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ON SMOOTH EXTENSIONS OF ODD DIMENSIONAL SPHERES
AND MULTIDIMENSIONAL HELTON AND HOWE FORMULA

by

FLORIN RADULESCU

- The aim of the present paper is to give a precise
formula for the index homomorphism associated to certain
smooth ' extensions of an odd sphere. Our index result is
parallel to that of Douglas and Voiculescu in [ & ] and
applies to a certain class of extensions which contains the
Toeplit 7 extensions. Though  this -kind of results are
available by Connes'cyclic cohomology, our formula contains
less terms than are expected by Connes method applied to the
particular class of extensions which appear in our paper.

These cancellations are obtained by pure
combinatorial tools.

Let H be an infinite dimensional separable Hilbert
space. We denote by L (H) and K(H) the algebra of all bounded
operators and respectively compact operators. Let Q(H)
denote the Calkin algebra (that is the quotient if(H)/?Q(H)
and let ™ be the canonical surjection onto Q(H). Let GP(H)
be the ideal of Schatten-von Neumann bounded linear operators
inch(H),for p>l. For a compact metric space X, a unital *
nozphism L C(X)=—=20(H) will be ‘called an extension of

C(X) by K (H).

In this paper, we will be concerned only with
extensions of odd dimensional spheres.

Let <f:C(52““1)~_>Q(H) be an extension of C (§2171)



by ,(H), and let \P(z{) « Q(H) be the images by ¢ of the
canonical coordinate functions zj on g2n-1 ~ ¢ ., such an
extension 1is called é}~gmooth if there exist an n-tuple
Ty Tgs.+« ¢ Ty In L(H) such that o (25) = 7 (T1) ‘and all
the commutators [Ti,Tj],[Tiij] belong to zgf(H) for all
15T

Recall that the reduced topological K-theory is
vanishing in dimension zero and KX (s8?""%) = % has a
canonical generator « ,which is a unitary 2071 X201 patrix
over C(32n~1) and which has an easy recursively description
(Beel ], =2 1).

Moreover, the Brown-Douglas-Fillmore extension group of
g2n-1  ig Ext(s2n71) = %,the isomorphism beeing given by the
homomorphism Ext (S2071)—>Homg (KL (82271),2) associated to
the index map. Therefore extensions of C(Szn“l)by < (B
could be classified by the integer ind P («) ,where we still
denote by (¢ the obvious lift of the extension xf‘to

2013201 patrices over c(s?hl)

In their paper [g], Douglas and Voiculescu were
concerned with €n - smooth extensions of the 2ne=1
dimensional sphere, which have the additional property that

TiTy +... TPy -le G, (H).They proved the beautiful formula:
: * X
(1.1) ind ¢ («)= tr [T1,T1s..., T, Th]

where the term in the right side involves the 2n-complete
antysimmelric commutator in T{,Ti,...,Tg,Tn(i.e.:

S
{ Xﬁ. 'Xz "“'XZrn ]ng(r)xf(iy.., XCI.'(?_’Y!) °

6652.01

Moreover they proved this way that all the ffn_i smooth
extensions of 8201 are trivial.Unfortunately,as it is
pointed out at the end of their paper,there is not known any
example of a nontrivial(that is ind <P (% )#0) '@”,—smooth
extension of §2071 yith T§T1+,..T§Tn—1<z’ém(rﬁe As they say
the obvious candidate should be the Toeplitz operators on
the Hardy space HZ(D’Bn)(where By is: :the. unit ‘bakl -of

C)with  symbols  24,22.:+.,2n:but  this n-tuple  satigfies



[Ti,T§]G;€f(H)only tor ben. (gee [ ).

The starting point of this paper is the remark
that , there is another class of extensions of gen~l  gop
which the formula (1.1) still holds and which contains the
Toeplitz extension.

We consider extensions Yof 82071 determined by the n-
buple. (i, oe. /Pn) o in LotHyiby pl2g)= T (Ti), @ith the
property that T, ,T,,...,Tp generate a cryptointegral algebra
A of dimension n (in the sense of Helton and Howe
(. g1.,[401)and TZ T +...T; T,, -1 belongs to Ai+@4(H
where R;is the commutator ideal of A (see part 2 for a
brief recall of definitions concerniﬁg such algebras).Such
algebxas have the property that Aq is contained 1nﬁ;+1 <
c ¥ (H),so that Tq,...,T, provide indeed an extension of genl

In particular the Toeplitz operators on H2( 0 Bp) with
symbols 21,...,2p,provide such an example,as proved by
Helton and Howe in [ 40 ]. (Quite specifically in [40] 1is
proved only that the algebra of Toeplitz operators on the
Bergmann  space Hz(BnQis a cryptointegral algebra of
dimension n,but an easy inspection of the proof allows one to
conclude that also the algebra of Toeplitz operators HZ(Z)Bn)
is cryptointegral of dimension n and that formila 7.2 from
[ 4¢] still holds in this context;see also [ 91],[40) ,L[51.

