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ULTRAPOTENTIALS AND POSITIVE EIGENFUNCTIONS

FOR' AN ABSOLUTELY CONTINUGUS RESOLVENT OF KERNELS

by

Lucian BEZNEA

Introduction. Let (X,ﬁ) be a measurable space and V" be a submarkovian

resolvent of kernels (with the initial kernel V proper) on X which is
absolutely continuous and has a dual resolvent (with. the same properties)
with respec't to a (=finite measure.

A pésitive numerical function s on X is called

Vaultrapoteniial if it is V=excessive (in parti-cul'ar' V-a.eov finite)
a.ndi if the i‘ollowiﬁg condition is fulfilled ¢ for evefy integei‘ nyi,
there exists a positive {B—measurable function fn on X such that
s=Vn(fn') y where v? is the n-ih iteraiion. of the kernel V,

A'I‘l-m main -purp’ose of .this pape’r (s;ze ’I‘heorlex'n 13.5 and
éqrollary 3.,6) is to prove that ,'under'a v"regﬁla{_fity" .condition_ {which
will be discussed in the last part of § 2)§n the resolvent v ,for each
V-ul-trapotential s there exist a finite éositive Borel measure O‘ on'v_ |
the opén interval ]0,0[ and a i:axnily (s )0<)\<°o ,s';\ being a positive
%ueigenfunction‘ of V (iees V(s;‘.)x);-s,\ and s, is Vea.e. finite),for
any 75) 0, such that for each x ¢X the numérical functioni AN—> s)‘(x),
defined on ]O,ﬂo[ ,is G =-mcasurable aﬁd

s('x)JsA(x)do—‘(m, |
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' In fact, this type of representationm is gi;én for a éligﬁtly more
general class of excessive functions, as the V—ultrapotentialéQ
- An uniqueness of the repreéentati§n and a éonversé
statement -are also proved, | | 7
These results are aSalogous, in this contexi, with}those

obtainedrby M. It0 and N.Suzuki in [7] (se@ also[ﬁ] } for the set ub

of diffusion semi=groups.(The V-ultrapotentials are csrrespoﬁdiﬂg
to fhe coﬁpletely Anéuperharmonié meésures with zero conditions
considered in [710)

‘ We'shéll use the technique developed in [6] and [7] and also
'tﬁe duality theory for stamdard H=cones(gee [1])0

| As in [?], the Bernstein theorem on compléte monotone
functions is a‘consequenée of these results (see §h§Exémple 1)s énother
" ome is that the convex cone of V-ultrapotentials is one dimensional if
“the resolvent satisfies an ellipticitf‘condition {(Example 2 inf'§k)o‘
Let us notice that the.existehce of the’duai resolvéﬁt is

not essential for our aim, This assumptiion éay be substituted by the

duality theory of standard H-cones (see Remark 3.9).

§1,Ultrapotentials =first results,
In this section,‘iﬁé(qui>o'will be a submarkovian resolvent
of kernels (on the measurable space (X,G%» with the imitial kernel V

proper,

We denote by %ﬂ} the usual ordered convex come of \7;aoeo finite
excessive functions assoclated to 17.(For more details see [1] or [8].)

Definition. A Ve-excessive function sé‘ébr'is called V-ultrapotential iffs:

for any integer n 1 there exists a positive gg-measurable (numerical)

- function fn on X such that S=Vn(fﬂ)e
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In the above definition, the function £, -may' be chosen to be

V-excessive and in this case it is uniquely defined and dencted by sn..v

Let us denote by 'U(V)_ the convex.cone of all V-ultrapotentials.

Thus:

’U(V) {sé gﬁ/for any 1nteger n 71 there exists s é%} such that s=v" (s )g’ :

Remark 191. U(V) generalises the convex cone of Multrapotentials
-associated to a second order elliptic differential operator" from [2]0
(See Corollary k.c)in [2}.)

For an excessive function sé gv'we have: sé& U(V) iff there

n+1
)

exists (uniquely) a sequence (s ) %such that s —V( , for

: ny0 ~—
any integer n} 0, where s0=so
I ? is an ordered convex cone, we denof,e by [?] the

ordered vector space canonically generated by %f ('s.ee §201 in {1])0

Definition. If A2 0 and ﬁ?O are real numbers', we define the map 4)0; from
%‘ﬂv into [gv’] by: :
¢(s) 5= BY, 4l s & .
For everya{?,’O R7 0, ﬂ and VP beihg additive and bositive
homogeneous, we may extend them to linear operators on [% ]

~
Defini‘tiong Let £ 770 be fixed, We denote by uok(v) the totality of those

.exces_sive functions"s which for 'anyv intege?ﬁ‘ ny 1 and p’ib’”-'f’ f3n> 0
satisfy: “---—- é})(s)é %ﬂ{f

-Fo‘r ‘any Ay O) u (V) is a convex subcone of %f We write U(V)
instead of U (V) -.

