H; it follows zéA CH and z=%(z)=1, as contended
Next let us show that @-is an‘}Awembeddind, iJe.uliz)>0 for all

Z &G sﬁbjcct to'vng. Cons lider such an: element zauas i”=ben and

vzp0, we get vb20, @(z)n:b and hence v@(z)20
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Thus we havu.qhown thnt‘y(n'/ﬂ) and T ”/1 _arolu~tHOMOfmhi«
:;i as rA“at]UPtU]Pﬁ. Idontifyinqrg(n'/i "T(H"/H); it suffices Lo
= ke bl and }j_"’ are elenentarily oqt.ﬁvalent over "}:‘V(H’/II) (rathoer

.....

= ovex ) Henece afker replacing H by E(H’/H) we mav assume that
oo a2 model: of TA“ The required facL H’“HH" ig an imnmediate conse-

gence of the fo]lowanq model comolcionosq rebult

N ;
> Drepesiition 5.3, The }Awtheorv ?A is mogdel ssomnlete, l.e.

-x;:%u§G 1qian LA ~ embeddina of models of‘?A, themn Geis an elemenca

-f*exten81on [OUE gl

. #Proof. By Robinson's test [12] Dpopositien 3,17, 1t suffices

=r show for each such embedding He>G that any nrimitive existential

St N

smtence withvparametérs from H which holds in Gilalseiholds in'ﬁ.

N

Eipst let usi show that each primitive existential sentence

vith pardmeters from H has the form

oy

x) € (x), where x=(x peeenx, ) and @(x) = ( /A\ W Gel=a. )”\
T 1<1<€ =

Sy
Ao /A\ VW >va, ) w1th W (x)= 1 } S ;oSy e, a; £H.
L¥l<l<m = l<’]<n _| e

S suffices to observe that

T k‘xfy*ﬁv (vxAvy )V ( V  y=xu) <> (v (xy ey

1#u€ea

Fari v(v(yx ), h/(‘v/ X *g)
2 i l%uéA

and

EAFQVX<O<&¥vx~lgvt.
So let e l) be a5 iabove and assume G (Rt let
1 (b bn)EGn be such that G FQ%Q). Censlider: the subaroun

liooo'
{7

.bI.b2g..bﬁ of G. As G/” lg ‘torsion free, the finitely veneids=

tod subgroup G’/H is free by [?2] Ch.L,_§lO, Theorem 7; in particu-
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lar, G' has a direct decomposition G' = H@G'/H. Let £=(C 0 «.,8 )
- ik 0

€¢'K pe such that G' hﬂa@% c:.é? . Thus each b, admits a unique
j=1
representation. o
i . I -1 :
biw&‘iTch . : (Il..éién)
J=1
with a; € H s e
k ! :
Putting x; = a; T Y3 ,< 1 &n,. the
J=1

equalities which occur in %{5) become identities trivially =. %t ol
gatisfied thanks to the above direct decomposition of G'. The
inequalities which occur in (F(g) become'inequalities in the
new variables Yis eces Y of tﬁg form

(=) 2 . {?)ij o = ve, (L +1L <% € m)
- 3=l s ; :

with "@ij EZ, 8y ¢ He The system of inequalities (®) admits

the solution ¢ CipaE v By model completeness of the theory

of Z-groups

[27], we obtain  d7,..c, ¥ € vEH such thet

k |
§ ﬁyij ?)NJ 2 va; (1 +1 LAl )
J=1 : : :
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Tet d; «oody € H be such that vd= Fifor 13 k

and: ey = 84 FTC{" for 1841 <$n. Then zg}zéf(@i,,aq,ﬁh)

- and henca_{}« (]:x) {p (x) as contended.

[

[10]
[11)

2]

QED
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