Our main result asserts that formula (1.1) stild helds

g2n=l unich have the

if one considers extensions of
ptoperty thabt Tq,.. ,.Th generate a cryptointegral algebra

of dimension n and such that TpTq+...ThTp~1 belongs to By +

+ @¢ (H).In particular,for the Toeplitz extension formula (1.1)
combined with formula 7.2 from [ /0 ] is just the statement

of Venugopalkrishna's index theoren. Let us give some
explanations about the proof of our main result which is rather
combinatorial. '

If A is a cryptointegral algebra of dimension n
generated by n elements Tq ,....Tp with TKTQ Fouw SIET =1
e'_A,1 then the C”functional calculus of Helton and Howe
provides a linear map eqp : €% (8°%"1)—> A such that
ep(fg)-ep(£f)ep(g) belongs to?,.(H). Connes'theory (seel 6])
then applies to yield an element Typ4q in the odd cyclic

cohomology group H%F+1 (c” (s2871y) yhich computes the index



by means of the natural pairing between K%Sani) and this lasl
group. :

On the other hand the fundamental trace form of Helton
and Howe yields an element = p-1 in H%ﬁ“i(ﬂw(gznml)) (in
fact in the homology group H2nm1(82n"1)).

The only difficult point in the proof of formula
(1L.1) for this class of extensions, 1is the determination of
a universal constant such that these two elements differ
modulo a canonical isomorphism by it.

This is the content of our combinatorial Ilemma 3.2.
Once we have determined this universal constant,the proof of
equality (1.1) <can be easy deduced from the fact that the
index 1is computed from Tyn4+] by means of the coupling of
K1(52n~1) with B2MT1(g20-1y (gee Propposition 17, [61).

Instead of doing this,since it would imply computations
with many universal constants,we prefere to repeat the
argquments from the paper of Douglas and Voiculescu.

Now returning to the general case of a n-dimensional
cryptointegral algebra A ,generated by k selfadjoint
elements with essential joint spectrum E,one cannot further
expect that the index of a Fredholm element in Mp(A) can be
computed only in terms of the fundamental trace form. The
reason of this phenomenon is that (as observed by Helton and.
Howe in ['9 ],[ 40:] for dimensions 14 or 2 )the £fundamental
trace form determines an element lp in the (de Rham) homology
group Hgn(ﬁk,E)and hence by means of the coboundary map
Q:HZn(Rk,E)w->H2nw1(E) it determines an element in Hpyp-q (E).

When the cryptointegral algebra is generated by n
elements Tq,...,Ty with essential spectrum E ¢ €' ¢ ®?P,
the functional lp yields a distribution up on CE]RZH) which
is constant on R2T\E.

However,some information about the index of the elements in
BA,can be recuperated only in terms of lp,as seen from the
following equality:

i

( indel A=Tq ey }-‘Tn)kﬂqUz UTFJ
(=2i)%vol(Bop)




where U is any connected component of Rzn\E,JAr(,kl,...,)\n)
is any point in U and 4 is the Lebesque measure on RZn’
vol(Byp) is the volume of the unit ball in R%" and the index
is the index of a Fredholm n-tuple as introduced in
L4461, 071, |
Such an equality in dimension 1 already appeared in the
work of [9]1,[40]. s
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2. A (brief) recall of definitions and results

In this section we recall some facts from
[91,and [40] about cryptointegral algebras. First, let us
recall the definition of the commutator filtration.
Definition 2.1 Given an arbitrary (abstract) ring A&
one defines recursively a sequence of ideals { j%j}jzo
called the commutator filtration of ,f% —as follows: ftbis;ﬂg
and agf b fto - ave defined then f@jis the ideal
generated by all commutators of elements from j%1ywith
elements from }%j;?%]p A e T
Second, we recall the definition of
the complete antisymmetric sum.
Definition 2.2 e al,az,..,ap are . arbitrary
elements of.}%,p >1 then the complete antisymmetric sum of
alre..rap is:

[ajragseecerapl= Z:Ig(c)a S enaied
f 7 ESP U€5T a4) GIT)
where Sp is the group of permutations of {1,2,..upk and ei@
is the signature of the permutation ¢ .Obviously, if p=2
then [al,a2]=aia2—a?adis the usual commutator.
It is proved in [ 10 ],(page 277), Ethat = ter —any

positive integersi,j one has the following inclusions:
A5k ¢ Ryex (21
[R5, Ak lc ek 22

The = following formulas will be wused in the
sequel (for a proof see [ 10 1, Proposition 1l.1):



2[61]_,&2,n.a;azr]:[alp[az ]-oe;azr}]~[a,2r[a1ra3yooc]]+ooe'“

i [azrf[alyootfazrwl]] (233)

