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A THEOREM OF CHARACTERIZATION OF RESIDUAL
TRANSCENDENTAL EXTENSIONS OF A VALUATION:
e

ALEXANDRU Victor, POPESCU Nicolae and ZAHARESCU Alexandru

Let K be a field and v a valuation on K. The r.t. (residual transcendental)
extensions of v to K(X) have been considered by Nagata {7} in connection with some
problems in field theory. Also in £_7i it is conjectured that if w is a r.t. extension of v
then kw, the residue class field of w, .is a simple transcendental extension of a finite
algebraic extension of kv, the residue class field of v. Although this problem has been
affirmatively solved in t91 and independently in {11} there exist many interesting
questlons on r.t. extensions. Some questlons about r.t. extensions have been. COHSId-

ered by Ohm in @i and {10} Particularly in {102 three conjectures relative to some

-natural numbers like ramiﬁcation index and residual degree are stated.’

The main result of this work is Theorem 2.1 which give a characterization of

r.t. extensions w of a valuation v using the notion of minimal pair of definition. As a

consequence of our theorem, Nagata's conjecture, all Ohm's conjectures and also

some mterestlng consequences given in Section 3 result in a natural way.

Finally we remark that in {ﬂ itlis given a description of r.t. extensions using 4

“the so called "pair of definition". Another description of r.t. extensions (based on the
._obviously existence of minimal pair) is derived in this work (Corollary 2.4) and it

- seems that this description is very satisfactory. However, in contrast with pairs of

definition of a r.t. extension, which are easily to indicate, we do not have yet a
critérion to recognize if a pair of definition is a minimal one.
This question and some related problems shall make the object of a future

work.



1. Notations and definitions
Let K be a field and v a valuation on K. Denote by kv the residue field, by R
the value group and by O, the valuation ring of v. If x¢ O, denote by x* the image

of x into k We send the reader to t51, t61, t121 or £135, Vol I, for general rotions and

defmltxons

Let K'/K be an extension of fields. A valuation v' on K' will be called an
extension of v if v'(x) = v(x) for all x K. If V' is an extension of v, we shall identify
; canonically kv to a subfield of k., and E to a subgrodp of .r\-/'. .
Let K(X) be the field of rational functions of an indeterminate X. A valuation

w on K(X) will be called a residual transcendental (r. t.) extension of v if it is an

extension of v and k /k is a transcendental extension. "(It is well known that
tr.deg. k /k =1 (see t51, Ch. VI, §10)) Then there exists elements r € O W’ such that
r* is transcendental over k :

..ot any r€K(X), rﬁ‘EK, define degr :h fi(x) K(r)]. Denote deg(w/v) = least n
such t;wab tr;ere exists rQOW of degree n such that r* is transcendental over kv

It is also easy to see that f[\:v . r\:} <{<® ;the number E(:v : r‘v.’ will be denoted
by e(w/v).

Let k b;e the algebraic closure of k into k w it is easy to see that E< S kv'3 Ceoa

and the number {k : k ? will be denoted by f(w/v). | |

In what follows (see Corollary 2.2) we shall prove that generally one has:

elw/v) flw/v) < deg(w/v).

Let us denote by K a fixed alqebraxc closure of K and by ¥ a fixed extension Bfi -

v to K. If w is an extension of v to K(X), then there exists an extension "w" of w to

K(X) such that W is also an extension of V. Let us denote

:[W_(X-a) !.aex}g [—\:v,
={W<x-o<>-lo<ex}§ I
oS

Let r'be an ordered group which contains - as an ordered subgroup and let



o
ye Pand a € K. If f(X)€ KEXJ one has the Taylor's expansion:
0= B+ aqix - a)+...+ 8. (X- al
Let us define:
w(f()) = inf (v(a) + i) .

1

It is easy to check (see t51, Ch. VI,SSlD) that w is a valuation on K{)XJ, which may be

" canonically exténded to a valuation on K(X). We shall say that w is the valuation on

K(X) defined by inf, v, a, and T. Also it is easy to see that w is a r.t. extension of v if

and only if ¥ has finite order over RQ

o

PROPOSITION 1.1. The following assertions are equivz;lent:
a) w is ar.t. extension of v
b) W is a r.t. extension of v

=
c) F\./ = lW’ the set M\Tv is bounded in [;, and contains its upper bound.