Paper [BJ has already underlined the convex cone U(V)
(denO'_ted there by %o ,its elements being called " ?}-complete supermean
functions') and has studied it under otl_ler ~points of view_o

Remark 1,2, If 0<of1go<2 and [57 0, then

(1.1) 4> <s>~¢ (s)+f3(0< Wy +p v, +ﬂ(sn . se8
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(1.2) 43{5(1,&@)) c L&(V) :

(1.3) - Yme v IR

Proof. (1.2) is a consequence of (1. 1) since for any «7,0 and B 0:

-‘vﬁr'i?;(V))c;.lZL(v-) ARG R-R RGN

o

In order to establish other connections between the convex cones

- N S
UV) and Ud(V),O‘-)/ 0, lét us recall from [93 that any ?j;e)tcessive function

s has an unique decomposition s=s%+s", where s' is an invariant function

(it AV, (s ) =st ,o{>‘0) and s" is purely excessive (ioeg/\cin(s")-—-O,
' A0

the 'sign "/\" having the usual meaning of lattice operation in (ﬁ’/y).

Remark 1,3, a) Let sé¢ (ﬁ}be such that one of the following two

conditions is satisfied:

@ visey;

(ii)  -s=V(f) ,where f is a positive.measurabie numericallfunction.

Then s is purely exgessive.ln addition,the function f is I?La,e. finite, -
b) Any V-ultrapotential is a purely excessive function. '

Propogition 1.4k, a) If o{o‘;;() ,then: |

e r~
Ml S

b) For every & % 0 we have:

uo((V) {sébﬁ-/for any integer nY 1 there exists saté% such that s—Vd(%()}

c) The V-ultrapotentials are exactly the purely excessive elements of U(V)

Proofs If ;% o4, and ﬂ>o from (1.2) and (1,3) it follows that
(f“w <v>)<::f‘\uw>

As a consequence,if SEK\U(V) andp';rO using also (1 1),it follows

= succe31vely. (? (s)= /\qjﬁ(s){: fl]’ Qb (S)C/\u V), sé U (V).

Thus, assortlon a) is clear,using also (1.3).
We denote by L/“(V) the set of the right side in the equality of b).

First,we show that,if ol > 0 and 7 0,then:



e -

Xl ok :

< (1.8) %( U (V) & YV

where U V)= u(v) : : : : 2

Indeed;let o be an integer, n7 1 and sé l/(V) Thens (f)ﬂ(s)_vn(v ( n41))~
n+1

= B p(8) U O a(s2 )Y, (Y ARG IR OE AL ,;‘Sd ) iee.
(1.4) is proved, As aconsequence,for any ol 0 : U, (V) & u (V)
" s o prove that:if s& m(v),uy 0, (resp. s€ u’(v)‘ an;i
s is purely excessive) then sé& I/J\(V) (resp. s€U(V)),
" From ¢>(s)(,gj for every ,‘5) 0, it results:
p%(s) 47 (s) ,tor RLp

and we define the function sdby.

s— sup PO, (s).
e R20 %
If s,,s, eU(V) oA % 0,then:

(1.5) -8 ‘ (s )+(s ) (s 43270(

HE sél;l ) sy 0y (respo SGU(V) and s is purely excessive) then: V (s, )=

s supﬁV (s= ﬁ\d+ﬁ(s))~ sup]’%. ﬂ(s)— So By Remark 1,3 a) it follows that

s&é g/ if Yy 0 (resp. s C%/v" and s0 is purely excess1veo)o From g= ¢ﬂ(8)+
’3&+ﬂ(s) (Pﬁ(s)c u v), ﬁV (s)é Ud(V) using (1.5), it results._ _
(i)ﬁ(sa)—{(i‘i(s) ECG{, ¥ s Tor any ﬁ) 0.Thus,we have by 1nduct10n. sdéL! V),
sé '2,{7L(V)0 Assertion b) is now clear.
Finaly,assértion' c) foilows from the above. ;:ohsideratiops

and Remark 1.3 b).O

Definition, a)'For every real numbers o(),o and )\) 0, the convex cone
EO‘(V,X) of all positive A —eigenfunctions of Vg is défined by
5 VM= {sefy / Vet =nel

where V0= V ,and we write E(V,A) instead of EO(V,)\).

b) Let us denote by E(V,5°) the convex cone of all ‘invariant functions.,

Hence

-E(V,oﬂ):: Ed(V,;{r-), for any ol) 0.



We remark that :
. . . 1 '
Bb-{(v,},)={o}1f ol $0 and QG"’
From the resolvent equation ,it is easy to see that for

"ok P’?/ ()we have:

. R A , 1.
(1.6) B (V,N)= Eﬂ(V, mmtamea) ¥ 0(%4& .
whe.re the convention is: '%=°o m:% s Ep(V;50) =E(V, m)
_ Let us p01nt out that '
(1.7) - \_J BV, NG u<v>
0L hgoo :
and by (1.6) we have
(1.8) \ JE(V,N) =\ }E Vs A)  ,for any <% 0.

