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MEDIA
by =
Pan POLTERVSKT | )
In this paper we consider the.viscous' fluid flow in the
(small) canals of a figid porous solid with periodic structure.
We pro%e that jf. £, the charaéteristic length of the period,

18 sufficiently smali, then the Navier—-Stokes problem has uni-

que solution, in both evolution and stationary cases.

1. PRELIMINARIES

Lef L2 be an open conected bounded set in Rn, n=2 or 3,
locally located on one side of"the boundary 9;1, a(n;i)*dimen;
sional manifo}d of class C2, composed of aAfinite number of
éonnecﬁed components. Let [ be also a (n—-l)-dimensional ma-
hifold of class C2, composed of a finite number of éonnectéd
‘components, included in Y={p,1tn and which seéafates Y into

two ‘sets , v, (the solid part) and Y. (the fluid part), with

3
the. property that fepeating Y by'periodicity, the union of all
fluid parts.is connected in R™ and of class C2. We also assume
that if [j crosses the boundary of Y, then these intersections
are reproduced identiéal;y on opposite faces of Y. Thus, if

n=3,. it is possible fof the union of éll the solid parts to be

also connected.

Defining §7:Rn~may by
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where denotes the function which associates to any real num-

ber its fractional part, we say that a function f defined on mﬂ

is Y-periodic iff £ = fe

Further, for any Etfj0,1§w we-denote

.i%i =§x€_«’% (x)%'Yf}: = the f£luid partief. .0\
[ . o
25 Q; =Sxta£l’ﬂ3(x)€.YS}¥ = the solid part of L
E :%xé&il f(x)ﬁ—f’?
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Let us remark here that 9. '"(\b;llgt"g

Let Qé be the space  (without topology)
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-Qi’iivﬁé(f\)f.di§_v=0 in ;%ij
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We denote by He and VE the closures of QQ in L (L%) and
Hé(Qﬁ),‘respectively.
As usual the scalar products and norms in LZXQJ and

Hi(ib are denoted respectively by (','), l'{..and

The norms in LP (L) (p#2) and H'(.) will be

o

(Cp))y e
denoted by 1‘}p and
ciated to =i , we attach.the index & (for instance the norm

&
(e

To the corresponding notations asso-

- in (D) will be denoted by ||, .).

In the seqﬁel we shall prove that if & is sufficiently
small then the Navier-Stokes prbblem in the domain -:;; has uni-
gque solution. Althougﬁ this result seems to be related to the

classdcal "large ¥ , small £ (and uq)” case of uniqueness, nei-.

ther it can be reduced to that, nor viceversa.



2 THE . EVOLUTTON  CASE =

S

For any T awie consider théaNaVier"Stokes hodel of incom-
.pressible viscous fluids floWs.'Thatxis; 1f the external force £,
the initial veloecity distribution U and’the kinemétié viscosity
i) vare given, we have to find the velodity field u and the pres-

sure p, satisfying in some senses the system:

9 p » ‘

(2.1) div wi=0 in. L0 x o,
?u ' e LIy, g . xﬁ) il i
(2.2) = + (uPu -VAu = £ -Vp in *N’XT]O'TL
: ot T o

and the boundary and initial conditions
(2:3) ot on ’ijgxqo,TE
(2.4) ufo)i=a vin A

The problem (2.1) - (2.4) has a well-known variational formula-
tiion:

Problem (E). For £, u_ and Y given with

(2.5) RO, u e B, N D

to £ind u L?(0,T;V.) satisfying (2.4) and

Y

C(2.6)  (ur,v), #¥((,v)), b, 3

&

+b_ (u,u,v) =f,v> (¥)veV.