.Proof. The equivalence a)&> b) is obvious.

b)=)c). Let W be a r.t. extension of v. According to {11, Proposition 2, W is

defined by inf, V,« € K and AG r\; = I—.\; Moreover one has W(X - &) =£. Then

J = sup M. Indeed, ifﬂGE, then w(X -/5) = WX - ol + « —/5) = inf(d, V(- ))._<_(S.
c) =Pb). Let &€ K be such that W(X -) = 5: sup M. The equality FT/ = I‘ZM_,
shows that there e;,xists an element d€K such that W(X -o(j:'\?(d):i. Hence
WX -x)/d) = 0. We assért that t = (X - o()/d)* is transcendental over k\T Indeed, g
is al'gebraic-then tEk\7 since k\T i;s algebraically closed (because K is algebraically -
closed by hypothesis). Hence there exists an element a €K such that v(a) = @ and

a* = t. But then W((X - 0/d - a)> 0 and so WX - (X + ad)) > V(d) = d, a contradiction.

REMARK 1.2. According to hypothesis mé-:‘.e above, Mw. is also & bounded set.
éonversely, if Mw is a bounded set, then MW is not necessarily bounded, although
r\;; l:/lv Indeed, let Q be the field of rational numbers,.p a suitable prime number,
Qp the field of p—ad%c numbers and v the p-adic valuation on both Q and Gp. Denote

by t a unit of Qp such that t is transcendental over Q. Let X be a root of the
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polynomial Ve ptz. Then X is also transcendental over Q. Let vy be the unique
extension of v to @p(X), and let w be the restriction of v; to Q(X). It is clear that w

is an extension of v to Q(X), but w is not a r.t. extension of v. However, M,, Is

bounded since X&“Qp,

Let @ be an algebraic closure of @, V an extension of v to Q, and W 'an
extension of w to a(X) such that W induces v on Q. We assert that M is not bounded
' i‘n E’X/ = Q Indéed, let {%}n be a Cauchy sequencé of rational numbers such that

lim a =t Then g\/'b an} is a Cauchy sequence of Q (relative to V) and X:lim'\/Ban.
n ; : n

It is now clear that MW is not bounded.

The above proposition can be adapted to an arbitrary field K as follows:

PROPOSITION 1.3. Let w._be a r.t. extensian of v to K(X). The following
assertions are eauivalent:
‘a) W is defined by inf, v,a Kand J € Cl;

b) e(w/v) = f(w/v) = 1 and the set MW is bounded and contains its upper bound.

COROLLARY 1.4. Let v be a rank one and discrete valuation on K and w\a Bebe

extension of v to K(X) such that e(w/v) = f(w/v) = 1. Then w is defined by inf, v, a K,

and(gér\:.

Proof. According to Proposition 1.3, it will be enough to show that MW is
bounded and contains its upper bound. Inde-ed,'since K(X)/K is not an immediate
extension, then M\& is bounded and since [\7 is discrete and rank qne, thgn MW
contains its upper bound. | .

According to t51 (see also t61), a valuation v on K is said to be l~~!énseliah if, for

every algebraic extension L/K, v has 2 unique extension toL.

2. The representation theorem for r.t. extensions

We preserve all notations made in previous section.

If w is a r.t. extension of v to K(X), then W is a r.t. extension of ¥ to K(X), and



moreovér theré exists an eler‘nentax’flz and an element cYE-)-:: such that w is defined
by inf, ¥, o andd (11, Proposition 2). In narticular, one has w(X - ) e _Therefore
any r.t. extension w of v to K(X) is well defined by a pair X, § )€ K x }:; , called a pair

of definition for W. Sometimes w is called the valuation defined by the pair &, §).

In §1}, Proposition 3, it is shown that two pairs (0(1,51) and («')d),ar?) define the

same valuation w if and only if:

O ) =d,and e - %> S,

g«%’ J-’
%

By minimal pair (of deflmtlon) of w we mean a pair of deflmhon (, (5‘} such

that EK(OQ : K} is minimal. Now it is clear that every r.t. extension 'w of ¥ has a
minimal pair, and if | J) ! ‘J) are two minimal pairs, then é_k(o() : K}:{k(@{ s if<;§.

