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1, IYTRODUCTION

Let (Y‘n)n Lo be the Fibonacei numbers defined recursively

2 a » - P Al
1 1 and i Pn*‘nul for<ns

i

by i Oy P
It is well known that the generating function of the seguence .

(R s 28 6 (2) = z/(1=2=2°). In [2], S.7.Golomb showed that the

secuence (*’ﬂ)mo verifies the recurrence
- i | 9 {
pr 2% 2 2% e + F = @, for -every n> 0.

n n+l” n+2 N}

This implies that the generating function of the secuence
2
(3 n)n>o is f ( ) = (2=-2°)/(1=22 5242 )
The shove result was generalized by J.Wicrdgn [41, which pro-

L

ved that for every integer r>2 the seguence (“ ) i satisfies an

appropriate (r+l)- th order linear recurrence with integer cocffi-
cients., This in fturn was slso generalized by L.Carlitz [1] which

showed that for every recursive senuence (uq} ‘given by U= Dy

nzo
P o P
Uq= 1, v 4= ?uﬁ°Gun_1(p -4g # 0), the sequeﬁceﬁun)“&o savisfies
2 linear recurrence (of {(r+l)-th nrder), for every integer r2 ?.
Yoreover, if n snd g sre integers, then the secuence (uz)n>o olso
verifies a linesr recurrence with integral coefficients. -

A1l the above results were obitained by considering the £580-

In this shori note we shall exterd



the simple inductive argument of D.Jarden (according to T.¥.Knuth
[2]) for solving & more general form of RHiordan's problem, i.e. %o

o

the secuence conside red by Carlitz for o = -1,

2. SONT PRELININARY LFINWAS

et n # 0 be a fixed real number. We consider the recurrent
gue jefi I
seguence <Xn)r>o defined by

= Op K= 1 »
(1) h

b4 = 4
n+1™ PEnt¥paye nxl .

In the following it will be convenient to extend the above
recurrence also for negative indices, by the relation

{2) X = DX n%l,

11 S R L
ith this convention we have the following lemma.
Lemne 1: Let (Xn)nEEZ be & recurrent sequence defined by

(1) 2nd (2), Then

( _1)1’14'1}‘.,

0
1" For every n 31, we have x__= s

n

®
2% Por all integers n, %k and s, we have:

X

=

= - K o
n+le e 1. ¥n* Kinel™ Sl X‘+1 n

¢

Xpagel’nest * e s n-gs1

3% For all integers n, k and s, we haves

- = - 4 +X. SR
( l) n~ +1Y yrkn+l Xkyn—l ‘ﬁ—lxn

8 : ;
= (~1) (Xk~s+lkn~s Lk—sxn—s+l)°

Prant: 19 14 %8 easily seen that by (2) end (1), X_15%
: . -+
and x ~p==X5e Thus the ecuality x.r:(ml)n 1y follawa by inductior
on ny 1, using (2) in the inductive step.
2% For every fixed intesral k, we can easily prove, by & two-
. T dvadnedd ? Loy a AT I =¥, 3
fold induction on n (for n20 and -ng -1), that Ko R g X AR X

However, we shall orefer to prove the recuired relation by a matri-

cial metnod similar to that of J.i.3ilvester [ )s which exnlains



also why this formulz holds.

Consider the matrix

0 % %
A VA : 4

S P
and for every integral n put

A &(Xﬁ_l xﬂ >4
3 p 2 X

n n+l
We observe that A is invertible and

-1 -7 1 X.o X
A = = == ﬂ,wl .

1l 0 X4 %

From this and (2) it follows, by induction on n31, that

X X X X
An= n-1 n>’ﬁn= n=1 n

x X

=T} v h X

n Xnal
Now the firast two relations follow by identifying the (1,2)

and (2,1) cells in the matrix APHE, gnpk

The third relation can
be obtained from the first simply by noticing that n+k=(n-s)+{k+s8)=
= n'+kt, _
3O This follows from 20, replacing k by -k and aovnlying 1
Tnis ends the proof of the lemma. [
| "In 211 that follow we shall supuvose that xﬁfo, for every n>» 0,
By analogy with the binomizl coefficients, we introduce for

[eST%

every integral n> 0 and k the numbers C({n,%) given by

it k)= ~ / i 1<k¢
Eln k)= (ann-l"‘xnax+1)’(xkxxal"‘xl) o i
0 o TE. k<D or KE>0

The following lemma gives some elementary properiies of the

n
nurbers Cl{n,%), similar to those of the binomial coefficients ( .
' k
Lemma 2: Let.n, k be arbitrary integers with n20. Then:

b C{rn,k) = C{n,n-k) .
0 xkc(n,k) = xnC(nml,xcl) and

X, (7o k) = x Cln-1,k) .



g

Cln,k) = (n«l,'}+w

3 le’l

nek+l"

#

= Bl ok L . e
Proof: 1° end 2 follows immediately from the definition of

the numbers Cln,k).

