INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

ON THE DUALS OF THE STABLE RANK 3 REFLEXIVE . SHEAVES ON \mathbf{P}^3 WITH \mathbf{c}_3 MAXIMAL

рÃ

Iustin COANDA

PREPRINT SERIES IN MATHEMATICS

No.9/1986

Med 23213

BUCURESTI

On the duals of the stable rank 3 reflexive sheaves on \mathbf{p}^3 with \mathbf{c}_3 maximal

by ·

Iustin COANDA*)

February 1986

^{*)} Department of Muthematics, The National Institute for Scientific and Technical Creation, Bd. Pacii 220, 79622 Bucharest, Romania.

On the Duals of the Stable Rank 3 Reflexive Sheaves on P³ with c₃ Maximal

IUSTIN COANDĂ

Department of Mathematics, INCREST, Ed. Păcii 220, 79622 Bucharest, Romania

Introduction

The aim of this note is to complete the results of [1]. Let $P = P_k^3$ be the projective 3-space over an algebraically closed field k of characteristic O. In [1] one proves some finer properties of the spectrum of the stable rank 3 reflexive sheaves on P which have stable restriction to a general plane. Here we consider the missing case (cf.[3], Theorem O.1): the duals of the stable rank 3 reflexive sheaves on P with $c_1 = 0$ and $c_3 = c_2^2 - c_2$. We show that the spectrum of these duals has properties similar to those proved in [1]. We also determine their Chern classes.

The Chern classes of the stable rank 3 reflexive sheaves on P have been determined by MIRÓ-ROIG in her thesis [4]. The result is the following:

If $c_1 = 0$ then $c_2 \ge 2$ and:

$$B(0,c_2)$$
(0) $c_3 \in [-c_2^2 + c_2, c_2^2 - c_2] \setminus \bigcup_{q=1}^{2} (c_2^2 - (2q+1)c_2 + 2(q^2 + q+1), c_2^2 - (2q-1)c_2)$
if $c_1 = -1$ then $c_2 \ge 1$ and
$$B(-1,c_2)$$
(1) $c_3 \in [-c_2^2, c_2^2 - 2 c_2 + 2] \setminus \bigcup_{q=1}^{2} (c_2^2 - 2(q+1)c_2 + (q+1)^2, c_2^2 - 2q c_2)$

and if $c_1 = -2$ then $c_2 \ge 2$ and:

$$(2) c_{3} \in \left[-c_{2}^{2} + 3c_{2} - 4, c_{2}^{2} - 3c_{2} + 2\right] \setminus \left(c_{2}^{2} - (2q+3)c_{2} + 2(q+1)^{2}, c_{2}^{2} - (2q+1)c_{2} + 2q\right)$$

where B(c1,c2) are the largest integers for which the intervals are nonempty. Moreover, one has to take into account that c1c2=c3

We show that if $c_2 \ge 3$ and c_3 verifies (0) (but $c_3 \ne c_2^2 - c_2$) (mod 2). then there exists a stable rank 3 reflexive sheaf E on P with $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=c_2^2-c_2$ such that $c_3(E^*)=c_3$ (Example 0).

We also notice that if $c_2 \ge 2$ and c_3 verifies (1) then there exists a stable rank 3 reflexive sheaf E on P with $c_1(E) = -2$, $c_2(E) = c_2+1$, $c_3(E) = (c_2+1)^2-3(c_2+1) + 2$ such that $c_3(E^*(-1)) = c_3$ (Example 1).

We do not know if a similar result holds for the stable rank 3 reflexive sheaves on P with $c_1 = -1$ and c_3 maximal.

Let E be a stable rank 3 reflexive sheaf on P with Chern Results classes $c_1 = 0$, $c_2 \ge 2$ and $c_3 = c_2^2 - c_2$. If $c_2 \ge 4$ then by [3], Proposition 5,1, there is an exact sequence:

(3)
$$0 \longrightarrow \Omega_p(1) \longrightarrow E \longrightarrow \mathcal{O}_{H_0}(-c_2+1) \longrightarrow 0$$

PROPOSITION, Let E be a stable rank 3 reflexive sheaf on P for some plane HoCP. with $c_1 = 0$ and $c_2 \ge 3$ for which there exists an exact sequence (3). Let k_E* = (k₁, ..., k_m) be the spectrum of E*. Here m = c₂.