I KCKICK and bré[ denote by e(J/K ) the smallest natural number e

such that e € C , where vy is the restriction of v to K
i

‘We shall prove the following result.

T

THEOREM 2.1. Let v be a valuation on K and let w be a r.t. extension of v fo
_ K(X) Then there exists an element o € e and an element ‘(e[ such that:
: a) If we denote EK(oi) Ky = n, then for every polynomial g(X) of K&Xf such

that deqg q(X) <n, one has
w(g(X)) = v(g(e<)).

b) If f(X) is the monic minimal polynomial of &, then T w(f(X)). Moreover, if
e = e(I,K()), then there exists 1(X) ¢ KX with deq 1 <n such that for r = f¢/1 one has
w(r) = 0, and r* is transcendental over k- v

e) If vy is the restriction of vV to K(=X), then
deg (w/v) = n-e(T,K(a0));  elw/v) = e(v,/v) e(¥,K(a)).

d) The field kv can be canonically identified to the algebraic closure of kv
l .
into k_ and
w

flw/v) = f(vl/v).



Proof. Let &/, J) be a minimal pair of definition of w. Denote

(X)) = N )(X - o)

K (o )X)K(X
It is easy to see that f(X) is the minimal polynomial of & over K. Moreover f(X) is
monic.
. o) —_‘ ¥ ‘l
Denote N - w(f(X)). The elements ¢ K and fé IV are as in the statement of
theorem..

a) Let g(X)€ Kin m = deq g(X)<n. Let ‘1100/%], : /g be all roots of g(X) in
K Then one has

m
a09=a TlEeC-2.).
i=1 /3‘ - :
Now since f_k(ﬁi): K]_<_ m <n, then for every i, 1 <i<m, one has:

() Wt B)< .
" Indeed, if w(eXe /3 )>§ then accoxdmg to (1), (/3 ,3) is also a pair of
definition on w, contradicting the,mmlmahty of (4,5 % ‘

Ther by (2) one has w(X _/Zi) = inf U,V(K—Pi)) =T/(ad-(@i), and so:
- wlg(X)) = W(g(X) = V(a) + me o=@ + L k- f) =
=V(a T(Oﬁ [5 i v(g(oi))

. b) Now since eF: w(fe)G C : there exists I(X) € K{Xi, degl<n= {K(eé): K},
such that ey = v((x)) = W<1(X)). Hence w(f®/1) = 0. Now we show that t = (f°/D* is-
transcgndental over kv; let

- |
H00 e oly, ol
i1 -

_ be the decomposition of f in T({S(j, and let di €K be such that W(X ~o(i)= V(di)’

pel. . niletid=d dn'. Then W((X - &{()/d.) = 0 for all i, and so w(f/d) = 0. Now

l o o o
since ((X - )/d,)* is transcendental over k. (see Proposition 1.1, ¢) =b)), it follows
that (f/d)* and also (f°/d®)* are transcendental over kv' herefore

£ GoI® — (G EE = S e

=)
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is also transcendental over k\; since (1/d)* is obviously algebraic (see the proof of a)).
c) Firstly, let gEKfXT be a poly.r mial such that deg g<ne. Then we may
write:

(3) ag=g et

»o+glf+'“+ge—lf

where g; KEX] and deg g;<n, for all i = 0,1,..., e-1. Moreover, one has

4) w(g) = inf w(gifi.)
_ i

since, according to the definition of e = e(J,K(x)), any two terms in the right of the
equality (3) are of distinct values.
Now let u=g/h be an element of K(X) such that deg u< ne. This means that .

both polynomials g and h are of degre smaller than ne, and so one has

e-1
g gO+g1f+...+ge_lf
YERE e-1
hO + hlf P +he-lf,
where deg 9; <n, deg hi <n, i=0,1,...,e<1. Let us assume that w(u)=0. But

according ta (4) one has:

W) = w(g) - wlh) = inf (w(a ) - inf (w(hi) = 0
_ Ot B

and so, according to the definition of e there exists only an index io’ OSEO_(_é—l such

.that
) ) = 'w(giof"’) S w<hiof'°>

‘Therefore one hase

e-1
9% ge-lf
— teee 4+l F.o0#
lo f‘o
U= lO gio : ..._E],,i_g_.——r
R e
0 0 e-1
B 4] Fooat -«—”‘"‘i
b D B
o g

and so

W(U) = V\’(gi /hio) = U, aﬁd U* = (Qi /hio)* .
S0 - (0] i



Furthermore, we check that u* is algebraic over k.- Indeed, in KEX} one has:

)

J ﬁ ECR

122

~ There exists elements di’ pjé'l:{ such that

w(X -_[}i) = V(di)’ w(X - Ej) = v(pj) .

Denote d = TTdi s P = TijL Since deg g; <n,deg hj <n, then according to the choice
s Jacte 0 Q. :
~ of X (see a)) and (1), it follows that for all i and j the elements

(X - 5)/d)* and (X - Ej)/pj)*

are algebraic over k.. But one has: u* = (gio/hio)* = ((d/p)(gio/d)(p/hio))* =

- (d/p)*U(Q( —(Bi)/di)* Tr(pj/()(- - j.))*. Therefore u* is also algebraic over k, In
i i i

conclusion, it follows that

' deg (w/v) = ne = deg r.
"Now consider the extension of degree ne:

K@) —> K(X).

If uis an element of K(X) we may write:

(6 uw=u (v} + ul‘(p)x Son +Iune'_1(r‘)><m"l
where ui(r)E K(r). Let

u(r) = g;,(r)/h(r), g,(r), h(r)€ Kfr}.

Then (6) can be written
- =1y
U= ((go(r) + gl(r)}( oo it gne_l(r)x )/ i(r))
and if we consider the numerator of u as a polynomial of X one has
(7). u= (e () 10+ L4t OOrD/NE))

where deg ti(X) <ne for all 0<i<s. We assert that



(8) W—(to FHT Lt tSrS) = iinf (W(‘ti))

This is the case if there exists only an indice iO. such that w(ti = inf(w(ti))‘
: : a0
Otherwise we assume that there exists at least two indices io < jl such that

wit, )= w(t. )= inf(w(t.))
l0 ll i 1

but (8) it is not true. Then by (7) we may write:
-1 io
Bt = =t 5 Ve (b Jtonai.  Sar
E g i 1 B

i
1 s
5 g (til/tio)r. Ty (ts/ti )r

0

and since w(huti"l) >0 (we have assumed that (8) it is not true) one has:
0 - ;

i : i
G P 200 e e el
9 lo i ’0

But then according to above conéiderations all (ti/ti )* are algebraic over kv , and
0
/ti- )* # 0. This shows that r* is algebraic over k, » @ contradiction. Hence:
1840 :

wlu) = inf (w(t,)) - w(h(r))
: =

(t,

f \

and so, accor;ding to (4) we may derive that w(u)¢& R + 72§ , hence [3 o B
1 1 e

and since the reverse inclusion is obvious,
e(w/v) = e(vl/‘v)e(b”,l/\(o{))
d) Let q = e(J,K(x)) and b EK(t) such that V(b) = q . Let /‘5 be a root of the

2
the restriction of W to K(o(,/})()() and Vo the restriction of V to K(« ,1/3). Since (¢, 45 )

polynomial X9 - b, It is easy to see that {K(o(,//g) s Kt )} = q and '\7(/3) =4 .Let w, be

is a pair of definition of W, the assertion a) of Proposition 1.3 is valid relative to Wos
Vo, ol € K(o(,{g) and (SG [32. Hence according to Preposition 1.3 b),- kv? is
algebraically closed in kw . Now ‘by the commutative diagram canonically defined:

T

D,

4

Sy by
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we may derive that k, the a}gebraic closure of kv into kw’ is included in kv
- 1
Now we shall show the reverse inclusion: kv k. It will be enough to show (see
-
a) above) that for every h(X)€ KEX], such that deg h(X)<n and V(h(()) = 0, one has

h()* € k. But according to a) one has: w(h(X)) = V(h(x)) = vl(h( ) = 0. We assert

that

(9) h(X)* = h(«)*

oan

Indeed, lét h(X) = ﬂ"(x -/31.), m< n. Since (0(,5) is a minimal pair of definition
j=1 .
of w, it follows that w(X - ﬂi) :"V(O(—/}i)< w(X - &) = d and so:
WX =Bl - B) = 1) = Wl(X ~e0)f(X- 1)) > 0.
Hence

(x -,gi)/wl-/éi))* =

and consequently (h(X)/h)* = 1, therefore (9) is true, i.e. kvgk, as claimed. In

particular,
fw/v) = flvy/v) .

The proof of Theorem 2.1 is complete.

Now we list some direct consequences of the above Theorem. We' preseéve
hypothesis and notations used in Theorem 2.1.

'COROLLARY 2.2 (see also t101, 1.2).

deg (w/v) > flw/v)elw/v) .
This follows immediately of ¢) and d) in Theorem 2.1.

COROLLARY 2.3 (Nagata's conjecture t71; see also t91 and tLii). One has:

Oy

ky, = kvl(r )i -

The proof follows by considerations made in the proof of ¢) and d).

COROLLARY 2.4. The valuation w is defined as follows:

: . 2 e
DAfhR) = gk ag #. ed BEDE 1B then
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w(h(r)) = E_nf(v(ai))
i
i) If g(X) KtXi and deg g{X) < n, then
w(g(X)) = v(g( )
i) If g(X) KiXt is such that degg<ne, then we have the unique

representation:

-~

9(X) = g () + gy (R +... + g OF 1K), degrg,(X)<n, 0<i<e
and -

w(g(X)) : inf (v(g,(e0) + i¥).

iv) If u K(X) and if we represent u according -to (6) and (7), then:

w(u) = iinf w(ti(X)) - w(h(r)) .
The pr‘-oof Is contained in the proof of above theorem,

.CC.JRO_.LLARY 2.5. (See t101, Conjecture 0.3). If v is Henselian and chai‘c k-v =0k
then:

deg (w/v) = fw/v)elw/v)

Proof. Using n-otations of Thveox‘em 2.1, one has:

deg (w/v) = ne( ¥ K(e0) = fic(od) + 1e(T ().

Now, according ton%, Corollary, pag. 63, or to {wg‘ Ch. VI, S’:B, Exercise 9, a)) it

follows that {iK(ed) : Kj=n= f(vl/v)e(v]/v), and so:

deg (w/v) = f(vl/v)e(vl/v)e(ﬁ‘,K(o( ) = f(W/'v)‘e’(W/v) >

COROLLARY 2.6. (See {10}, Conjectures 0.1 and 0.4). The equality:
deg (w/v) = flw/v)e(w/v)

is :tr'ue i
a) v is rank of one, and char kv = 0.

b) v is rank one and discrete.
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; \ s 7
Proof. Let v be of rank one; then w. is also of rank one. Let K(X) be the

topological completion of K(X) (see t12i, Ch.Il, or t51, Ch. Vi, 5{; 5) relative to w, and

B e ] |
w'" the canonical extension of w to K(X). Since { EW: {vi {&4, then lv is a cofinal

o et :
subset of Qand so K the adherence of K in K(X), is the topological completion of K
relative to v. LetV be the restriction of w" to K. Now, since V is an immediate
. extension of v (see {:12}%, Ch.Il), then, it follows that X is also transcendental over K.
(it o s :
Let us denote by w the restriction of w" to K(X). Now it is easy to see that W is a r.t.

extension of V toT(f(X) and that

A0 ks ke, kg =ke, [= R, )-:Ng o

w o Tw %
According to flﬁ, Chadl, v is Henselian.
We assert that in conditions a) and b) (in fact the statement is generally valid

without restriction on the rank of v) one has:
(11)  deg (w/v) = deg (W/V) .