o
3° By lemma 1 =2 ”GT n-% instead of n we obtain:

n = Y1 X nei ke Fneksl T Pl ¥n-kt i n-k-1
Now the result follows by substituting the above expressions
for Xp in the definition of C{n,k). (1
Corollary: Let o in (1) be & positive integer. Then the num-
bers C(n,kk) are non-negative integers for 8ll integral n, k with
2 0, Yoreover, C{n,k) is a positive integer for O<k ¢n,
Troof: This easily follows by induction on n> 90, using lemna

- g :
in. the inductive stepe. E]

2=2

For every real x we denote by fx”\ the smralest integer which
is greater or ecusl to x, and by [x ] the integ ral part of x. Observe
that for all nositive integers n, m we have:

[n/27 = [(n+1)/2] and [n/27 +[0/27 = (n+mel)/2 for n+m odd.

The following technical lemma will be essential in the induc-
tive proof of the main result.

Lemma 3: Let (y )n " be & recurrent secuence defined by (1).

Suppose that for some integer r22, the following relationsholds:

) f(r~k)/21 el :
(3) =) Clryk)x, i = O, for every n20 .
k
Then the following relations are also true, for every n3 O:
. M re1=k)/2] i
3 Er (=1) C{r+l, k)xn+k x,.= O
[(re1-i {)/g]

et el L S
% (&1 (J(T+1.gfx)}xn+k 1 ( 1) x:?’*‘l""k o O.



BN A [(r+1-k)/21 st
3 i‘?m "“’],.) L'\.}i.“% glb)[’;"}‘iﬂi’: 'Xk'awlz Oo
SR e e v
4 ;%“ (=1) “(T+1gw)>n§k & B
Proof: 1° Since by lemma 2,3, ?CM+1,€) 10(1,“«3)9 it fol-
‘lows by that and (3)3
‘\T+1”L) Pesl
j%: (“1> C<r+l’k)xn+k Ry ®
[(relaic)/ 21 el
[(r=x)/27 r-1
Xy+1 E;: (=1) C(r’k)x(n4l)+k = Ua
O ‘ r- = o 1 3
2° By lemma 2 we have xr+1mkg(r+l,k)rxr+10(r,x)e Obviously,

[(x«k+1)/?] # (r=x)/2] = ((r=k+1l)+(r-k)+1)/2 = r=k+l, Hence, we

obtain auceesively

[(r+1~m)/?] el

%{ (=1) : Clrelgd)n iy ( sl Rygte =
[(rs1ek)/2] r-l
- {=1) Xy CLTRIXp 0 =
ol [(r=k)/2] r=l

= (”1) T+1 Bk ,(“1) C(r,k)xn+kmﬁ, bY (3).

5 By lemma 1 we have:
(1) Fpalek" Rewy Kews " XK |
[(re1-k)/2] r-1

Fultiplying this relation by (-1) Clr+l,k)x

n+k
and summing over integral k, we obtain by 1° end 29
[(re1=k)/2] r-1

el é%“ (-1) ‘ Clr+l, k)X, 4 Fpeq 7 =

The result follows beéausa, by hypothesis, x # O for every
n2l,

4% By lemma 1 we have:

nale- ® Fad TPy Faeg ¢



vultiplying thi rele

and summing over

; [(re1-k)/2]
> o (1)
K

T“hig concludes

3e

We can now state and
that is the following:

Mhyes 10
Theorem: Let (}’n)n>0

with p a positive integer.

guence (? ) gsetiegfies a

n’'nzo
with integral coefficieﬂta

T2 2,

N

sive relations.

integrel k

b
Cl{rsd, k) x,

Then for every

thege coefficients ca

el
O(rel, k)%,

<0
N -

wd

[(rel=k)/?]
tion by (=1)

- £

, we obtain by 1° and

= Da

¥
ek

the proof of the lemma, El

THT WAIN RESULT

prove the main result of this note,

be a recurrend o

\:‘3

vence defined by (1),
integer r >2, the se~
1inear recurrence of (r+l)-th order

(of the type (3))

. Yoreover, for every

n be effectively computed by some recur-

Proof: We shall prove that for every integer r>1, the seguence
(yn)n>o -1tisfios the following linear recurrence of order r+l :
75
e f(r»ﬁ -k)/ 2] ¥
(4) PIRE C{r+l k)x = 0, for every n20
i N+l

Thia relation will be proved by

induction on r2 1.

For r = 1, it is clearly true by (1), (2) ond the definition

n0f the numbers

r - 1, that is (3) is true.

also true for r, compnleting

Foreover, the coefficients C(r+l

t{n,k). Tiet now v

2 and sunpose (4) is true for
By lemma 3-4% it follows that (4) is
the inductive step.

k) are integral by the co-

rollary feollowing lemma 2, end can be recursively comoputed by lem-

na 2. []

Ara RT ;a’ﬁt".fs
10 Yo yemark that for n» 0 and r > 2, the sums
[(rak)/2] el
S{reyn) = > (=1) Clryk)x
7 n+ ks



o T o

verifie the recurrence relation

5(rel,n)=(x vx %350z, el )+ (1) T x5

=

n+1 %74l y1)

..3

(this mey be proved along the same lines y lemme 33 1=ty
since S5(2,n) = O for every n>»0, it follows by induection on
ry 2 thet $(ryn) = 0 for all r> 2 and n3 0, giving thus an alter-

native proof of the theorem.