- (a) If 0 does not appear in the spectrum then km-2 km-1 km
- (b) If $k_1 \le -2$ then E^* has an unstable plane of order $-k_1$.
- (c) If there is an i with $2 \le i \le m-1$ such that $k_{i-1} \le k_i \le k_{i+1} \le k_i \le$ then k1 < k2 < ... < kie

PROOF. (a) Dualizing (3) one gets an exact sequence:

(4)
$$0 \longrightarrow E^* \longrightarrow T_P(-1) \xrightarrow{d} \mathcal{O}_{H_0}(c_2) \longrightarrow \mathcal{E}t^1(E,\mathcal{O}_P) \longrightarrow 0$$

It follows that Coker (α) has finite length and $H^{0}(\alpha)$ is injective. We have $T_{p}(-1)|_{H_{0}}\cong T_{H_{0}}(-1)\oplus \mathcal{O}_{H_{0}}$ and the morphism $H^{0}(T_{p}(-1))\longrightarrow H^{0}(T_{p}(-1)|_{H_{0}})$ is an isomorphism. It follows that the cokernel

of the morphism $\alpha \mid_{H_0} : T_{H_0}(-1) \oplus \mathcal{O}_{H_0} \to \mathcal{O}_{H_0}(c_2)$ has finite length and that $H^0(\alpha \mid_{H_0})$ is injective. Let $F = \operatorname{Ker}(\alpha \mid_{H_0})$. F is a locally free \mathcal{O}_{H_0} -module of rank 2 with $c_1(F) = -c_2 + 1$ and $H^0(F) = 0$. By the Theorem of Grauert-Mülich we have $H^0(F \mid_L) = 0$ for the generic lines

LCH_o of F.

Let HCP be a plane which does not contain any singular point of E and such that the line $L = H \cap H_o$ is a generic line of F. We have an exact sequence:

$$0 \longrightarrow E^*|H \longrightarrow T_H(-1) \oplus \mathcal{O}_H \xrightarrow{\alpha|H} \mathcal{O}_L(c_2) \longrightarrow 0$$

Using the exact sequence:

$$0 \longrightarrow F|_{L} \longrightarrow (T_{H_0}(-1) \oplus \mathcal{O}_{H_0})|_{L} \xrightarrow{\alpha|_{L}} \mathcal{O}_{L}(c_2) \longrightarrow 0$$

one deduces that $H^{0}(\propto|L)$ is injective. The morphism $H^{0}(T_{H}(-1)\oplus\mathcal{O}_{H})\longrightarrow H^{0}((T_{H}(-1)\oplus\mathcal{O}_{H})|L)$ being an isomorphism one finds that $H^{0}(\propto|H)$ is injective, hence $H^{0}(E^{*}|H)=0$. The Theorem of Riemann-Roch on H implies that $h^{1}(E^{*}|H)=c_{2}$.

Put now:

$$\begin{split} \mathbf{N}_{\ell} &= \mathrm{Im} \; (\mathbf{H}^{1}(\mathbf{E}^{*}(\ell)) \longrightarrow \mathbf{H}^{1}(\mathbf{E}^{*}(\ell)|\mathbf{H})), \; \mathbf{n}_{\ell} = \mathrm{dim}_{k} \; \mathbf{N}_{\ell} \\ \mathbf{R}_{\ell} &= \mathrm{Coker} \; (\mathbf{H}^{1}(\mathbf{E}^{*}(\ell)) \longrightarrow \mathbf{H}^{1}(\mathbf{E}^{*}(\ell)|\mathbf{H})), \; \mathbf{r}_{\ell} = \mathrm{dim}_{k} \; \mathbf{R}_{\ell} \; . \\ &= \mathrm{For} \; \ell \leq -1 \; \text{we have an exact sequence:} \\ \mathbf{0} &\longrightarrow \mathbf{H}^{0}(\mathcal{O}_{L}(\mathbf{c}_{2}+\ell)) \longrightarrow \mathbf{H}^{1}(\mathbf{E}^{*}(\ell)|\mathbf{H}) \longrightarrow \mathbf{H}^{1}(\mathbf{T}_{H}(\ell-1) \oplus \mathcal{O}_{H}(\ell)) \; . \end{split}$$