[al,az,...,agr}égéﬁﬁggoﬂ,a EQﬂ°;°[a6&WQ9aG(Z@] (2.4)

where al,az[oe., agy are arbitrary elements off%/,rgl and in

the second equality) ‘G runs over a sequence of coset
representatives of N in 83p, where N is the “Egbgroup of

S2p generated by the transposition {25023 ) 3=l m:

Definition 2.3 ([40]). Let H be a Hilbert
space,and n a strictly positive integer.When n>1, a
selfadjoint subalgebra A of iz(ﬁ) is called cryptointegral
of '‘dimemsion n 1f BAp4y (the n+l term of  the commutater
filtration of A)is contained in '64(H) (the trace class
operators) and any antisymmetric sum of 2n elements of A is
contained in (%(H),When n=1,one requires only that [x,y] e
c 61 (H) for-any x.y in A,

An easy consequence of (2.1) and of the above
definition - is that the elements of a cryptointegral algebra
always commute modulo the compact operators.(In fact they
commute modulo tfn+1(H)). ,

The "~ 2n-multilinear alternate functional on A,

given by (X7 Xoisesrfan)—>Lr[ X1 %0r 00 - r¥2n]) isicdliled the
fundamental trace form.

The following vannishing results are proved in

[40] ,Lemma 1.3,and 1.4, For ' later use we state them
separately.

Lemma 2.4.If A is a cryptointegral algebra of
dimension n, then :

a,  If i is any integer. such that O<icniise is . an
element of A; and y an element of Ap-j then [, gtk
trace class and tr(x,yl=0. :

b. For any elements Xj,X2s...,%X2pn Of A,one has:

tr [Xl,Xz,.o.,in]=0



whenever xje Aj+ G,(H), for some i e (o 2n).

An important property of cryptointegral algebras is
their closure to a € functional calculus. More precisely,
given selfadjoint elements X, ,X,,..., Xk in A (H) that
generate a selfadjoint cryptointegral algebra A', one can
find a maximal cryptointegral algebra A containing A’, so
that there is a map ey: C“Xﬁk)“m>ﬁ with the following
properties([ 40 ],Proposition 3.4):

(1) ex(£)* - ex(F)e MnG, (H)
(ii) ex(£)ex(g)~ ex(fg)e A11G, (H)
(i) [ ex(£), ex(g)le By NG, (H).

Here,f,g are elements of e Ry, f is the complex
conjugate of f. Moreover, if p is any polynomial with
complex coefficients in n variables:

e o
p(Xd szla‘cyxn)r‘z,,aDki‘_‘.’dm' }{lﬁ ...X%m
then:
i oy o
exliblE. T, anc Reteait

Given a cryptointegral algebra A of dimension n
generated by selfadjoint elements X, ,Xy,...,Xg with joint
essential spectrum E & RX, Helton and Howe have introduced a
2n-linear continuous functional Ty on CakRk) as follows.

TE E1E2¢s .0 b3y are Funections sin c¥r¥), then Tx is defined
by: '

Tx(fl’fzf""fzn)z

= tr [EX(fl),...,EX(fzn)].

This linear functional has the following



properties(see Propositions3.5,3.6 in [/40]) :
a. If one of the functions f; vanishes in the
neighbourheed of By then T (£1,.E3,44.,.£54)=0,

b. If g1,92¢...:9y, are real valued functions in
é?Rk) and Yiz-%f(ex(gi)+ex(gi)*), i=l,m, then denoting by
0 : RK—>R® the map with entries g; , one finds that
Y1,¥2,...,Yy still generate a cryptointegral algebra, and
Ty=Txc® ..
' In the proof of a., the following result appears:
Lemna 2.5. If £ vanishes in the neighbourhood of E
then ex(£f)e(,(H).



3. The index formula

In this section we prove formula (1.1) £for the
following particular class of extensions of C(Szn_l) by
K (H).We consider extensions <: C(Szn’l)~u>Q(H) of C(Szn_l)
by K (H) such that there exist an n-tuple (T,,T, ,...,Tp) in
20 (B) with $(z3)= 7 (Ti)  in Q(H) and such that T;....Tp
generate a cryptointegral algebra A of dimension n, with the
property that T,;T,+...TpTn~1 belongs to A+, (H). _

First we want to describe the canonical generator «
of Kl(Szn"l) (the topological K-theory in-dimension 1) as a
unitary 2" 1x2%7! matrix over c(s207l).

Let A (C€")be the exterior algebra of C".Then:

A(Ch =42 (€7) @ A°(Ch)

where by_A@(Cn)(respectively by,A?(@n)) we denote the forms
of even(respectively odd)degree. A (e%). has & patural
Hilbert space structure coresponding to the orthonormal
basis ( ey)gc{1,2,...,n}r where eg=l and eg=ej, A cee ABG
if J={j1,jz,..,.,jk},with JpSans Lk On A (CHY e deBine ae
usual the operators aj; by ajh=hAej,for h Lo AeRge T TR i
known (see [{4],Lemma III.6.5) that they satisfy the
anticommutation relations: :

(3.1) ajaj +ajaj= 0 for all i,J.
(32) aiaj +aja§= O Eor: it
{(3,.8) dﬁai +aia§= 1iferall i

_ We denote by f? the idempotents:

¥ ¥ % e
f£;= ajaj; fi= ajaj.