. 2% neversing the order of summation in (4), we notice that
tne generating funection for the sequence (x;‘fl)mQ is given by:
Y\ -
. A k T+l [e/ 2l :
f.(2) = (1;2:‘1“ oy % )/( = (=1} olrel, f)’?ﬁ)
(= o
T
% oy ' < »
where dﬂ{“.géf ( (r41§zwj)x. for 1éker.

In Riordan's and Carlitz's papers, the gen nerating functioc
fr(z) is not explic?tly displayed, but merely it is given by & re-
currence relation in terms of fj(z) for 14 j<r.

30 Por every reals p,q # 0, consider also the recurrent se-
guence (yn)nzo given by y,= 0y ¥9= 1 ¥sq™ B¥gt pqyn¢1+pq2ynw2¢
I+ can be proved that (yi)ﬁ?o verifies & linear recurrence of
order <6. Koreover, if p,o are integers, then the recurrence rela-

tion for (y2

). has also integral coefficients., For p=g=l, we ob-
0% 0

9,

tain thus the exact analog of Golomb's result for the Fibonaccl

sequence of second order, In terms of generating functions, this
mnerely says that the generating function for the sequence (? )/L>o
ny
(2) (2} (2) e ey JEng (2
TSl O, PaCédm Gy BT = » = ¥ P w 22
,.‘o o; }'1 1 1’1‘4’1 }'ﬂ. + Lﬂ“-}"{" (ﬂ,?),

given by Uy g T Ls T New?
oA g 24 .
ia gg(z) = (zgoz“»z'ng)/(1«22«328w63“+z‘+z€).

14 can olso be proved that for every intvegers k=22 and r> 2,

')
S
[et)

the secuence of r-th powers of k-th order Tibonaceil numbers 2P -

=

£

fies a linear recurrence with intesral coefficients. Dut this and

some other relsted resulis will be proved in & future paver {(ar



earlier version of gome of these results con be found in {€] Je
O s ; : o § : : ‘
4° The results contained in Riordan's and Carlitz's papers

were Turther generalized by A.F.Horadam [7]«

S TR 08 e R N
& ‘{'.'.?E“ {"1{', 4"36 Do

1o TeCARLITZ: Generating functions for powers of certain seguences
. of numbers, Duke Math.d., vol.29(1962), no.4, pp.521-527.

2. S.Wl.GOLOED: Problem 4720, Amer.Vath.Monthly, vol.€4(1957),
noel, p+49e

3, D.TENUTH: The Art of Computer Programming, Vol.I - Pundamental
Algorithms, Addison-Vesley, Weading, MA, Second Printing,
1973 (exercise 1.2.3.=30)

4. J.RIORDAN : Generating functions for powers of Fibonacei numbers,

Duke Fathede, v0l.29(1962),; no.l. pp.5=12,

A
®

J+R«S1ILVESTER: Fibon&cci'prcgerties by matrix methods, The Math.
Gazette, vol, €3(1979), No.42%, po. 183-191,
€a RoVAIDYANATHASWAIY: The theory of multiplicative arithmetic
functions, Trens, Amer. Nath., 50C., vol. 33(1931),pp.579-662
(especially Theorem XVII, pp. 612-613).
7. B.F.JJIORADAYN: Generating functions for powers of a certain gene-
ralised sequence of numbers, Duke Vathe Joy VQ1;32(1965)#

PP.43T=446,



The present author considers in {4] the diophantine equation
2 2 i ; 8 i : .
|y —zyx-x fz 1. Por every fixed z = p3s 0, 8ll the solutions in posi-=
tive integers x,y of the above eguation are given by (y,x)m(xkvl,xy}
n’nso

for some k21, where (x ) is recursively defined by x = 0, x;=1,
e

Xe1® PEFEL 4 for ny 1., This immediately yields a generalization

of the integer polynomial representation pfoblem of Jones, quoted
ahove, for more general sequences than that of Fibonacci.

In this note, we shall géneralize all the above results con-
cerning solutions of diophantine eguations. This will be done in

3 . w 3 i :
Section 2, where lemmas concerning the reduction of the solutions

of the following diophantine equations

N

L) y“~ayx~xz = 5

(2) yg—awaXQ i

i

(3) y2~ayx+x2 §

N

(Ar) Yy «~ayx+x2 = -8

will be proved, for positive integers a and 5 .

In Section 3, we apply the above results for obtaining poly-
nomials with integer coefficients whose positive values coincides
with some recursively defined sequences.Finally, in Section 4 we

prove that for some linear recurrent sequences (xn) the seguence

nsl?

(x verifies also a linear recurrence for every l<£r¢ k.

nk+r)ngo
This result has a stronger "qualitative" form (see R.Vaidyanathaswamy
{12] or Klarner {8] ), but here we give explicit recurrences for
the involved sequences. These recurrences are then used to give

other integer polynomial representations of the sequences 1in Sec-

tion 3.