If $\ell \neq -2$ then $H^1(T_H(\ell-1) \oplus \mathcal{O}_H(\ell)) = 0$. Using the commutative diagram:

$$H^{1}(E^{*}(-2)|H) \longrightarrow H^{1}(T_{H}(-3) \oplus \mathcal{O}_{H}(-2))$$

one finds that the composed map:

$$H^{1}(E^{*}(-2)) \longrightarrow H^{1}(E^{*}(-2)|H) \longrightarrow H^{1}(T_{H}(-3) \oplus \mathcal{O}_{H}(-2))$$

is 0. It follows that $N_{l} \subseteq H^{0}(\mathcal{O}_{L}(c_{2}+l))$ for all $l \leq -1$.

Now, if 0 does not appear in the spectrum then $n_{-2}=n_{-1}$ (see [1], Sect.2). It follows that $n_{-1}=0$, hence $n_{\ell}=0$ for all $\ell \leq -1$, hence $k_{m} \leq -1$. Furthermore:

card
$$\{j|k_j = -1\} = r_1 - r_0 \ge h^1(E^*(-1)|H) - h^1(E^*|H) = c_2 - (c_2 - 3) = 3.$$

(b) The definition of the spectrum implies that $H^2(\mathbb{E}^*(-k_1-2)) = 0 \text{ and } H^2(\mathbb{E}^*(-k_1-3)) \neq 0. \text{ Let } b \in H^2(\mathbb{E}^*(-k_1-3))^* \text{ be a nonzero element. For every plane } H \subset \mathbb{P} \text{ we denote by } b_H \text{ the image of b by the morphism } S': H^2(\mathbb{E}^*(-k_1-3))^* \longrightarrow H^1(\mathbb{E}^*(-k_1-2)|H)^*.$

Using the exact seguence:

$$0 = H^{2}(E^{*}(-k_{1}-2))^{\circ} \longrightarrow H^{2}(E^{*}(-k_{1}-3))^{\circ} \longrightarrow H^{1}(E^{*}(-k_{1}-2)|H)^{\circ}$$
 one finds that $b_{H} \neq 0$.

Now, suppose that H does not contain any singular point of E. Let L = H \cap H and let $\lambda_{\rm H} \in {\rm H}^{\rm O}(\mathcal{O}_{\rm H}(1))$ be an equation of the line L. As we already observed, for $\ell \neq -2$ there is an exact sequence:

$$H^{O}(\mathcal{O}_{I}(c_{2}+l)) \xrightarrow{\text{eventually}} H^{I}(E^{*}(l)|H) \xrightarrow{\text{eventually}} 0$$
.

It follows that $\lambda_{\rm H}$ annihilates ${\rm H}^1({\rm E}^*(\ell)|{\rm H})$ for $\ell \geq -1$, hence $\lambda_{\rm H}$ annihilates ${\rm H}^1({\rm E}^*(\ell)|{\rm H})$ ° for $\ell \geq 0$. By [1], Lemma 2.4 and Remark 2.3, E* has an unstable plane of order $-k_1$.

(c) By (b), there is an unstable plane $H_1 \subset P$ for E^* of order $-k_1$. We apply the reduction step;

$$O \longrightarrow E^{\dagger} \longrightarrow E^{\dagger} \longrightarrow \mathcal{O}_{H_1}(k_1)$$

E' is a stable rank 3 reflexive sheaf with $c_1(E^*) = -1$. Let $H \subset P$ be a plane which does not contain any of the singular points of E or E' or any of the points where the morphism $E^* \longrightarrow \mathcal{O}_{H_1}(k_1)$ is not surjective. Let $L = H \cap H_1$. We have an exact sequence:

$$0 \iff E^{\mathfrak{p}} \mid H \iff E^{*} \mid H \iff \mathcal{O}_{L}(k_{1}) \iff 0$$

We cannot have $E^* = \Omega_p(1)$ because $H^0(E^*|H) = 0$ for the general plane $H \subset P$. By the restriction theorem of Schneider ([3], Theorem 3.4) we may suppose that $E^*|H$ is stable.