10



The description of & is as follows:
For a fixed element z=(z1,...,2q) in 82071 C ¢, o(2z) is
the linear operator Z? zjai *+ Z; Eii} inEiO@(@n),/@(@n)),
We want also to describe the image of o by ¥ . Therefore,
let d be the bounded linear operator in ¥ (H ®¢M)
defined by d= 5, T; ®aj.Let d*= T;®4d} be the Hilbert space
adjoint of d and denote by A the restriction of (d+&*) to
H®N(Cc) so that A belongs to £ (Be@/(eM)), H ® N(E)) and P(s)-n is compack.
Taking into account the description of ot given below,
and singe flzili=-M(Ty) in Lim)/ K (B); we obtain that:

ind f(~ )= ind A (3.4)

We observe that , by Theorem III.7.1 in [ {4 ],
if the n-tuple (T1,T2+.+.,Tp) is a Fredholm n-tuple Ehen :

ind(Ty1,T2,+..,Tp)=ind A,

isee L 4% ] or [F1,  For the definitioniof sa Fredholm n-
tuple). A

Pe el Sgiven Viﬁ;OL(H) an arbitrary unital
subalgebra, one defines the operator valuated '

trace. T .ﬂff@o{( A (Cn))f"”.ﬁr by:

SR ) ke ses in T 2 xJ,J
Ué{‘i,._.,'v{j

Jz{jl<‘ L] o<jp}o

In. [ § ] it is proved that

T((d+3™ )% (1 ® pe-1 ® po))

vanishes if k<2n, and is equal to [Tf,Tl,...,Ti}Tn] if k=2n,
where pe(respectively poy) are the orthogonal projections of
A (€Myonto /N (€M) (respectively Nehy).
In what follows, we also need the 2(n+l) term,denoted
quif b S o e next lemmwma  Containsthe

1l



description of Mp4+1.
Lemma 3.1. Keeping all the notations defined above :

o .
Mpe1= T((d+d )20 2 (1 ®pe-1®pg) )=

o il i i
2:1' és 80 Vool sy Xﬂ@n OZ;%E(”G( o¥s *++ Xaam)

% . i

where Xf1= Ts: ; X% Sl s Xzo_lm Ty and Xy¢= Tg, for 1i,s
in {1,...n},and 84 j ,(respectively S~ 4 ). hate those
permutations: :of the. set {=1,0,...,20} ~which ‘have : the
property:

h-1) <sh0y <c2i-1) <072

and ,respectively:
c;4(0) <of4(—1) <G_i(2i) <o;4(2i~l)
far ise {12 .. nk.
Proof. We start by inspecting (b(Ll@pe-1l® po) )
where b=X®E is one of the monomials from the expansion
of

(T @ai+ ... + T ®ay + Tial+.. +Th@al) 202,
As observed in the proof of Proposition 1,in [ § ]:
T(b(1 ®Pe- 1®Po))=0

unless
S el g £
E :t ldj-o ls jiomn j't'

where s+t= n and {1 15,34,...,j1}'{l D sbiDiaeein . Ehils
case fld" flsf34'°' fj1 is the projection of el onte
the subspace CeJ where J= {31,...jt} ji<j°Z s

In this case b 1is a product in Ty r Ti ,..,,Tn,Tn in
which excepting some i€{1,2,...,n} all Ty, T?‘ appear

12



e R A g e e

exactly once for j€{1,2,...,n} j#i and Tj,T; appear twice,in
b Order & i 8 PhesoDes i nTianalh o ap if HG 000 initiEe
laE o e T i e T

Letting. Sy be the set of all permutations of the
set {-1,0,1,...,2n} such that d%2i1~1)< dﬁ(zil),and
e i25-11> ol 23k) s Bor 1=1,2s+ . i85 KEL, 2y 0 copt s 18 folloss
that there is a permutation ¢in Sy j e Sy (respectively
in- S5~ 1 [X'SJ ycorresponding to the case i1€J (tespectively
i€¢J) such that:

Sl gt gl
b }\6"6—11‘}\ U.(O) €58 X G‘(,’L’h)u

Moreover:

e + i
B= (=1} 0] g@)fzi.,.figfj{o.fjt , if 1&d

and

+ e -
g g e e F e e T
) 5()1./1 i 3 3y

(]
Hence:

\
\

T((d+8) 20 2(1 Qpe-18®p, ) )=

| il Pouos i
ZJ, =1 %33 g,;é” (1) eV L i) °°°X¢(Z“)+
2

< 1y 13 F L eyl i 3
+ Ll (1) C(O)Xféﬂxc"(o) xdm)) '

Sous]

ie] geS. i .
where J runs over all ordered subsets of {l,2,...,n}

Since the sets Si,i (1 sy (respectively 8- i}
(\SJ) form a partition eof Sq § (respectively S-, i), by
changing the order of sumation in the last expression, one
obtains the formula in the statement of the lemma.