2.  SOLVING THE DIOPHANTINE EQUATIONS (1)-(4)

As stated in the Introduction, we prove now lemmas for "redu-
_cing" an arbitrary solution in positive integers of (1)-(4) to a
”primitiﬁg” golution. This will be done mainly by finding a linear
invertible transformetion T 22&2 «~w222 such that if (y,x) is & go-
lution in positive integers, then (y;,x‘) = T(y,x) is also a solu~-
tion in integers (eventually‘negative!). If moreover x> f(&,§)
(some explicit limit depending on a and 6 only), then ky‘fx’) =
= T(y,x) is a solution in positive integers with x'< x. It follows
that starting with an arbitrary solution (y,x) in positive integers,
we reach after a finite number of applications of the $ransformation
T a "primitive" solution (that is, one with O<x¢ f(a,§)). We obtain
by the above the following finite procedure for solving any of the
equations (1)-(4):

1) Find all "primitive" solutiéns. That is, for every
Ko 1,2,,..,f(a,5), solve the resulting quadratic equation for y
and retain only the positive integers solutions. This produce a fi-
nite number of "primitive" solutions.

2) Mo find 2%% solutions in positive integers, apply T"l a

finite number of times to any "primitive" solution. Thus, every

solution in positive integers is of the form (y,x) = T-n(yo,xo),
\ ] ] ’
for some integer n>0 and (yo,xo) a primitive solution.
Remarks. 1) Suppose that all the "primitive" solutions are of

the form (yo,xo) =(Xz+1’xx)* where (Xn)nao is some recursively defi-
1

M #
ned sequence. I1f moreover (X2’X1) is & primitive solution and

-

P (Xk’xk»l) for every k>1, then the solutions of the

NRREY
equation coincides with the pairs of the form (y,x)=(x, q,%,) for

k>1. This will be the case in almost all of ours examples in Sec-

tions 3 and 4.



Sl ea

2) By the above procedure, it follows that for every fixed s
there exists only a finite number of values of § such that one of
the equations (1)-(4) has a solution in positive integers. Woreover,

these § can be effectively determined as +(y~ «@yoxoixﬁ), where

(yo,xo) is some “primitive" solution of the corresponding equation.
Lemma 1. Tet (y,x) be a solution in positive integers of the

equation (1). Then:

0

1” ysax, and consequently y = (axw\J(a2+4)x2+46 Vi

20

(y',x') = (x,y-ax) is a solution in positive integers of
the equation (2).

3

S et () = (x,y-ax). If x;.aJ?;, then xl= yaax:>J5 :

Moreover, in this case (y",x") = (x',y'-ax') is a solution in posi-
tive integers of the equation (1) witth adbe x, _

Proof. 1° Follows immediately from y(y-ax) = %%+ §>0 and the
formula for solving a quadratic equation.
Tmmediately by direct calculation and by 1°

By 1° we obtain:

X! = y-ax = (aka(a?+4)x?w16)/2 —ax =
= (\/ (a2+4)x2+45 ~ax)/2>\f—5 for ws a\/g .

as is easily seen by isolating d(a2+4)xg+4 § in one member of the

]

ineguality and squaring next both members of the resulting inequa-

lity.
Similarly:
x" = y'-ax'! = x-a(y-ax) = (a%+l)x-ay =

(a,+i)x (a/2) (ax+ J(a.+4 ik +48 ) =
(1720 (e %?)X~8.J(a +4)x° +4<§)> 0, since x}a,\[~~

i

i

Evidently y"= x'= y-ax>0, and by direct calculation we see
that (y",x") is a solution in positive integers of the equation:(1).

Tinally,



i
AT
i

x" = y'~ax'=x-a(y-ax) =

(e e s s

since evidently axd‘J(a?+4)x2;Aé :

This concludeé the proof of the lemma. EE

Bemark. The linear invertible transformation used in this
gasends My, x) = (g;,x%) = (y«ax,(a2+l)x»ay). Its inverse is

"1(y,x)»m ((a2+l)y+ax,ay+x) and f(a,§ ) = aJET (see the remarks

i

at the beginning of this seotion), Similar remarks hold for the

following lemmas too (these will not more be explicitely stated).
Lemma 2. Let (y,x) be a solution in positive integers of the

equation (2). Thens

1.2 If.x>{3' then yx ax, and consequently yx(ax+V (a2+4)x£+43)/2.
9 If:x>JS- then (y',x') = (x,y-ax) is a solution in positive

integers of the eguation (1).

S aed (yixﬁ = (x,y-ax). if'x>z¥§, then x'= y«ax}dzl More-
over, in this case (y",x") = (x',y'-ax)) is a solution in positive
integers of the equation (2) with x" <« x.v

Proof. 1° ¥ollows immediately from y(y-ax) = %2- 8> 0 for
x_>437, and the formula for solving a guadratic equation.

2° Tmmediately by direct calculation and by 1°.