525 Resolvents in duality and the natural topclogy.

| - Let 1};(Yil£)o and LUZ(W*Zpyo be two submarkofian resolvents
of kernels (on the measurable space (X,j%)) which are absolutely
continuous and in duality with reshect to-a G;finité @eésﬁre m, .
their‘iﬁitiai kernels V and W being'pfopéfo
| ‘ A first'we4summarize generalities of standard H-counes. For
more details and proofs one sh§u1d bonsult L1]o
%ﬁ}.and %ﬁk}stand as basic examples of standard H-cones,
"In order to simplify the exposition, let us suppose
'that V= V(1) is a functlon on X with strictly pos1t1ve values.

We write : v Oo

Definition. a) Let us fix u¢g %Z},u? 0., An element t & ng is called

o
u-continuous if for any Ero and for any family Fégw—increasing to

t there exists t1€F such that tq§t1+2‘u.




RES R e

== ps R
| A oy
The convex cone of all.u~continuous elements of @?u}-is
denoted by (%7%5) ().

b) An element t€ 5@9«15 called universally continuous if it is

u-—contlnuous for every ug ?,&w ,u>0°

We denote by (gw)e»the convex cone of all vuniv.er‘sally
continuous elements of ‘fwo
(2¢1) There exists a countable subset D of (%ﬂw)o .which is increasingly
dense in %’ow e for every té"fw.there exisfs a sequence (tn)néI\?D
such that t #t)([1],Theorem 4,4,6) | |
(2:2) ForA any uE?wr,u)O and t€( (gw)o, there exists a¢Ry4 such that t < au.
) ([1] sProposition 4.,1.2 b)) |

Definition, The energy form is the map (s,t)i——-—-—)-(s,vt} from g’-;yx ?LU'

into Ry defined by: .

<s,t)'= sup{fﬂ&’(g)dm/f,gé T i) s, W(g){t} .
where ?/ is the set of all ?)-—measurable po.sitive numerical functions on. X,
(2.3) For any fé?/- such that  V(f)¢€ g; and for any tEé %ﬂw» we have.

{v(e), 6y = fftd‘mo

([1] ,Theorem 12,2 a))

De'f:i;nit-ion° An H-intévgral on fu} is’a map/u from % into §+’with th_é
fo'ilowing- propertiess ‘ |

—/U is ‘additive; A ) ’ B

ol is increasings;

_ -/J is continuous in order from below (i.e. if (tn)neNg?w increases
'tO tégw‘ then (/J(t )) 1ncre.ases to ﬂ(t));

- there exists ue%ﬂw suy 0 such that /u(u)<w (or equivalent: /A(t)("o

for every t€( glf)o%
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D.e.fi)vxjjtion0 If se %py s the m.ap ‘s from. Z?w% into ?ﬁ.;_ is defined bys
.’s’(t)=<s9t> s for any té?wo

Er ( [1],Theorem 1.2.2).

For every sé%?-;/m , S is an I;{-aintegral' on
For every Hmlntegralﬁ on GWW there ex1sts an unlquely deflned
s € (g;y such that M= sa([ﬂ Propos:Ltlon 1624¢3)
(2.4) Hence s by means of the- energy form we may identify %’7} (resp, f’u})
with the set of all H-integrals on ?w?«(respo on ﬁw Vs
(2.5) An additive and increasing .ma.p':/u:.( %;)O-_-;mis the restriction

., @ '
to ( GUJ)O. of an H~integral on (guy c([’i] sTheorem 4,2,11)

| The resolvents V—(V )o{>0 and W=(w )ck')() being in duality,
“from Hunt's approximation theorem and (2.3) it follows:
(2.6) (Vg (), 8 ={e, g (1))

for every o/> 0 s&?v and técéng

‘Deflnltlone The natural topology on g} is the coarsest topology which
makes continuous the maps s;«-—-)(s t> t(.( ?w)
(2.7) The vector spaces b-{;,:} and {j(;w)o] are in dda_lity (by. _méaos of
tloe eneré,y form) snd thevnatural topology on‘ ?L? is the restrictiop_ to
gtf of the weak topology G([%ﬂy] [( }) ([1_] page 106)
The natural topology on ?V is metrlsableo([ﬂ Propositionk,2,8)
Defnntlon, For any uC%@;’,u‘)O we puts -
X -{se%gvf/@ u><1}

If ué“(ﬁy,u)O then K is a compact convex subset of (‘Gﬂyfo

(2.,8) The coarsest topology on %{}- which makes continuous all ~the
functions s|~—-a»(s t),tE( Ii,j) (u) coincide with the natural topology on K o
(See the proof of Propos1t10n lr 2.4 in E‘I]) In addition