The next lemma proves that modulo a wuniversal
constant, the trace of the term Mpsj can be computed only in
terms of the fundamental trace form.Its proof relies on a
purely combinatorial lemma, which we state separately in an
Apendix, at the end of the paper.

Lemma 3.2. With the notations before: -

13



e X
tr Mp+1 =n trlT1,T1seerTnsTnl

Proof.We compute 2trMp41= trMp4+y; + trMp4;. By
combining terms in the first summand starting with a Tg with
terms in the second summand ending with the same Tg "and
terms in the second summand starting with a Tg with terms in
the first summand ending with the same Tg, one obtains:

m
2Mp41= 2 Ri
1=1
where:
2 .:._.”y‘ S E ; ’°°°"‘» i = — E 1‘9.‘. i
- %ﬁ%%s ®”&u4)om> Xt ‘éggl@ ST SRR SOME
not el xi °...»xig o > 1 X S o
S gemui 6'( 4y G(O) (am) O‘(;S ( 1)" “alo0) . _g@%)
+ ! e e o ® \i T ) 7 ).i e # l
é;)if@ ot1) G(O) Yff(zﬂ)] 72(6 o-4) YG(O) XO‘@M)

where in the first two terms, < runs over all permutations in

S+,i (respectively in 8§~ i) with the additional property
that o(-1)= 28 -1;in the third and in the forth term < runs
over all permutations in Sy j (respectively S- i) with the
additional  property: that o(-~l)=28, and in the S fifth
(respectively sixth) termg runs over all permutations in
S4,il(respectively S-,i)with the additional property that

o (-1)=-1(respectively o(-1)=0).

Applying points (ii),(iii), from the lemma in the
appendix, and since terms of the form [x,y] with xeA,y€ Ap
are trace class with null trace, we obtain that, modulo
terms of null trace: ' :

AN\
1 sy i 1
ﬁ(zRi)z %;,‘ll [Xzs l XiX [ ,i""’XZS"'l"“XZH]]_
o i
<«
mee) il X lexi“”'xzsr---#{znﬂﬂ“
Sl
AL :
3 e 1 3 b 1 1
+ [X}iyxgxlzi_l[XZiyxi-, ) a}XZi-l,XZir ovo/X2n] ]

14
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- 20 :
S i . il Lol
~-[)&o,xdi}szi[gigiwlrxlfy,owhgiml,}{zi,o.ﬁgn}]
where for the first two sums we applied point (iii) of the
lemma in the Appendix and for the last two sums we applied
point (ii) of the same lemma.(As usually a mark = over a
symbol in a sequence means that this symbol is missing in
that sequence).
Finally, we deduce that modulo terms of null trace

AN

/i . gomem] A * _*' X~ :
A(2Ry)= 2, [TerTiTilT reeerToiTgreeerTnll-
Sl
o Z-/ [TS,’]. T 4 ,eo-rTSyTr" uoniTn_}]
o:rl /\ A
+ [Tlp T T [Tl’T'f yrli f.oo;Tl’Tlioa’Tl‘lng]]
* o A *

i [Ti’ Tif [Tl,T_L ,rl:(,oe-,lerlg.’o{Tnng]]

% *

By Lemma 2.4.(b) and since T, T +...TyTy ~1€ A+ € (8)
it follows, after performing the sum over i and
applying Lemma 2.3., that:

) X% %
r(2Ri)=(2n) tri TirT17~°~rTnan3°

The next statement determines the index
homomorphism for the class of smooth extensions of g2n~1 ye
considered. :

The only point in which its proof differs from
that given to Proposition 2 in [ 8], is,that:

-K.
A= (d4d ): H ® A (€)— H ®/(ch)
is no longer a unitary modulo the idealC,(H), but it is
certainly a -unitary modulo the ideal C%ﬁ(H) so &hat - the

formulas

B Ry e

LX)



is walid:only for p> n+l. To eompute: the right hend term
from the last formula we must therefore use the expression
for the term Mp+1 given in the last lemma.
Theorem 3.3. Let (T1,Toss+e,Tn) be an n-tuple in

JtH) such that Tl,Ty,eﬁu,T“ generate a cryptointegral
algebra A of dimension n and T)" Ty .,.+TnM “16162 ) +A7 . Then
(T4rTyreeerTp) determine an extension ‘f of € (qzn 1) by

K (") and :

ind e oby= (~1)" tr['rl,Tl,,..,Tn,Ln}

where o is the canonical generator of Kl(s2n~1) described at
the beginning of this section.