30 Absolutely analogous with the proof of 30 in Lemma 1. 1

- The equations (3) and (4) are obviously symmetric in x and y,
and thus il will be sufficient to solve them with the additional
hypothesis y» x> 0.

Lemma 3. Let (y,x) be a solution in positive integers of the
equation (3), with y» x. Then:

12 ys (8-1)x

2 x>'\fg,,then y-ax £ 0.

2
3¢ X>VC?, then (y',x') = (¥X,ax-y) is a solution in positi-

ve integers of the equation (3), with y'> x'. Moreover, x'=ax-y< X.



gly—(a-1)x) = yr-%°+ § = (y-x)x+85 £>0,
and consequently vy s (a-1)x.

o2 Immediately by y(y-ax) = $ u-xzé 0 -for X>\/g—.

3° By direct calculation one verifies that (y',x')=(x,ax-y)
is a solution of equation (3). Now x = y'sx's> 0 by 1° and 2%, thus
concluding the proof of the lemma. Ej

Lemma 4. Let (y,x) be a solution in positive integers of the

equation (4), with y > x. Then:

1° y - ax< 0.
2° Tf x36, then y> (a-1)x.
30 If x>0 , then (y',x') = (x,ax-y) is a solution in positive

integers of the equation (4), with y's x'. Moreover, X'=ax-y< X.

(2

Pfooi, 5.7 By equation (4) we obtain:

y(y-ax) = %64 0
and consequently y-ax<O0.
20 By equation (4) we haves
y(y—(awl)x)zwax2~5::(y—x)x«5> 0, since y> x and xs§.
Thus y»>» (a-1)x.

3O

Remarks. 1) Lemma 3 and Lemma 4 remains true for a an arbitrary

“Absolutely analogous with the proof of 30 in Lemma 3. El

integer (not necessarily positive!).
2) Por every fixed &> O, there exists a finite number of va-'
lues of a> 0 such that the equation (4) has a solution (and conse-

quently an infinity of solutions!). Indeed, from (4) we obtain

y = (ax+\/a2x2m4(xz+<5))/2. As y is integer, it'follows that

a2x2-4(X2+5 ) = b° for some integer b. Solving for a and b we obtain:
a = (vtv)/x, Db =v-un

where u, v are integers with 1su¢v and uv = %24 & (here (y,x) is

a primitive solution of (4), with y» x>0 and %46 Yo
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Applying now lemmas 1 and 2 in Section 2 we obtain the fol=-
lowing theorem, which includes some previous results of J.P.Jones
([6] and frlr.

. 0 : : el :

Theorem 1, 17a) The solutions in positive integers of the
eguation ngyrwxg = i are given by : (y,x) = (F F.. ) for some

e el e ’ “2k+177 2k e
k>1.
b) The solutions in positive integers of the equation
I’2m -..?'“mlc‘r‘ isien kb - r . ? A 2 &
v -yx-x“ = 1 are given by : (y,x) = (Izk’y?knl) for some k1.

o} . B : :
2°a) The solutions on positive integers of the equation

]

2 g : ’ :
vo-yx-x“~ = 5 are given by : (y,x%x) = <L2k9L2kwl) for some k> 1.

b) The solutionsg in positive integers of the eguation
y2~yx«X2 = -5 are given by : (y,x) = (L2k+1’32k) for some k0.

e : : . s ; 0
37a) The solutionsg in positive integers of the equation
2 2

y=2yx-x" = 1 are given by : (y,x) = (P, ;,P,,) for some k>1.

b) The solutions in positive integers of the equation

y2~2yx~x2 = -1 ere givenm by : (y,x)= (PZK’?kal) for some k2 1.

Proof. Immediate by the remarks at the beginning of Section 2
and lemmas 1 and 2. 0 |

Using theorem 1, we obtain the following theorem concerning
the representation of tﬁe above mentioned recurrent seguences by
some integral polynomials. This theorem extends the results of J.P.
Jones and will be generalized in Section 4.

idéntical with the positive values of the polynomial
(11} B (x,y) = x(2-(y2-yx-x")%),
as the variables x and y range over the positive integers.
29 fhe set of all Lucas numbers is identical with the positive
values of the polynomial v
(12)  Py(x,y) =x(1-((y°-yx-x°)%-25)),

as the variables x and y renge over the positive integers.



QO

3

The set of all Pell numbers is identical with the positive
valves of the polynomial
ey PB(Xsy) = X(Zw(y2~éyX"x2)2) ’

as the variables x and y range over the positive integers.