Indeed, the inequality deq (w/v)> deq (W/V) is obvious. On the other hand, if
u = g(X)/h(X) is an element of K(X) such that W(u) = 0, and if u¥ is transcendental,
then in a canonical way we may define two sets {gn(X)}n and {hn(x);n of pb!ynomiai

of K(X) such that:

deg gn(X) = deqg g(X); deg hn‘(X) = deq h(X), for a.ll n,
and -

W(g - g.)—> oo, wih - hy=> s .
Thus it is easy to see that for n enough Iarqe:v

wiu - Un>> 0

: _ - -
where u = gn/hn. Therefore w(un) =0, and u:-: u- is also transcendental over
kv = kg Hence deg (w/v) < deq (w/v) and so (11) is proved.

Now by (10) it follows that:

flw/v) = f(W/V) and e(w/v) = e(W/V) .
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Finally, the equality

deg (w/v) = deg (W/V) = #(F/De(@/V) = flw/v)elw/v)
follows in the case a) by Corollary 2.5, and in the case b) by the general theory of

dxscr@tc rank one and complete valmtxona (see 121 or L51)

3. Condition e(w/v) = flw/v) = 1

As always, v let be a Valuation on K énd w an r.t. exter’wsion of v to K(X). We
shall utilise same notations as in p‘revio'us sections. If K§K1§ K is an intermediate
subfield we assume tacitly that Kl is endowed with a valuation, namely the
restriction of V to Kl; the expresion: "Kl/K is an immediate extension" (see t121, Ch.

II) means that e(vl/v) = f(vl/v) = 1, where vy is the restriction of V to Ky-

»’Now we shall consider the case when
(11)  elw/v) = flw/v) = 1

Conditions (11) are fulfilled if w is defined by inf v, €K and A‘G'C There
exists also some situation when (11) is fulfilled but w is not defined by inf, any & € K

and () € [—'v Precisely one has the following result.

PROPOSITION 3.1. The following assertions are equivalents

‘a) e(w/v) = flw/v) = 1.

'b) If (o/,J) is a minimal pair of definition of w, then K(_K)/!f( is an immediate
extension and deq (w/v) = 6((6%) : K}. ‘
. c) There exists a minim‘ai pair («, ) of definition of w such that K{e¢)/K is an
immediate extension and deq (w/v) = {K(@i) : K}.

Proof. a) =) b). Let (o:\ d) be a minimal pair of def finition (va w and vy the

restriction of v to K(X). According to Theorem 2.1 one has:
e(vl/v) = f(vl/v) =1

i.e. K(X)/K is an immediate extension. Moreover if f(X) is the minimal polynomial of



wsallisss

'>< over K, then condition e(w/v) = 1 shows that K w(f(X))E P and so e(r K@) = 1,
= ke, deg (w/v) = fK(et) & K].
The other 1mphcatmns follow, according to Theorem 2.1, 'in an obvious

manner.

REMARK 3.2. Let w be an r.t. extension of v such that conditions ('ll) are
accomplished, and let (¢, §) be a minimal pair of definition of w. Let also f(X) be the
minimal polynomial of relative to K:

a) For g(X) KtXi expand
g0¥) = go(X) + @y (XF +... + g (X)F°

where deg gi(X) <{deg f, 0<i<s. Then according to Corollary 2.2 one has:

(12)  w(g(X)) = inf (v(o () + iw(f)) .
U<1<s

“b) Let vy be the restriction of V to K(X) and wy the restriction of W to

K(D()(X). Also denote e = e(d K(«)) and & = Vl(d>’ d€ K( ). Then:
13) e(wl/v]) =g, f(w]/vl) =1,

Indeed, (¢, d) is also a minimal pair of definition of w, and thus (13) follows by

Theorem 2.1 ¢) and d) since wl(X -«) =4 . Mareover if g(x) € K(< ){X], we may write:

/’..el
g0 =2 (J a.(X- O)M(X - 20°/d))
Tiey

and thus:

w1 (900) = inf (inf vy (ay) + id))
bl
Now we shall consider the following question: Assume that conditions (11) are
; S . [“7

accomplished. Under what conditions w is defined by inf v, &¢K and c:r

Before answermg (p rtially) to this guestion we shall make some useful
remaks. We shall utilise same notations. as in the r‘roof of Corollary 2.6.