Now, using the results of [1], Sect.1, one proves in a standard manner that $k_1\!<\!k_2\!<\!\dots<\!k_i$

EXAMPLE 0. We shall construct sufficiently many examples of stable rank 3 reflexive sheaves on P with $c_1 = 0$, $c_2 \ge 3$ and $c_3 = c_2^2 - c_2$ in order to show that their duals get all the possible values of c_3 except $c_2^2 - c_2$.

Let $H_0 \subset P$ be a plane, $\alpha_0: T_{H_0}(-1) \longrightarrow \mathcal{O}_{H_0}(c_2)$ a morphism of \mathcal{O}_{H_0} -modules such that $H^0(\alpha_0)$ is injective and let $f \in H^0(\mathcal{O}_{H_0}(c_2))$ be such that $f \not\in H^0(\operatorname{Im} \alpha_0)$ and $\mathcal{O}_{H_0}(c_2)/(\operatorname{Im} \alpha_0 + \mathcal{O}_{H_0}f)$ has finite length. α_0 and f define a morphism $T_{H_0}(-1) \oplus \mathcal{O}_{H_0} \longrightarrow \mathcal{O}_{H_0}(c_2)$, which composed with the restriction morphism $T_p(-1) \to T_{H_0}(-1) \oplus \mathcal{O}_{H_0}$ gives us a morphism $\alpha: T_p(-1) \longrightarrow \mathcal{O}_{H_0}(c_2)$. Coker(α) has finite length and $H^0(\alpha)$ is injective. It follows that $E = (\operatorname{Ker} \alpha)^*$ is a stable rank 3 reflexive sheaf with $c_1(E) = 0$, $c_2(E) = c_2$, $c_3(E) = c_2^2 - c_2$.

We have : $\mathcal{E}_{xt}^{1}(E,\mathcal{O}_{p}) = \operatorname{Coker}(\alpha) = \mathcal{O}_{H_{o}}(c_{2})/(\operatorname{Im}\alpha_{o} + \mathcal{O}_{H_{o}}f)$. If

 $s = length (&d^{1}(E, \mathcal{O}_{p}))$ then $c_{3}(E^{*}) = -c_{2}^{2} + c_{2} + 2s ([3], Lemma 4.1).$

Firstly, let Z be a closed subscheme of H_o consisting of c_2^2 - c_2 +1 simple points geometrically linked to a subscheme S of H_o consisting of c_2 -1 colinear simple points by 2 nonsingular curves Y_1, Y_2 of degree c_2 . This means that $Y_1 \cap Y_2 = Z \cup S$ as schemes.

We assert that there is a morphism $\alpha_o: T_{H_o}(-1) \longrightarrow \mathcal{O}_{H_o}(c_2)$ such that $Im \alpha_o = I_Z(c_2)$. Indeed, by [6], Proposition 2.5, $I_Z(c_2)$ has a resolution:

$$0 \longrightarrow \mathcal{O}_{H_0}(-c_2+1) \oplus \mathcal{O}_{H_0}(-1) \longrightarrow \mathcal{O}_{H_0}^3 \longrightarrow I_Z(c_2) \longrightarrow 0$$

We may suppose that the morphism $\mathcal{O}_{H_0}(-1) \longrightarrow \mathcal{O}_{H_0}^3$ is a monomorphism of locally free \mathcal{O}_{H_0} -modules (this is equivalent to the fact that none of the points of Z lies on the line which contains S). It follows that Coker $(\mathcal{O}_{H_0}(-1) \longrightarrow \mathcal{O}_{H_0}^3) \cong T_{H_0}(-1)$, hence we obtain an epimorphism $T_{H_0}(-1) \longrightarrow T_Z(c_2)$ which composed with the inclusion $T_Z(c_2) \longrightarrow \mathcal{O}_{H_0}(c_2)$ gives us the morphism ∞_0 .