Proof. We have only to observe that yzmyx~x2 = 0 is not sol-
vable in positive integers and the right factor of (12)-(14) cannot
bebpositive unless the corresponding equations in theorem 1 hold.
(Here we are using an idea of Putnam {9].) Hence the theorem fol-
lows by theorem 1. &

We close this section by remarking that theorems like the pre-
ceding two-ones can now be easily proved for any recurréncé‘of the
form X1 = 8%tX, g This will be done in the next section for

the sequences (s )

R where 14r 4k are arbitrarily fixed in-

nso '

tegers.,

4. THE RECURRENCE x_ i = 8X 4%

Let 2 be some fixed positive integer. We consider the fol-
lowing recurrent sequence (Xn)n‘,1 given by:
7

(14) xq=oly, X,= oy,

= ax ron i,
) Xn+2 kn+1+xn fo

The canonical sequence of the type (14) is:
(15) yl::: 1, y2: a, yn+2z ayn+1+yn for n>~,l =

Using induction on n» 1, it is easily verified that

(16) Koy o7 yn+1<>l.2+yno(;l for every n>1.

We wish to find explicit linear recurrences Ifor the seqguences

for arbitrarily fixed integers 1£4r< k. To this end,

(

the following recurrent sequence will be very useful:

2
) Zq= 2, Z,= a+2,

X ) ’
nk+r‘ns o

+7 for.n >k,

2.7
n+l n : 2

Z o=
n+2

Before stating the main result, we need the following techni-

cal lemma.



- ) e

and (z_) be the sequences recursively

Lemma 5. Let
Lemma 5. L (Xn n3l n’nsl

defined by (14) and (17). Then for every k>1 we have:

(18) = = <m1)k(ac«;?+2¢41) and -

kSt 37 %01 ke 2

- (ml)k(amﬁlWQOQ

o g
(19) Zk+lxk+3 sy 2)

Proof. We observe fhat;

Z 7
3 42 = ke k+1
Ao N N Lo )
- k2 “k+3
Z . Z . 0 % 2 D |
and ( L 1+1) ( ) = ( Bl 1*2) (by (14) and (17)).
2 h . L Y s ta)

From the last relation we obtain immediately by induction

on k>l

Z z Z Z 0 1
) ( k k+1> - ( I 2)( )
Xy Xk+3 x3 x4 -1 a

Taking the determinants in both sides of (20) we obtain after

kwl

some easy calculations the relation (18).

The proof of (19) is entirely analogous, based on the relations

g 7
e ( k4l k+2> o
Apio . T

%3 41 Zi+2) (O 1>=:<zi+2 Zi+3> i
X i a :

i S Sqpn Fy oA

Z

Z X - %
RKe17k+3 “k+2 ks

Remark. A techunigue somewhat similar to our
proof of lemma 5 is used by P.Bruckman [3].

)

Theorem 3. For every integers 14 r <k, the sequence (x

Lo nk+r’ ngo

verifies the following linear recurrence:

k+1

(2l = zkxn+("1) X

s for ek, n= ¢ (nod k).

Proof. We prove first by induction on k21l the following two

relations:



They may be readily verified by direct calculation for k = 1.

Suppose now they both are true for some k>1. Then:

— Z NS ey = kel ., =
K28 Zopin B 8L ot Kopslan, i) Bt B o ) =

= = A

®

where the last eguality holds by lemma 5 (18).

+(”l)l{+l<a5{q’2+0{'1)m _*”(__1)1{4-29{:

Sl Tkip 1!

Hence (22) is true for k+l instead of k.

Using now (23) and (24), we obtain using again lemma 5 (19)
in the last step:

Sokal — ax2k+3+X2k+2:(azk+l+zk)xk+2+(”l)k(aCtl"c£2) >

= 2 %y gt (-1) (acty—al ) = SR

Thus (23) is also true for k+l instead of k, and‘by induction
(22) and (23) are true for any k>1. Using now induction on n>k+1l,
we immediately obtain by (22) and (23) the relation (21). This com-
pletes the proof of the theorem. [

The above theorem has interesting conseguences concérning the
representation of Fibonacci, Lucas and Pell seguences by integral
polynomials. But first, as usual, & lemma.

Lemma 6. Let (yn) and (Zn)nél be the sequences recursively

nzl
defined by (15) and (17). Then for every positive integers n and k
we have:

2 =2 ol
(25) Inwi Zkyn+kyn+(“l) e (=17 ¥y

D il o 2
(26) Z§+k - Zkzn+kzn+("1>K zi: e +%)yk
. _
(27) Pn+k - kan+kpn+("1)kPi = (~l)n?§, where (Pn)n>l is defined

by (15) der & — 0.
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Baoan -, o ' . -
7, = & +§§ , where oL and P are the roots of the "characteristic!

equation z°-az~-1 = 0. Substituting the above expressions for Y and

z,y We easily obtain (25) and (26) using also oﬁP:x -1,

The relation (27) follows by (25), observing that ?niyn
gm0 D,

The following theorem contains some few of the many analog
of theorem 1 which may ﬁow be stated and proved.

Theorem 4. 1%2) The solutions in positive integers of the

P

: . 2 2 :
equation y“-3yx+x~ = 1 are given by: (y,x) ) for some

(Foppor oy
k '.\'1"

b) The solutions in positive integers y»> x of the equation

y2w3yx+xz = -1 are given by: (y,x) = (F 1) for some k>1.