I

where b dgthestrilinear continvous form on ¥V - welined by

.
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Remark 2.1. If u is a solution of Problem (E) then

1 : ‘ g ] :
u’«¢L”(0,T;V’) and hence u is almost everywhere equal to a func-
tion continuous from [p,T] into %;. These are the senses of

we naturally define vev

(2.4) “and. of uw' +in -(2.6) . For any veV, 4

e
j %v it .315
(2.8) V5 | -
& lo. g s B
< > in (2.6) is

Thus the meaning of

REVRr L Dy )+ =g

One can prove (see for instance [21 Ch.ITII) that there

exists a solution of Problem (E) which satisfies

(2.9) e L?C(O,T;Ha)

and which is continuous between the weak topologies of LQ,T]

and H. Moreover, if n=2 then Problem (E) has a unique solution

satisfying (2.9).
In this section, from now on we consider only the case

-
i 7
;l)
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b

Exacbly, like in | we can prove that

. 1 v o / Y
{25309 ‘!u\;\cl:, lull, () ueH (L)

=

£ and u.

where Cl is independent of
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Now let us consider the Sobolev inequality

1

| L)

T | S il it et
{2u31) ‘ Vi6\C2dV” (y) veH]

In order to obtain the corresponding Sobolev inequality in-

we define uy&Hé(ﬁ) like in (2.8). Then,

'./\ s l "\
\%33for any ULHO(AE)
taking v:u?in (2.11) it follows

rs

(5503 lulg oS lul, () wenly

(3/74)/6 ,

Because 1/4 + 3/4=1  and 1/4 = (1/4)/2+
by the Holder inequalities we have

N 1/4\u\3/4'

lu\4,g\\ \6 .5

fa¥e

Getting (2.10) and (2.12) in it, we finally receive:

(2.13) ,\u\4’&<Cé/281/4nu“ (P uwerl @y

where CO is independent of ¥ and u. Now we can prove:

Theorem 2. fe TF féwjf” (0,T;H) and qu‘VC~ N H2 (..Q;_;) such that

.) is essentially bounded with respect to € , then

for any S<{10,1£_sufficiently small - {(this phrase will be spe-

cified during the proof by the estimates (2218) @nd (2.27))

there exists a solution u of Problem (E) which satisfies

(2.14) ueL” (0,T;V.) and. u’eéL” (0,T;H)
Proof. We apply the Galerkin method. As we already know
(see (2] Ch.ITL) that the Galerkin approximation is. conver=

ging strongly in L2(O,T;HR) to a solution of Problem (E), it
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remains only to obtain the a 'priori estimates corresponding to (2.14)
After - diftferentiating (2.6) with respect toit, we take v=u';
it yields

- gl eli2 . St e T g
+ 2b5:(u,’u'ur)Jrz\'}g%u’ii :Z\f',u':}&tzrf'}'(u'i‘

13

T d L7 2
& M ¥
(2«; 1)) dt: tLl ‘i; P

According to (2.13) we can estimate the non-linear term as follows:

-

. 2
‘ » r - ’ "‘ I”\I il o el 20 rie i
(2.16) bg(u suu’) gwu ‘4@JPJL§COC'/2HH m?“uhi

In this way (2.#5) becomes

!Qa

(2 + 1o av-c e al 1 fur 2 <le] (o] 2 +
W LR

C247)

o

E

—~
o

Assuming- thHat & - satisfies

- (2418} 2V“Coil/2 ess supgiu I >0

e ¢ Lol
‘c:cjo,l'\w R~

we deduce that there exists_T*é\O,Ti such that

l/Zf

(2uteg. 2¥-CoE™" 7 jult)

(' N

>0 for a.a.tQ[P,T%]r

and T* is maximal with this property. Obviously, we want to prove
that T, =1

Taking- (2.19) into account, (2.17) becomes:

d

TR e s N NS
= ||

s e R gf'_

[l
e

(2..20)

Because of Gronwall’s inequality, (2.20) implies



(2.215 (fu’(t)§4 +-l)g;(fu;(0)i2 ol Y exp }f’

Therefore we need an estimation of ]u’(O)L'. For this let t tend:

£6 zero in (2.6) and choose v.= wl(0); it follows

2

(2.22) |0 (0)]? =Vdu_,u’ (0)), ~|u

e R e s
& , ! 5 O))L ”uoiﬁu'(O)L f\F(O)’u,(?%Q ‘

from which we derive

it

(2.23)lu’(0)‘ C (l+ess sup. ﬂ w.)ess qup) = +:f(0)
L L \C3 o e s K\ 0“2,; |£0)]

where C3 is some constant.According to {2.23), frem (2: 02 0t

.results that there exists a positive constant C4, independent

of tand € , such that

(2.24) . \u)(t)kfgc4_ a.e. on [b,T*:]'

since b_(u,v,v)=0 (¥) u,vev,

e po A MWessets Veu An (2.6) it

iydelds
; ~ il ,;2__/_ o 7 PP P s
(2.25) ‘\'huug— f,u% (u~,u£}\(ift+iu,§)xul

" Using (2.10) and .(2.24), we find from (2.25) that there

exists a positive constant CS’ ihdependent of t and £, such that
el 5 I T
(2.26) “u(‘t)w §C & 3.€. LO T*j