Let f€ liX} be such that w(f) = 0. Now since ?’EK{X), then f*, the residue of f

, e :
in Ky is the same as the residue of f considered as an element of K(X). Hence, if for



example w is defined by inf, v, of € K and c§ G.Q , then W is also defined by inf, ¥,
o and (f

Now let fEK[X] be such that w(f)=0. Then there exists a polynomial

£

f1 KtX1t, of the same degree, such that w(fl): 0 and W(f - fl)>0, e gl = L

Therefore, if for example ‘W is defined by inf, V, 0(612, and d € i% = f’v, then w is
also defined by inf, v, a suitable ¢ l€ K, and d .

According to these considerations, the study of the set of all polynomials g
over K such that w(g) = 0 and g* is transcendental over kv, is equivalent to the study
of the set of all polynomia'ls g over K such that w(g) = U and g* is transcendental over

kv = kn\;. Therefore in what follows we may assume that K = K and w = v

THEOREM 4.3, Let K' be a field and v a valuation on K. The following
assertions are equivalent: ‘
a) If w is a r.t. extension of v to K(X) such that é(w/v) = flw/v) = 1, then w is
defined by inf, v, o(G‘K and J§ [J ‘
b) rl~\<—, the topolog'ical co.mpletion of K, do not admits immediate finife
e'$<tensions relative to v.
o) 12 is algebraically closed in_a maximally complete e‘xtension of K relative to
v.
Proof. The equivalencé bY=2 o) is vaim_ssﬁ
b)=) a) Let w be such that e(w/v) = f{w/v) = 1 and let (o(,;) be a i'*ninimall pair-
of definition of w. If O(?ZK (i.e. a) is not t';rue}_. then according to Pz‘opoéitiora 2.1,
-K(O’x)/k is an immediate extension and condition d\;&‘j K, shows that o('#g Hence
A(k/(o{ )/ is an immediate extension relative te v, a contradiction. |
a) =7 b) Let us assume that K has an immediate algebraic extension ?(?C)/Q
relative to v and let vy be» the corresponding extension of V to g(f‘)‘i) Db\/fously, we

assume that &{€ K. Then the set
M%) :gvl((){— a) /a GK}

is bounded in IT/ = (: . Let d.lE K be such that v](dl)>r for all '€ M(e9. Let us

1
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: - v ¥
denote by w} the valuation on-K(/)e ){(X) defined by inf, v, &, and 3 S v].(d‘]»), and let
w' be the restriction of wh to K(X). It is clear that w' is a r.t. extension of v and
P = P = /‘1 = Fl "}1e;ﬁce e(w'/V) = e(w,/v,) = 1. Moreover, since kr«lrr k. and
V Vl W1 W' 9 . 1 1 .. ® AV s O v V] 2 ‘
f(wl/vl) =1, it follows that f(w'/v) = 1. Let w be the restriction of w' to K(X). Since
obviously e(w/v) = f(w/v) = 1, by hypothesis, it follows that w is defined by inf, v,
: el ¢
G€ K and 5{ !v‘ Let €K be such that v(d) =9 . Then one has: w(X -a)=o .

Consider the equality:

(14) G- /= (X 0/d,) - (@, /) + O6-/d.
It 51 = v(dl) > v(d) :;9 then by (14) it follows that the image (X -~ a)/d in the residue
field is an element of kv’ a contradietion. .

Jhie Vl(dl) = y(d), then by (14) it follows vthat vl(&—a)Zvl(dl), which is in
contradiction with the choice of dy- :

Finally, assume that v(d)>v1(d1), and let b €K be such that v(el- b)> v(d).

Then one has:
X -b=({(X-a)/dd + (a- b)
s X = b =X -K)/dl)dl + (el - b)

Since w is the restsiction of w_ to K(X), one has w,(X - b) = w(X - é?t) But :

1

1

w(X = b) = inf (v(d), v(@- b)) = v(d) °
WI(X = b) = inf(vl(dl)’ \,1(0(~ b)) < v(d)
: since by hypothesis Vl(d]) <v(q), i.e. again a contradiction. The pr'obf is complete.