Now, an argument similar to one used in [2], Example 1.4, shows us that there is a set $T \subset Z$ consisting of $\frac{1}{2}(c_2-1)(c_2-2)$ points such that if $T \subset D \subseteq Z$ then there is an $f \in H^0(\mathcal{O}_H(c_2))$ vanishing at every point of $(Z \setminus D) \cup S$ but at no point D. ∞_0 and f satisfy the conditions stated at the beginning of our example. If E is the reflexive sheaf constructed using α_0 and f then $s = \operatorname{card}(Z \setminus D)$. It follows that $c_3(E^*)$ gets all the even values from the interval $[-c_2^2+c_2, 2c_2^{-2}]$.

Next, let q be such that $2 \le q \le \frac{1}{2} c_2 + 1$. Let $\alpha_1 : T_{H_0}(-1) \to \mathcal{O}_{H_0}(q)$ be a morphism such that $\text{Im} \alpha_1 = I_{Z_1}(q)$, where Z_1 is a closed subscheme of H_0 consisting of $q^2 - q + 1$ simple points lying on a nonsingular curve $C \subset H_0$ of degree q. Let $g \in H^0(\mathcal{O}_{H_0}(c_2 - q))$ be such that g vanishes at no point of Z_1 .

Let $\alpha_0: T_{H_0}(-1) \longrightarrow \mathcal{O}_{H_0}(c_2)$ be the composed map:

$$T_{H_0}(a) \xrightarrow{\alpha_1} \mathcal{O}_{H_0}(q) \xrightarrow{\mathcal{E}} \mathcal{O}_{H_0}(c_2)$$

If D_1 is a subset of Z_1 then there is an $f \in H^0(\mathcal{O}_{H_0}(c_2))$ vanishing at every point of D_1 but at no point of $Z_1 \setminus D_1$. Indeed:

 $\deg(\mathcal{O}_{\mathbb{C}}(c_2)\otimes\mathcal{O}_{\mathbb{C}}(-D_1))\geq c_2q-(q^2-q+1)\geq (q-1)(q-2)+1=2g(\mathbb{C})+1$ hence $\mathcal{O}_{\mathbb{C}}(c_2)\otimes\mathcal{O}_{\mathbb{C}}(-D_1)$ is very ample on \mathbb{C}_{\bullet}

If E is the reflexive sheaf constructed using α_0 and f then $s=c_2(c_2-q)+card\ D_1$. In this case, $c_3(E^*)$ gets all the even values from the interval:

$$[c_2^2-(2q-1)c_2, c_2^2-(2q-1)c_2+2(q^2-q+1)]$$
.

EXAMPLE 1. We shall construct sufficiently many examples of stable rank 3 reflexive sheaves E on P with $c_1(E) = -2$, $c_2(E) = c_2+1$ ($c_2 \ge 2$) and $c_3(E) = (c_2+1)^2 - 3(c_2+1) + 2$ in order to show that $c_3(E^*(-1))$ gets all the possible values.

If E is as above, then by [5], Theorem 5.2, there is an exact sequence:

(5)
$$0 \longrightarrow \mathcal{O}_{\mathbb{P}}(-1)^3 \longrightarrow \mathbb{E} \longrightarrow \mathcal{O}_{H_0}(-2) \longrightarrow 0$$

for some plane HoCP. Dualizing (5) one gets an exact sequence:

$$0 \longrightarrow E^*(-1) \longrightarrow \mathcal{O}_P^3 \xrightarrow{\alpha} \mathcal{O}_{H_0}(c_2) \longrightarrow \mathcal{E}_{xt}^1(E_{x}\mathcal{O}_P)(-1) \longrightarrow 0$$

One deduces that such an E can be constructed as it follows: let $f_0, f_1, f_2 \in H^0(\mathcal{O}_{H_0}(c_2))$ be linearly independent elements such that $\mathcal{O}_{H_0}(c_2)/(\mathcal{O}_{H_0}\cdot f_0 + \mathcal{O}_{H_0}\cdot f_1 + \mathcal{O}_{H_0}\cdot f_2)$ has finite length.