(2.9) &= el Ky

: uy 0
([1],Proposition ho2.3 a))
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(2,10) A subset M of g;‘;« is relatively compact in the nat.ural fopology
iff there exists ué ((‘;?w',u? 0 such that MC,-'ZKu (1] ,Propositio‘n Bo2aT}n
Let us now discuss some "regularity" pfopertieé of the resolventsg,

Definition, a) Let u€ %?w-,u'>0 be fixed, We say that the resolvent Vg(\@;{%{?o

éatisfies condition (Ru) ife

-

Ve :K;—-—% E,?vv is continuous (in the natural topology),for any O(?Oe

b) The resolvent vé(vazi>o satisfies condition (R) if:
v . @ éé’ . l .
o 2 Cyr—>Cp is contlnuous,fgr every «%0,
The dual properties are 'the following:

Definition, a) If ue gy,u>0, the resolvent W=(WD< satisfies

k50

*
" condition (Ru) ifs

WL (G ) € (Gy) (), g0 any x>0,

d *
b) The resolvent W=(Wy satisfies condition (R ) ifs

>0 _
W«((‘Gﬂw)o)g(?w)o ,for anyd\‘)O'.; ;
In [1j,page 150, the maps Wy ,«?O are cailed reg‘ ular if
condition (R') is satisfied. . | ' e
From (2.10) we haw_fe:"v’satisfie_s condition (R) .(respo wr
' safisfigs condition'(R*)) iff V satisfies (Ru) (resp. WSatisfi_es-(Ri))
~ for every ué€ ?wr?u“? Oe |
By (2.6) and (2,7) it is ..easy to see that:
| (R)&=3(R")., |
If ue%uyﬂ)O, using also (2.8), it foilows:
(R )==>(R ).
Lemma 2,1, Suppose that there exists an inéreasingiy dense subset
DC g)ws.uch that for every ol>0 we have: Wo((D)Q(CE‘?W)O (resp. Wy(D) & (i}'gwr)o(u),

] 7 * *
for a fixed element uég %ur,u) 0). Then W:(w“) satisfies (R ) (respo(Ru)).

*> 0

Proof, Let us take u¢&y,uv 0, té(fw)o and (tn)néN_g"D with tn/ T

-



] Qe

Then for any integer 'k‘),‘!g there exists nkeN such that e tn —%--_gvuo
. 7 “k | L K-
Hence Fwd(t)mwx(tn ﬂgﬂéiu s for any integer k3 1s Proposition L.1,2 d)

in [1} implies that Wd(t) is u-continuous and the proof is finished. [J

e
Remark 2.2, Let veE(ysv70 be_such that W(v) is a nearly continuous

2 r , 4 §
element of %ﬁ}(l?e, W(v) ¢ gﬁ;and there exists a sequence (tn)néNgg(%iy)o

i =5 1 5 t i 5 =
.Wlth W{(v) gz&. n) Then there ex1sts1%é%imLF>O such that LV'(Wa

#
satisfies condition (Ru)o

lﬂ)O

Proof. From Proposition 5,6.1 in [1] there exists ué%iy, u> 0 such that
W(v) is u~-continuous. Using (2.2), we obtain W(t)é(ziy)o(u),for'every

#
té(%i;)oe Condition (Ru) now followsrfrom the resolvent equation, 0O

Remark 2.3, Let us suppose that X is a 1oba11y compact space with countable
base (with the associated Borel @ -field), 1&%%Drand Wy (f) is comtinuous
and tends to zero at infinity, for any'o()C)ahd any bounded positive

measurable function f with compact support.Then 1y;(wﬁ)

>0 satisfies

#*
condition (R1)o
Proof. Let us first remark that every té%ﬁyis lower semi-continaqﬁso
We denote by A the set of all positive bounded Borel measurable
functions with compact support. If f€u4, using the complete maximum
“ ) . ! 0 . . 1
principle, it is easy to see that W(f)é&( &mﬂo. The set W(u@) being
increasingly dense in %q},we obtain that the Ly;excessive functions
which are continuous and tend to zero at infinity are exactly the

f=continuous elements of %ZfoWe'may now apply Lemma 2,1 ,taking D=W(vq). o]
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_630 Integral representation of the ultrapotentials.

We maintain the context of the previous section.
For a convex subset K of %7)— let us denote by eX(K) the

s

set of all extreme po:mts of K

Proposition 3.1, If o&);, 0 and ué%ﬁw,u‘y() then

(3.1) P ex( L&(V)ﬂli )€ L_JEWV,M)o
' OCAL

Proof. If sgex( C{,L(V)ﬂxu)\{oﬁ,then {s,wy=1.
Let 3% 0 be fixed. We put
/3 =f ¢+ﬁ(s)5u>°
p=0s then V, ﬁ(s)=0 »5=0. If ag=1 ,then <s-«pV | (s) ,u)=
=0 m+i}(s) =s 5 s€E(V,99), Hence we may suppose that 0< aﬁ<1.