Proof. We proceed as in [ §&]1. Let lee a unitary
in J(H®A () , H@/N (€"). Then the space:

H, = (@)% (e"))DE® A% )

s

is un:tdry maped by P = 1dg /L (en) )@ 1) onto
H QA ( . Let, as before:

A={d+d j1 B O I (D= B e
Then by (3.4):
ind A = ind { 15R) = ind o)

The matrix of the operator B= @b (a+d” @? is

Sl o

therefore:

so that:

16




Lme /€ eMy— L () the

operatorial trace ( the restriction of T defined before
S % v

to JL(H ® /\ (€")) we have:

Dencting by - .z
¥ g Ky S > D
T (A 1%}9‘(51%“7)9)'-* (T @ ’f-e)(Bz-y(Pi“p&))ﬂ
S 7 * ?P ¥
= T((d+d )“F(18pe-18P0)
where p; is the orthogonal projection onfothe i-th component

of H, and Te®Te is the obvious extension of Te to

oL (Hy) .

)

X K
et us remark that (A" A-I)e Coy(H), (BA -I)E
€ Cors (H)

Indeed , this statement is equivalent to (d+d%)2—1€
észﬂﬁi(ﬁ) and this follows from:

" S * % o
(d+d")2= %%%‘(TiTj ® ajaj + T4Tj @ ajaj +

Fhie X X -+ *
+T3T4 ®@djay + TiTj ®ajay) t ;Zj ( TiT; ®ajai +
=
* *% Js S J L WL %2
AT E Quardg ¥ - . AT @aj ) Z () ®(ai) .
- 1 1

The last two sumg vanish by the first commutation
\
relation (3.1) .Hence by using again the commutation
relations one finds:

ot o *- X * x X %
(drd )%= SOIT:,TylRa; agt > 0T G T51 @ Al b
1] 1<
et S :
. Z [2::74] ®-aiay + 7 (T 0aal) @ I
1< e :
.}(_«
b R (T8 ,7i] ® azai + 181,
1

By hypothesis and since the commutator of any two
elements of Aiﬁrnf%ﬂ@) one gets that (d+d*)3—léAl+CaﬂH)g;
e a(H

' Because of lemma 7.1 in [44]:

s il 6
T’ﬂ ‘



e ;
ind A= ind(MeA)= Tr ((I- A A yntlog «ZAP )

4
=Tr 7@( D -1 )P A A) qugAy
2 pel
Mﬂf v o
=Tr Z;_cn(-l B ((d+d ) ﬁ&i be i<@iﬁ7)>
=0

=(n+1)(«l)ntr(’C((d+d )Zn(iéagh“iiéﬂﬁﬂ))*
+ (1) erp((a+d )22 (1@ p - 1@ p M=
:(-1)“((n+l)tr([T§,T1,,..,TiFTn])“

- * *
5 tr(Mn+l))=(_l) tr([Terl!aaeranTn])

7!
where we used the lemma mentioned above,and denoteicﬁ =pl(n-p)!

Corrolary 3.4. Assuming the conditions from the
hypothesis of Theorem 3.3 one has:

Bl (T /T2 e s i Ta)s(=1) 2 te[T 1,Tl,°..,1n,Tn]

TE We let in Theorem 3.3, ¥ be the extension. of
c(sén-1y by K ( obtained by assigning T;=Ty,, the Toeplitz
operator with )ymbOW z; acting on H?Qﬂn then the computations
from Theorem 7.2 in [40]l, yield the Venugopalkrishna's index
theorem : :

; : {iq2n=1
Theorem: If o is the generator of K*(S )
described at the beginning of this section,then:

ind Pt e

i

x *
tlf [TzipTzipoeerTzM,Tzn]=

B - -
= vols (B "By dziAdz A, .. dZnAdZn:Gifﬁ

where by vol(B") we denote this time the volume of the unit
ball in €%, with respect To the volume form : dgadan. ANdE A2y,
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4. The fundamental form determines an element

in Hy, (RK,E)

In this section we are going to prove that the
fundamental trace form determines a homology class.
Let us denote as in [ {p ], for an open subset D of Rk, by

2XD) the ¢® -exterior j forms with compact support in D , by

CXIWD)the closed forms in Q)(D)ana by EJ(D) the exact
forms in .(?CD)(that is the image under exterior
differentiation offﬁt%bﬁ. Then the following theorem holds
for any neN, :

Theorem 4.1. If X1sX2rewerXgk are selfadjoint
generators of a cryptointegral algebra A of dimension n,with
essential joint spectrum Eg;Rk,then there is a continuos
linear functional 1 .on C.Cf%mk) which vanishes on Effbn(mk\E),
so that the trace form Ty satisfies :

TX (fl[fZ,o-c,fZﬂ)z l(dfl/\de"'/\dfzn)

for: £y F0 i fon in Coo(mk).(Therefore 1 determines an
element in HZH(RK,E), and by means of the coboundary operator
Dt Hop(RK,E)=—>Hpn-1(E),an element in Hyp_1(E).