Let $\alpha: \mathcal{O}_{\mathrm{P}}^3 \longrightarrow \mathcal{O}_{\mathrm{H}_0}(c_2)$ be the morphism defined by f_0, f_1, f_2 . Coker(α) is of finite length and $\mathrm{H}^0(\alpha)$ is injective. $\mathrm{E} = (\mathrm{Ker}\alpha)^*$ is a stable rank 3 reflexive sheaf with the announced Chern classes. We have:

 $\mathcal{E}_{A}^{1}(E,\mathcal{O}_{p}) = \operatorname{Coker}(x) = \mathcal{O}_{H_{0}}(c_{2})/(\mathcal{O}_{H_{0}}f_{0} + \mathcal{O}_{H_{0}}f_{1} + \mathcal{O}_{H_{0}}f_{2}).$ If $s = \operatorname{length}(\mathcal{E}_{A}^{1}(E,\mathcal{O}_{p}))$ then $c_{1}(E^{*}(-1)) = -1$, $c_{2}(E^{*}(-1)) = c_{2}$ and $c_{3}(E^{*}(-1)) = -c_{2}^{2} + 2s$.

Firstly, let $f_1, f_2 \in H^0(\mathcal{O}_{H_0}(c_2))$ be such that they define non-singular curves $Y_1, Y_2 \subset H_0$ meeting transversely at c_2^2 points. An argument similar to one used in [2], Example 1.4, shows us that if $\frac{1}{2}(c_2-1)(c_2-2)+1 \leq r \leq c_2^2$ then there is an $f_0 \in H^0(\mathcal{O}_{H_0}(c_2))$ vanishing at exactly c_2^2 -r points of $Y_1 \cap Y_2$. If E is the reflexive sheaf constructed using f_0, f_1, f_2 then $s = c_2^2$ -r. It follows that $c_3(E^*(-1))$ gets all the odd values from the interval $[-c_2^2, 3c_2-4]$.

Next, let q be such that $1 \le q \le \frac{1}{2}(c_2+1)$. We choose $g_1, g_2 \in H^0(\mathcal{O}_{H_0}(q))$ such that they define nonsingular curves $Z_1, Z_2 \subset H_0$ meeting transversely at q^2 points. Let $h \in H^0(\mathcal{O}_{H_0}(c_2-q))$ be such that h vanishes at no point of $Z_1 \cap Z_2$.

If $D \subseteq Z_1 \cap Z_2$ then there is an $f_o \in H^0(\mathcal{O}_{H_o}(c_2))$ vanishing at every point of D but at no point of $(Z_1 \cap Z_2) \setminus D$. Indeed:

 $\deg(\mathcal{O}_{Z_1}(c_2) \otimes \mathcal{O}_{Z_1}(-D)) \ge c_2 q - q^2 \ge (q-1)(q-2) = 2g(Z_1)$

hence $\mathcal{O}_{Z_1}(c_2)\otimes\mathcal{O}_{Z_1}(-D)$ is generated by its global sections.

If E is the reflexive sheaf constructed using f_0 , $f_1 = g_1h$ and $f_2 = g_2h$ then $s=c_2(c_2-q) + card D$. In this case, $c_3(E^*(-1))$ gets all the odd values from the interval $\left[c_2^2-2qc_2, c_2^2-2qc_2^{+2q^2}\right]$.

REFERENCES

- [1] I.COANDA, On the spectrum of a stable rank 3 reflexive sheaf on P3, Crelles 4. (to appear),
- [2] I.COANDĂ, The Chern classes of the stable rank 3 vector bundles on P3, Math.Ann., 273 (1985), pp.65-79.
- [3] L.EIN R.HARTSHORNE H. VOGELAAR, Restriction theorems for stable rank 3 vector bundles on pn, Math. Ann., 258 (1982), pp. 541-569.
- [4] R.MIRÓ-ROIG, Haces reflexivos sobre espacios proyectivos, Thesis, Barcelona (1985).
- [5] C.OKONEK H.SPINDLER, Reflexive Garben vom Rang r>2 auf pn, Crelles J., 344 (1983), pp.38-64.
- [6] C.PESKINE L.SZPIRO, Liaison des variétés algébriques I, Invent. Math., 26 (1974), pp.271-302.
- [7] H. SPINDLER, Die Modulräume stabiler 3-Bündel auf P3 mit den Chernklassen c1=0, c3=c2-c2, Math.Ann., 256 (1981), pp.133-143.