Thus Ogaé 1. If a

If we put 91=~=- ﬁ\« l’ﬁ(s) and 52-—m«- (Pﬁ)(s), then it follows

15s e U (\/)ﬂK oThe equality s= a,s +(1-aa,3)s2 and the extremality of

551

s imply that séEd_’_ (V,-—a—Q). (3.1) is now a consequence of (1.8).03

Remark .3.2, a) Let uég/w,u'?O be such that 1}3 (V) w0 c;a,iblsfle:'s»

condition (R ) a&!o and ﬁ 7\70 o Then the restrlctlons of V/g and (lbﬂ to K

are cont:muou.s,3 In addition, OL(V,‘/\'){'\K ud(v)ﬁK are compact
- convex subsets of %&yo
b) If condition (R) is satlsfled then Ed(V n), and - "U(V) are closed

' conve:x subcones of ?p}“, for any &2 0 and A0,

Proof.  Assertion a) is a dlrect consequence of condition (R ) and (1 6).

. Assertion b) follows from a) and (2,10), 2



=f D

Let us point out that, even if condition (R) is satisfied,
the convex cone ]J(V) of all V-ultrapotentials is not necessarily a

closed subset of %3~(see Remark 4.1).

s

If M is a subset of %égwe denote by cl.con(M) the closed

convex hull of M.

Corollary 3.3. a) Let ué%ﬂrﬂl}O be such that condition (R ) is

Satisfied. Then:

(3.2) :{T(V)f‘i Ku= vy hi L for any el)0s
and | I
(393) U(V)nK clncon(k.._../ E(V, ?\)f\K ;.

CENGo
b) If condltlon. (R) is satlsfled then

(V)=‘L£&(V) s for any &% Oo ’

: : _ _ ;3 |
Proof, Let ey 0 be fixed, Then ,by (1.3). ;u(V)/\Kug:;_"L&(V)nKuo From
(3.1) and (1.7) it follows:

ex( ?/{GL(V) AK )c: U(V) NK,

and the equality (3.2), of compact convex sets (see Remark 3.2 a)),

is now cleala

. We have, cl con(L\//E(V MNK)C U(V)/\K and from (3.1)
: t‘){\(w :
- results (3 3)

Assertion b) follows from (3.2) and (2.9).d

Def1n1t1on. Ef hé( JE(V %)\{Ok we define by' j\(h) the unlquely
U h &0

defined positive real number such that
V(h)= j\(h) h

and we put /\(h) =0 jif hEE(V, 00)

L=




-] F=

Remark 3.4. If ué%"‘a?,u‘?o is such that conditidn ‘(Ru) is satisfied,then
_ e v , i . I e .
the above defined map /\: \_J L(V,?\) ﬂK_u\ 10%»——?}0,0%] is continuous.

Theorem- 3.5, Let o2 (V"!‘)UOO' and Yi=(w )0(70 be two submarkovian resolvents

of kernels (with the initial kernels V and W proper) which are absolutely
b

continuous and in duality with respect to a O-finite measure, Suppcse

=

that uczﬁuj-,u*; 0 is such that V=( satisfies condition (R e

Ve )y 0
If sé€ %V— and <s u><o¢ the following assertions are equivalent:

a) se Uy, (resp. sé\J(V))
b) Thefe exist a finite positive Borel measure 7 on ]0‘,@0[ (resp. on ]0,00:! )
and a family (s)\jo<>\<a:)(resp° (SA)O<AS°0)’ Sy€E(V,N) such that for every
"bé%ﬁb-the map %pm;;<sx,t> defined on ]O,wﬁ[ (resp., on ]O,“QJ} is
(T—measufable and: |

(*) s fshdum

(el <s t> J?sx,t>d6(h) for every té?ﬁb)
Proof. We may suppose that .béK . .

"b)-)a)" Let A>0 and néN be fixed. If té f&?from (¥} it follows.

(s, tD f(“‘“ RUAEYS t}am) :
=k if A= o0 ,Thus
f(1 isels )n<s;‘,W£(u)> ar(n) £ 1 .