This theorem was proved in [40] in dimension 1 and
2.The proof of this theorem is based on an algebridc lemma
due to N.Wallach,which asserts that a continuos p- linear
functional ¥ on ¢ ®(RK)with compact support is of the form

1 e Sp,where 1 is a continuos linear functional with compact
support on the closed p forms on Rk,and :

Sp(fl,lenoofp)z dflA .ooAdfp,
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if and only if ‘Y has the p-fold collapsing propérty,(Recall
that Pit is said to have the p-fold e¢ollapsing . property if

Y (f1r...,£fp)=0, whenever £1/...,fp are polynomials on R"
and there exist i # j, such that fj,fj,are both polynomials of
a third polynomial). o

Hence, the htechnical  diffieulty ~is. that the

associeted fundamental trace form has the 2n-fold collapsing
property. Helton and Howe proved that this property holds if
the fundamental trace form has the property that, £for any
%X1rX2rses1X2n~2€A, a € A ,we have:

tr[az,a,Xl,X?_, () -,in-—Z]:Oc

Furthermore, they proved that this idéntity holds
if n=1" or n=2, 'so  that the-proof of @ the  thecrem: was
accomplished in dimension 1 or 2.

Taking all of these facts into account, it follows
that the proof of Theorem 44 is reduced to the following
technical fact:

Proposition A.2. Let A .be a cryptointegral
algebra of dimension n, n»3. For every a,Xj,X2r...s¥2n-2 €A
we have:

tr[az,a,Xl,Xz, e o o,XZn—z]:‘Oo

Before proceeding in the rather long but exclusively proof
of this proposition, we introduce a few notations and state
some remarks.

Definition 4.1. Given a p-tuple o =(y1,¥2re.+r¥p)s
p 2 1 of elements. of A, we - denote by, [eC ] - the
antisymmetric sum [ o 1=[y1,¥2/...s¥pl. If g is . -any
permutation of {1,2,...,p} and T(d) is the p-tuple -

(YGUYXW%'QG"%WQ)' then it is obvious that

Fsteall seids) ol (4.1).
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We denote the cardinality of o by |l = p and we put by
convention [ o ]=1 if [&| =0. The following remark contains
another way of writling the antisymmetric sum.
Lemma 4.3. Let ™ be as before a p-tuple
R reesr¥Yp) P21 and let k be an arbitrary element of
{0,%,...5,p)- Then the following equality holds:

[ ]= E:‘{ﬁ (BY) [P J[}’]:Iﬁl=k;{ﬁ,'f}partition of of }.

Here B (respectively Yy ) runs over k-tuples (respectively
(p-k)-tuples) of elements of the set{yl,yz,...,yp}, which
considered as sets have the property that {ﬁ S ey
partitioniof o (i.e. -of the set {yl,.‘.,yp}) To each such g
and Y we can associate a permutation Ty of {l,2,...,p}
obtained by concatenation of B with Y . By E(j3Y) we
denote the signature of this permutation.

The ° in the sum before has the meaning that we
perform the sum onlyover a family of B and Y such that {6‘}2’y }
form a sequence of coset representatives of Ng p-k in Spr
where Nk p-k 1s the subgroup of S, generated by the
permutations in 8p which preserve the subsets
{1,2,..0,k}  and {ktl, ... .p)s Equality (4} ensuressthat =it
does not matter whal . choice of these coset representatives
we perform.

More generally, from the same reasons, the
following statement holds:

Lemma 4.3. If kirk2re..rkg, are positive integers
with kj+ko+...+kg=p,then:
bl ] ldil=ki,i=m;

[oed= 200 elogey o) L1l oty

{oys%y,-s%} is a partition of (1,0, D)

where the ' has an analoguous meaning. For instance, equality
(2.4) is of this type.

Taking into account equality (4.1) we can prove
the next equality which is used in the proof of Proposition
42
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Lemma 4.4. Let o =(y1,y2s...,Y2p) be a 2p-tuple of
elements of A ,p>l, and a an arbitrary element of A.Then
the following eqguality holds:

\

= 2. {e(Brspl gllalyr,ysllip,l:

4ér<sszp

: [Bsl, 18, even, { B;;p)partition of « \{yr,ys}}.

fu—

la,[ o]

The meaning of the ' above in the second sum is as in Lemma
4.3.:for fixed r,s,and for a fixed k in {0,1,2,...,p-1} we
take the sum over a family of 2k-tuples(respectively 2((p-
-1)-k)-tuples) Py (respectivelyﬁ%) such that the permutations
Gﬁ,&pf {1,2,...,2p}\{r,s} determined by B, and B, form a
sequence of coset representatives of Npg 2(p-1-k) in
Sop-2- (Here, we identify the ordered set
(1,2,.0u2p 8,8} with: {1,2,...52p=2}, Froni thes ordering
point of view)
Again, £ ( ﬁjrs B, ) is the signature of the permutaulon of
{1,2,...,2p},determined by the concatenation of B, r,s, B, .
Proof. (of Lemma 4.4.) By formula (4.1) one has :

=%,ﬁ€(t Y ¥y ¥yl oo [¥e(2p-1) ¢ Y(2p) ]

where T runs over a sequence A of coset representatives of N
in Sapl here N is the subgroup of Szp generated by
interchanges of the pairs ({21-1,21}, 1= 1,p). We may also
assume that the permutations A are so chosen that:

T(2d=1) << T(2L), 1=l:p.