COROLLARY 3.4. Let v be a valuation on K. The equivalent conditions of
s . N 3 . . 3 3
Theorem 3.3 are accomplished if K is maximally complete relative to v. This is the
case if v is rank one and diserete or K is maximaily complete relative to v.
Other cases when the conditions of Theorem 3.3 are verified, are given in the

following:

PROPOSITION 3.5. Let K be a fiéld and v a valuation on K such that:



G . .
a) v is Henselian and char kv =
or
b) v is of rank one and K is perfect of characteristic p>0.

Then K do not admit nentrivial finite and immediate extensions relative to v.

Proof. According to {12}, Ch. II, Theorem 4, in the case b) K is Henseﬂan
relative toV. Also it is easy to check that K is perfect.

Let K be an algebraic closure ofgand let V be the unique extension of V to K.
Suppose T(J(O() is a finite ar;d immediate extension of K relative to Vv, such that O{?il TZ
Let also A(e9 = inf V(X - ) where A runs over all conjugate elements of < .
Then, according to ﬁl@, Section 2, Proposition 2', there exist':s an elément a K such

that V(X - a) = /A (). It is easy to see that:
(15) WX- a)=A(xX) = sup{V(o(— 6)/&) ég}

Now since the extension ’k,(0<)/1<’\./ is immediate we can assume that V(&) =0 and so
V(X - a)>.0. Let dEK be such that 7(0‘)_:"\7(04— a). Then V({&< - a)/d) = 0 and since the
extension ;L\(/(()()/'IZ is  immediate, theré exist zal,dl €K such = that
v((( £-2a)/d) - al) = V(dl)> Oile But - then. wylots z-x.wgld) = 'Q(cidl)f\“/(x - a), in which

contradicts (15).

REMARKS 36 a) Let v be a valuation on K.such tﬁat the eauivalent assertions
of Theorem 3.3 are accomplished. Then v is necessarily Henselian. Indeed, Iet»Kl/l(Z
be an algebraic extAension, and let K?_/? be an immediate extension, such that K2 is
maximally complete and that the condition 3) of Theorem 3.3 is acconﬂplished.- Then
KzKl/K2 is an algebraic extension. Now if vy is the extension of v to KIZ’ then since
Vo is Henselign (see t121, Ch. II, Theorem 7) it follows that ¥ has a unique extension to
Ky i.e. V is Henselian.

b) According to Corollary 2.5, if v is Henselian and char kV:O, and the
cohditions (11) are accomplished, then w is defined by inf, v, €K and d€ f\j

—
Therefore according to Theorem 3.3, K do not admit immediate extensions relative to

v. Moreover, it can be proved that v is also Henselian.

M&.”UW%\
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PROPOSITION 3.7. Let K be a fvield\ and v a valuation on K. The following
assertions are equivalent: 1 |

a) If w is a r.t. extension of v to K(X), then

elw/v) = flw/v) = 1 ‘

b) Every extension V of v to K is an immediate extension.

Proof. a)==p b) Let V be :'an extension of v to K. Firstly we sﬁall prove that

R = }'\2, Indeed, let us assume, that there exists PER such that ;:V(ﬁ) d‘o not

belong to r\: Let w be the valuatjon on K(X) defined by inf, v, a suitable a €K and
5 > Th&;,n W(X - a) ~(§ € f\;, and ;?( /:: a contradiction.:

Now we shall prove that kv = |<\7. Indeed, assume that kv %k-\; and let -

&€ kV\ kv; Let £ € K be such that V(<) = 0 and o * =& . Let w be the valuation on

K(X) defined by inf, v, o¢ and & >0. Then one has w(X - = >0, and 5o

w(X) — w(ed) = v(e€) = 0. But then X* = x* =E€#kv. Hencg flw/v) {1 again, a
contradiction. Thus a) == b) is proved. .

b)=7pa) Indeed, then k\/ = k\7 is algebraically closed and r:: [.:./ is divisible.

23

. This means that e(w/v) = f_(w/v)/’?a* every r.t. extension of v ta K(X) and the proof is

complete.

The conditions of Theorem 3.7 are verified by the field R of real numbers
relative to every nonarchimedian valuation and also by supersyclotomic e field K
obtained by adjunction to @ (the field of rational numbers), of all roots of polynomials’

S Lforalln;
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