If we define on f&)the map /qd bye

M) ﬁ1+dx)l¥h,t>do'(7\) tei&w,

then the above 1nequa11ty implies that /4x'1s an H-integral on 2?& °

T+ A

whexre

Moreover, with the identification given by (2.4), we have:

AN » 5
.f,!‘f(_ﬁx) :_:[(1+)\ )ns)\(x)dﬁ(?\) ,for any xeX, where %:X is the H=integral on
8; given by the Dirac measure at x€eX, Hence the function %§:X—-%ﬁi+

defined by

q:(x)f};1+ij\)nshéx)dC(h).\

e, R P
. is an element of GyF an %(f/4i°
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For e*ifex“)r"té((ffwv we have <\{,g \S,.A) t> <s0(s (t)\ /Jd(Vt (1)) = <q f/
It follows succesively: Y (s Yo B oy V (g )~ s ,s ClJ(V)f\KA AU(V)/\ 4°
Let us reﬁark that s is purely excessive if the measure ¢ is.
supportéd by jo,v@[ in.thé repreéentation (*5

Indeed va (s), t> sx,ﬁ>db(A}<GC for any té(%&u) % Lettlng o ™ 0

AN
THoN

wé obtain that

1nf<§¥x(s) f> 0 for every t€(%iv) 3
_ 230
hence s is purely excessive,
From Proposition 1.%¢) it now results that the proof of "b)==ja)"
is completea
R vl .
C "a)==3b)", If s€U(V) ,then s is an element of 'U(V)f\Ku ;2 metrisable

compact convex subset of %i} (see Remark 3.2 a)). From the Choquet

representation theorem there exists a finite measure ¥ on gﬁ(‘U(V)f\Ku)\{O}

'”—ﬁfdf/(h)
: [ e <s t>-/2h €>d?(h) for any t:%@)o

If té(%dv) ,we define the measure ‘P on ex(\J(V)/\K )\{O} by
:: ‘i)"(ia

where T is the H~1ntegra1 on % defined by t.

with barycenter s. Then

The measure %% is finite and %l({‘? (i.e. q%

absolutely continuous with’ respect to Y7)
Trom(3.7) and Remark 3.4 it follows that we have a Borel
measurable function /X;gg(ij(V)f\Ku)\{OE——w¢JO,co]
Pgt us denote by ¢ and G; thé images of ¥ and %% under‘jxe Hence
o and G% ére finite Borel measures on JO,OQJ and G%Q((T -More precisely
(34) fgf,(%)dﬁz(h)zfg(f\(h))<ll,t>d‘4”(11) , ze By,

where f%-denotes the set of all positivé Borel measurable functions

on ]O,o§ﬂ
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t1+‘b2 by ’62 1

there exisls a positive real number a‘t such that t<£a

'In addition @ =40 0 if b gtzé(%ﬁgoon Ir té(%ﬁﬂ)o,by (2+2);
U hence ﬁ{g" a
on Ku and fg(h)dﬁ“t(?\) & atﬁ;(h)dﬁ“(h) sfor any gé‘fg-eo :

Let us denote by f, -the Radon-Nikodim density of jS with

t

SO .
respect to G .Then f,< a, G~a.e. It follows T 6&0(6') oo pE . wm
=1 t t,' tz ‘L1+t2
U~aces,for any t,t,,t &(%Qw) and £, {f, V-ace. if 1 ¢t .Using the
Bl 0 T, e
lifting theorem of C.Ilonescu-Tulcea , for every té&( (fgow)o we may choose

&foé ‘such that £ £, . on 000 ith t,,t,6(E
£4€0L () Buch thet £, 4f, = I, 4 2 )0 2] (whith t,,4,€(8y) ) and

ftfftz on 30,&3] {f t,‘\(tza For any 7\6]0,%] we have obtained an

additive and increasing map tt—«-——-%*f (N) from (%’pw) into R4 o.Hence, by
- (205), there exists s¥ C?tf' such that <s' L}— f ()\), and the map ?sl-—;s<97\,'t>
is G -medsurable for any té€ %W .
If t€ ({w and g¢ Bhfrom (3.4) results:
N ) e
[eE (a0 =fathm){n, B atm).
Thus, for every o%0: "
: A (h) - un D s
f(h)(sg,xvd\<t)>du<>\) £ (A(0)) {0, ¥ <t)>ea.ﬂ<h>/ﬁmbm(mxh,ow(h):
X -

j,[+o(kg(}\)<e AYAT(N) . |

1t follows {V (58) ) =i {s],8) G=ace, From (2.1) it derives that there

¢} oOws o S}\ g *-1 +®!\7;\ \S;\S ‘ o€o o .
exists a Borel measurable set B of ]O,w] such that G(B)=0 and s;‘éE(,V,}\).
for.every A¢B. Let us put:
(st Lifn¢B
87%

0 ,if AEB
Hence s,€E(V, /\), for every %tJO QO:] ythe map hp—-=s <s,\,t> is G-measurable -
for any t€ %wv and <s ty ﬁh t‘)d"’(h}—ﬁsmf)d%‘()\) o

Gorollary 3.6. If, in Theorem 3.5 ;condition {R) is satisfied, then we

haﬁe a)==0b) for every S€ ‘ﬁr 0
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Remark 3.7. If ség(\’) has the representation (¥) from the above theorem,
then: :