- Ghioosdng’ & to satisfy also

- : e
(2.27) =i Ce® "0

we finally obtain
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(ZiosyiioYacie Hu(tn§j>2vwcéel/?c5>o g.e.. on XO,T*]

4 o N3

Sy

I we. agsune that T T, then as t tends to ey froﬁ (2:.28)
we obtain that T, is not the maximal element with the property
(2.19) .. Hence .T,.=T and the estimations (2.24) and (2.26) imply

(2.14).

Remark 2.2. If we continue u by zero in ll\uilﬁ , defining

u. by (2.8), then from (2.26), using again (2.10), it follows
that ’
\l b s S o 00 :
(2.29)7 — 4.y 1is bounded in L (0,T;H)
e .

&

Tt seems that with (2.29) we can start the study of the homogeni-

zation process (as &-»0) of Problem (E) 1like in [11 and [31.

Corollary 2.1. Under the conditions of Theorem 2l1,Problem (E{
7

has' & -unigue solution in ﬁ%KO,T;HL)f}Lé(O,T;L4(Q{)),

«

Proof. Because %f;L4(£L)' then according to (2.9) and (2.14)

it follows that Problem (E) has a solution iﬁ ﬁNYO,T;ﬁ‘HWIﬁ(OﬂHL%(QJ

But a solution of Problem (E) is surely unique with this pro?efty

(see [27 ChisTET): »

-4

" 3. THE STATIONARY. CASE

_Naturally,for the Stationary Navier-Stokes model of incompres-
sible viscous fluid flow it is sufficient to ignore the timé depen-—
dence. Then, for the given external force f and kinematic visecosi~-
ty‘@, we have to find theVelocity‘field’u and the pressure p, sa-

tisfying in some senses the system



(3:1) ' sdiv iurs 0 iyl g
(8427 = Vi =g s Vp Todn S
and the boundary condition

~ O

(3 . 3) U. = O on < -—)--2:’

The problem (3.1) - (3.3) has the following variational

formulations

problem (S). For f and ¥ given with

(3.4) fFev , Y>>0

to find ﬁeﬂ), satisfying

(.51 0 L)), + by (o) =<EwS (1) vy,

where b& is defined by (2.7),and the meaning of <f,vj: is the
same a8 1R Remark 2.1.

One can prove-(see-for instance EQ] Ch.Ii) that Problem (S)
has at least one solution. In this section h¢§2,3§ because there
is no genefal uniqueness result.

In the stationary case we‘can prove straightly a uniqueness

result similar to that of Corollary 2.1l.

Theorem 3.1. If € is sufficiently small so that

(3.6) c;l/z\flv, N

then there exists a unigue solution of Problem (S).
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nggé, Let uy be a solution of Problem (S). Then taking

Y4 =’ul in (3.5) we obtain
: Fo e :
(3.7) BT A

e
[

Let u, be a solution of Problem (S), possible different from

Uy - ITf we subtract the equations (3.5) corresponding to Uy and Uy s

_and if we denote by w.= ul - Uy then we have

-

(3=8), .- \V((W,V’)A+b (g ,w,v)+b, (w,u,,v)=0 (¥} wvev

Since b&(u,v,v)=0 (49 u,vev o, for v=w tﬁe relation (3.8)
reduces to
i ) ' 2

(3.9) . ‘i’ﬂwﬁ? = —bé(w,ul,w)QQWi4 Cﬁulﬂ _
i A - 7 5

Using (2.13) and (3.7), from (3.9) it follows

: - e RN
(3.10) (V=c e 2 gl i gy TwlD o
‘According te (3.6) it implies !wiL =0, that is u,=u, in V
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