2lee 1 P ok 2
0 2 : s . :
2-a) The solutions in positive integers of the equation

vzméyxmxz = 4 gre given by: {y,%x) = (B ?k+3’PP1) for some k> 1,
b) The solutions in positive integers of the equation

y2~4yx«x2 = -4 are given by: (y,x) = (F l) for some k31

2k+2?” ?k

and (y,x) £ 00

it

3Oa) The solutions in positive integers of the equation
2 N 2 e (o 2 2 . 2 P s ol a o
yE=3yx+x” = 5 are given by: (y,x) = (L2k+1’L2k~l) for some k>1.
b) The solutions in positive integers of the equation
2 > ; ,
R { S e € : . = | :{. ®
¥ -3yx+x 5 are given by: (y,x) (12k+2,J2k) for some k>0
4Oa) The solutions in positive integers of the eguation
y2~4meX2 = 20 are given by: (y,x) = (Dyp . 51Dp, 1) for some k>1.
b) The solutions in positive integers of the equation
y2—4mex2 = =20 are given by: (y,x) = (L21+3, ) for some k3 O.
SOa) The solutions in positive integers of the ecuation
- 2 ; -
ygwéyx+x = 4 are given by: (y,x) = (P2k%2’??k) for some k3 1.
b) The solutions in vositive integers y> x of the equation

'y2~6yx+x2 = =4 arve piven by: (y,x) =(F 2K+1’}2k~1) for some k1.
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6 a) The solutions in positive integers of the equation
{4)

vo-l4yx-x" = 25 are given by: (yv,x) = (P2k+3pP2K) for some k>1,

b) The solutions in positive integers of the equation

]

, 2
yzwldyxwx“
¢

~25 are given by: (y,x) = (P ) for some ki1,

2h+?"

0 : o ; -
Let a be a positive integer and (yn)HSQ the recurrent se-
' nsl

guence given by (15). Then, the solutions in positive integers of

N

P & 2 . .
the equation y"-(a +2)yx+xpw a- are given by: (y:x)=lw.. ..v..) fox
5 ; “2k+2'9 0k
some kx1,

Using theorem 3, all the above solutions can be recursively
defined.

Proof. Immediate by the remarks at the beginning of Bection 2
and lemmas 1,2,3,4 and 6.

Remark. Uniortun vtely, the present author was unable

to find the "primitive" solutions of the above equations for general

8. For every g&ﬁi& a, results like theorem 1 and 4 may however

be proven. Very few general results were proved (see 7O of theorem 4
and $.Buzeteanu [47). I believe that for much more general eguations
as 7° (theorem 4) for example, the converse of the implication in
lemma 6 may be proven by means of lemmas 1-4, .

Based on the results in lemma 6 and theorems 1 and 4, I make

the following conjecture.

CONJECTURE

Let a be an arbitrary fixed positive integer and define se-

quences (yn)n>] and (Zn)n>l by the recurrences (15) and (17). Then:
7 o "’ v

0] ] .
1) For every integer k31, A= Z§X2+4((”l)kklxz+yi) 1s & per-

fect square iff x = Yop for some px2l. In this case it follows by
= Lk D
lemma 6 that y = Yopik verifies y ~zkyx+( s = N
: , 200 :
2) For every intieger kal, A= zix2~4((m1)kx +yk) is a perfect

sgusre iff x = y2p 1 for some p21l. In this case it follows by lemma

P
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e & enls O 2
verifiies y «zkyx%(wl) EE o

3Y‘For every intcger k=l A= zixd+4<(«l)k+lxg+(a2+4)Y§) is

.

8 perfect sgguare

Yor 4 for some pxl. In this case it fol-
k 2 (92 e

3 w«sv"(“_)\yyr .
e

lows by lemma 6 that y = y?p;1+k verifies ygmzkyx+( -1) *x
; b 4V \.‘ s
4) For every integer k>1, A= &k 2 ((w1)£x2+(a5+4)y§) is a

perfect square

= Yo for some p> 1, In this case it follows

by lemma 6 that y = Tl verifies ygmylyxw( l)K 2¢ -(a

4)yk

We remark that the "if" part of the CONJECTURE follows by
lemma 6. The "only if" part must be checked only for x< f(a,§) given
by lemmas 1-4 (see a8lso the remarks at the beginning of Section 2).

A similar conjecture can be stated for the Pell sequence (see
lemma 6 for a = 2, relation (27)).

From the above theorem 4 we obtain immediately the following
more Yintegral representations' of the Fibonacci, Lucas and Pell'se-
quences.

0

Theorem 5. 1

A it A o i

The set of all positive Fibonacci numbers having
even, respectively odd index is identical with the positive values
of the polynomial

Q. ( = x(1~(y°-3yx+x°-1)2) espectivel

by X,7) = %(1=-(y =3yx+x°-1) , Trespectively

; 2 2 2

Q,(%,¥) = x(1-(y*-3yx+x"+1)°)

as the variables x and y range over the positive integers.

20

The set of all positive Fibonacci numbers having even,
espectively odd index is identical with the positive values of the
polynomial

QS(X,y) x(1- (y —4vax -4) ), respectively

il

i

2
Q,(x,7) = x(1-(y°-4yx-x"+4)?),

1,

as the variables x and y range over the positive integers.