{3.7) s‘(x)= f‘sh(x)dc‘(%), for any x€X,
In addition: - - _

(3.6) the invz%riant part of s is G({WO})-SM, and sy dG(A) is the pﬁrely
excessive c'ompon’ent of s. : Joe=l .
rProofo (3.5) is a consequence of (’%) since 8x is an H-integral on %{v} s
for every x¢X. Assertion-(3.6) is clear (see the final remark in the
proof of "bl===da)"}.D

We have the following unicity result:

Proposition 3;80 With the same assumptions as in Theorem 3.5 , let
SE%I(V) be such that <sgu> =1 Then there exist a positive Borel measure
6 - on J O?ﬁoj and a family (S?‘)O<>x~$°°’. spéE(Vyh) such that for any té€ %Iw
the _map Ap—> (S/\st> is G-measurable, <s,\,u\>-=' 1 G-ace. and s has the'
representation (#). (In partioular fdﬁ‘-—-”lo) Mofeovei*,ﬁ' and (sh)0<7\$_c@

»5) and 7\}»—-T—>S-§\

are uniquely determined, (Two G-measurable maps My
are equal if sy= s}f G-aceo)

Proof., ABy Theorem 3.5 there exist a f‘inite Borel measure (% on }O,\""]
O<x£ﬁ);sgeE(v,A) such that the'map.7ﬁ~;9<§§,ﬁ> is
6’)~measurable for any té€ (fu)- and %’#fg;{dﬁ'(?\)». Since ﬂsi,u}d@'(?\)(w s

and a family (s;:)

we may su.pposé that <s,{,u>{0<> for every ?\é]O,OO] o Let us put

st AE gl
<S\?uu7‘.s7‘911‘ e

0 ,if s}=0.

S?\=
and .
dF(N) ={sf ,updc? (3).
Then (7 and (s;\)()(,\goo satisfy the required conditionss.
In order to discuss the unicity, let us point out the

°

following simple consequence of Stone-Weierstrass theorem:



L
(3,7) If O, O" are positive finite Borel measures cm]O w[ such that
A : 3 TN r
ﬂ:{‘:‘;”??ﬂ) (10(?‘):}(?’;:«;) {}.(T"(A} ,1’)_?’/03
theﬁ =0, .

Let G’”,(s}\f}o<h€w be another system which satisfies the

1"equired conditions. From (3.0} we may suppose that 6 and G" are

carrled by ]O @‘Df o Then 1= <osu) fdG"—J’fdG" and for any 1nteger n‘;',’i we have

NG
V'n(s) Vn(s\)df"(?\)-f( ;SAQW(\) Hence
(3.8} ﬁﬁ“f) (snstyas(n) f(m) (s;;,t>dﬁ"(>\)9

for any 13 %Zwv and n3 0.
Applying (3.8) for t=u, from (3.7) we obtain: G =0,

If te( C{ﬁ?ﬁ s LEt a, be a positive real number such that t£a,u,

t
hence (smt>< a, for any >\>O Thus {83, t) dKT(?\) and <s ,©-d6(N) are finite
measures on,]O,OO[@ Again (308) and (307) imply that’ (smt')sdi’f(h)m<s§‘$t>:d_%”(%),
Hence, for any. t€( %/:4})09 <sh,t>=<s;",t> 0 ~aseo, and from (2.,.1) it
follows: s,= s}" 0=aceo [J

We finish this section underlining some additional -connections
with the duality for‘standard H-cones. As a consequence, our hypotflesis
éhould ‘be slightly modified, |

The _@_L_@_I_L_.of the standard }.I—con.e ngf is by definition the set
of all H-integrals on %jy-' and will be denotediby’ 961;&0 |

We have already observe'dgsee (2.4) ,{;hat (fl:= %’yw.‘

The equality (2.6) shows that ,considéred as a map on’ %’;;,

WO( is exactly the dual of the H-‘-morphism Vi s for any &30, (With the

_ notations of [1]s LeHom(&;, %) and Wy=Vy o)

The strictly positive >Uf~excessive functions ueg)ujgu} 0 are
; : . *
precisely the weak units of the standard H-cone %]U"’

Summarizing, we have the following:

o=l )
ed VY
/
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Remark 3,9. The results of this section are valid for the following set up:

tTis a submarkovian resolvent of kernels (with the initial o
-kernel proper) which is absolutely continuous with respect to a G-finite -

measure, and it is such that %%'coinéides with its bidual,

&h, Examples,
Example 1 (The Bernstein ﬁheorem)o Let (X,ﬁg) be the measurable space
Jo,o0[ (endowed with the G-algebra of Borel sets),and let the submarkovian

resolvents of kernels U=(Vy) and LV=(W%) on X be defined by:
(o}

“7 0 470

Vi (£) (x) =% e;*uf(u)qu :

Wﬁ(f}(x)ze“d%};%uf(u)dug for any :fé}'andixexs

0 _

Thus L7 and LUfare absolutely continuous and in duality with respect to
thé Lebesgue measure. We may verify that se%aﬂf;universally continqous
iff it is continuous, bounded aﬁd there exists x;}O subh that s(xo): 0,
' As_a consequénce,.condition (R*) is satisfied, Also,it is easy to see that:
a).The positive cohstant functions_are the only invariant excessive
ST R e 'E(V,}\)z {xwové")l\x / cem} i
b) A real function s is a Véulfrapotential iff s is compleﬁe monotone
A (Iiseo s is infinitly differentiablg and (m'i)nDns)O,for any integer nyo0,
where D''s is the n-th derivative of the function s) and %igws(x)=00‘
c) _iﬂv) coincides with the convex éone of all complete monotone functions,.
| Let us point out that the intermediate chafacterization for
the complete monotone functions established in the Choquetf®s proof of
Bernstein theorem (see [4] 6f T.40 in [8}) may be considered as the
analogous, with the associated semigroup of kernels language, of that.

~given by the abéVe assertion c¢) in the resolvent terms.

From Corollary 3.6 we obtain the Bernstein theorems,

Remark 4,1, The convex cone U (V)is not closed,



i
Proof. The constant function 1 (which is not a V»ultrapoteniial) is

;'V
he 1imi ? the ing seque s 2UV) & s x)s 6T, XD
the 11m3t of the following sequence ( n)néNng(E) qn(x) e . XeX

Example -2  (The elliptic case)g‘-With the notations of §2, if %?'is a .
convex subcone of %ﬁ} and u&%ﬁ&,u? 0, then the convex cone %?; is

>

.(glu-—f{sé E,é'/'{s,@‘ <oo} o

Proposition 4,2, Let V be such that it induces a bounded linear operator

defined by:

on L10m)e'suppose that 1é%iy,coﬁdit£on.(R1) and also the following

aséumptions aré gsatisfied: .

(C) Some power of V is compact ;

" (B) V(£) is strictly positive if féé?‘and V(f§$;0.

Then,the‘convex cone ‘U(V)1 is one dimensional (iae,-there exists sé]J(V)1,
s# 0, and any other elemént of 'LKV?1 is propprtioné} with s). .

Proof, Condition (E) implies that V is an irreducible kernel operator

1 : ' : ' o,

.on L (m) in the sense of H.H.Schaefer, and from Theorem 6.6  in [10] it
follows that there exists exactly one eigenvalue 50 for V Whiéh has
ﬁOSitiVé eigenvecfors aﬁd the correspondingfeigenspace is oﬁe dimensional.,
Remarking that every element of E(V?}\)1 is ‘M-integrable for'0<h<;°;
we conélude that E(V,r)1 is one dimensional and E(V;))={Q} BT N oy
AER ;Theorem FeB iﬁplies.now thaﬁ _'U(.V)1=E(V,r)1 and the proof is finished, [I
Remark 4,3, a) If in the above proposition we know in addition that
every*Vuultrapqtential is ﬁﬂ;integrable, then U(V)= IKV)1, hence
Y(V) is one dimensioﬁal,. a

b)) Condition (E) is equivaient with the following one:

.ény -U:exceséive fuhction is strictly positive.
Thus, in Cdnnection with»the charactérizatidn qf the elliptic harmonic
spaces (see [5]), condition (E) might be undersigod as an "ellipticity

property“ of the kefnel Voo »
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-Coroliafv Lo, Let V be the-Green'kernelkofoafsecond ofder elliptio
differential operator (with 1ndef1nlto dlfferentlablc coeficients s) in
a bounded domain (w1to a sufficiently-regulqte boundary) of B-, Thon
W(V) is one dimensional,
Proof. In this case V and W are bounded kernels, Hence V 15 a bounded
linear operator on L Om)o Also, condition (E) is fulfjlledo

The structure of the associated Green funotion (see [2] page 275)

imélies that there exists an in@eger k}»O.suoh that Vk maps L1(W0

‘in £°(m). By Example 5, page 337 in [io];it Fosulte bhat condition (C)
is satiSfiede‘From Remark 2.3 it is easy to see that condition (Rj) is
.al'so satisfied,

The desired assertion is obtained from the-above proposition,
(See also Remark AGBva)o)'D

Let us point out that Corollary 4, 4 shows thdt Prop031t10n 4 2
is a generallzatlon of the results of this type obtalned in [2] Theorem 12
‘and [7} Corollary 83,
Indeed, we have already observed (see Remarkf1.1) thét the "ﬁitrapotentials
: associated to a second order elllptlc differential operator" 1n[2] are
from IJCV)o _

By Proposition 81 and the equality (407) in"[7j we obtain that
in this-case the‘"oompletely Lmsuperhér@onielfunctiono with zéro odnditions"

are also elements of Uy .
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