30 The set of all Tucas numbers having odd, respectively even

index is identical w1th the positive values of the polynomial
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i Z5ave
X(1=(y"=3yx+x"~5)") , respectively

i

Ry (x,7)

- > e
Ryl y) = x(1-(3°-3yxex2+5)?)

7o

o
i
et
S
=
a

variables x and y range over the positive integers,

4

&

index is identical with the positive values of the polynomial

: : 2 2 pnd :
R, (%,y) = x(1~(y"-4yx-x“-20)°) , respectively
o P 2 \
. Ry(x,y) = 2(1-(y"-4yx-x420)7) ,

4
as the variables x and y range over the positive integers.
The set of 8ll Pell numbers having even, respectively odd

index is identical with the positive values of the polynomial

i3

Sl(x,y) = (1~ (y2 va+12~4)a) y Trespectively

v

32(XsY) = x(lm(y“wﬁyx+x2+4)2) ;
as the variables x and y range over the positive integer.

6° The set of all Pell numbers having odd, respectively even
index is identical with the poaifive values of the polynomial

S5(%, )

54(X9Y)

e : emas
X(1=(y =14yx-x“=25)°) , respectively

x(1-(y2-1ayx-x"+25)%) ,

i

0
L

as the variables x and y range over the positive integers.

/ Let a be a positive integer and (y the recurrent se-

n)nal

quence given by (15). Then, the sequence (3"21,1)1,“1 ig identical with
v

the positive values of the polynomial

n
T(x,y) = x(lm(y -(a“+2) yx+x-a )2) :

as the variables x and y range over the positive integer.

Proof. See the proof of theorem 2.

P ——

Remark. By the above theorem, we can represent separatelly

the sequences (??ﬁ)nkl and (F2nm1)n31’ (LQD)ntl and (an 1)n>1 :

(Pgn)n>l and (?2n~l)n§1‘ It will be of interest to give such

The set of all TLucas numbers having odd, respectively even

e
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"integral polynomial representations” for the sequence (7 ) .
. i ; nk+r’ nxo
for arbitrary fixed integers 1 ¢ vfli(k‘é})ﬁ such repreﬂéntations
exists by results in M.Davie [57.

Finally, we remark that results analogous to those in lemma 5,
theorem 3 and 1 el hongder Ll : ' x tead
heorem 3 and lemma 6 hold for the recurrence X =8X ~X instea

bt & Whle e e
2 ot IS wr (Feata Ehacas poar)t N e - e
of Xl ax +x, 4. We state these results without proof, since

then are entirely

Tet

similar to the

above ones.

a be some fixed integer. We consider the following recur-—
rent seguences:
f £ 3 1)
fo w o * e X =gy s Cuibon: S
(28) 1 ﬁl’ o ?2’ n+ 2 al z 1.
{1 ¢ § i ¥
2 = 1 s a 7 et bATE =y fomis an>
(29) I e el ¥n = -
Using induction on n>1, it is esgily fo verify that:

1]
(30) *ne

§
2 el PZ

] i
Lemma 7. Let (

defined by (28) and
¥

§ i
(32) kak+3 k41

(33) h+.xh+3

i/

k+

Theorem 6.

For

L]
=y A for every n>1. Define also:

el z
2 e § £ ] l

il WS e e fopr manla

N D n+l n =

1 ] 4

4 2 ~ [ =~ - oo s o " 3 3 o
Xn)n§1 and (An)n§1 be the sequences recursively
(31)o Then for every k 31 we have:

2o P

k+?

= 2 B~ 8 (25,
2Xep = 2 Pom & Py
every integers 1¢ r< k,; the sequence (x klr)ngo

verifies the following linear recurrence:

§ ¥ £ §
4 = % for-nshk, n= mod k).
L 34) arke ® 5%y *n-k? L 4 (n )
t §
Let and he the sequences recursive
Let (yn)nhl and (Zn)nzl be the sequences recursively
defined by (29) =md (21)... Then for every positive integers
and k we have:
150 | el | i to .9
& P s = bel
3 S s = X
(35) % ok ekt K
: x5 ) ] 3 b D) 1 2
G Cri 2 % S Gl st A SR
L) n+k 2n+k?nt?a (s ) k
Now, the attentive reader can easily write down and prove ana-
logous of theorems 4 and 5.
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Final remarks. 1) By using succesively theorems 3 and 6, we

)

and

nxl

can obtain some relations involving both sequences (zn
: i

{eg )

s

2): Using the equivalence:
2 p ' ois o 2
Vo-ayx+x© = 4 § {mmy  (2y-ax)“~(a“+4)x° = +4 5 X

; 3 . Lo . 2
every result concerning the solutions of the equation y‘mayx+xaw%§

#

can be "translated" into a result concerning the solutions of the

"ew s 3 o4 T RO, ? > 2 o 2
corresponding equation z°=(a“ ¥ 4)x= +4 8§ .
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