Making use of the formula :

‘F)
[a, xlxz...xp]z';Z: X1eooXg-1larXg]XKk41 o0 eXp o
k=0
which is wvalid for all x3,X2,...,%Xp in - A , and where a
product over an empty set of indices is assumed to be 4, one
obtaines:
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B

(a,[t]1= . 2 g6y

TeA k=1 TM)’yt@J]'°'[yf(2k"3)'yT‘2k_2)].

"lar[ye(2k-1)rY g(2k) 11 [¥g(2p-1)r¥T(2p) -

From Definition 4.1.and by a suitable rearrangement of the
terms in the sum before , one gets the desired equality. In
the  proof of thes Proposition we need the following
rewritting of Lemma 4.3.:

Lemma 4.5. Let A=(y1sy2ree+r¥2p) be a 2p-tuple of
elements in A,p»l. Then, with the notations from Lemma
4.3. we have :

: ; P \
(ptl)[ o = Z’,Z{ E(BYILB I Y] IBl=2k, {p,Y }partition of oz}:
k=0
2 E:\{ e(pNl B 10y 1:/B] even,{ B,¥} partition of q}

where the meaning of ' in the first term, is that for a fixed
k,k=67§ we take the sum over a sequence ofr%gg?esentatives;
The next remark is a straightforward consequence of
relations (2.1)-and (2.2)and of Lemma 2.4a.
Lemma 4.6. If aj,ap,...,ar are elements of A such
that.-aje Aji, where jj are positive integers with:

jitiote..tir=n,
then the difference :
alaz.e.ar"fiz...aral
is an element in Aptj Q'@i(H), with null trace. :
Now. we are able - to proceed to ithe preof —of
Proposition 4.2.. From (2.4), and by a suitable rearrangement
of the terms, one obtains :
[azya,XlIXZ;oe-’XZn—Z]:
= AN 2
= & S {sigupr ' (o 1larxjllp Ma%xg 1LY ] +

45i¢j41ﬂ—2

25




Lt 1a?,x3 10 2 )arxy1 0V ) 2 l«l, IRl . (V] even;
[ B oV ) partition of {1,2,..52n=21\00 0],
The meaning of ' is the same as in Lemma 4.4(i.e.
keeping the lenght of o«,B,y fixed, the permutations
determined by o B,V of {1,2,...,20-23\{1,3} run-  trough

a sequence of coset representatives), and SijaPY ¥ sl the
signature of the permutation : :

'( a’ a %1 B9 ke XOpan

o a X5 F aZ x; ¥
which 1is the same as the signature of the permutation
obtained by infertwining above the pair (a,xj) with the pair

(az,Xj),and both are egual cto - E(ijaPY), -where g(ijaﬁ?)
is the signature of the permutation:

PeriiZees v oo 2n=2
ij<><,6\?
Since:
[a?,x]= ala,x]) + [a,x]a

for x in A, and by Lemma 4.6 we obtain that, modulo terms
of null trace , and keeping i,j,o, B,V fixed:

[«]la?,xi]10p a0y 1+ Do la,x5)0p 1a?xi10 ¥]=
=la,xilal B1larxg1 0¥ 1lot 1+ [a,xilal ¥ 10 o 1la,xj] [ B 1+

+ [a,x5] I Pla la, x3] [Vl 1+ [arxjll Y]l lala,xil[£ 1.



By combining this terms with the analoguous terms
obtained by interchanging i with i, and since. s

glij o PY) = - £(jiapy)
one finds, modulo terms of null trace:

[az,a,xl,xz,..,,xzn_2]=
% ST {- gixpY)(Laxilla P 1M axg V] ¢
- [a,xi][a,[Y][d]][a,Xj][fB]):(OU,'PHYI even,

{,p,¥} partition of {1, con=2081i ik

A}

=(n+l) ) ST (~eli3 AN [axila, [B1 1 [a,xg11RT) 2

i%]
| even, {ﬁﬁf}partition oE L, s 20200,

The last equality is obtained from Lemma 4.5, by
combining terms from the first sum with terms from the
second sum such that B= Yk}u .The constant (nEl)ids obtained

as:e

(p¥l) + [(n-1)-ptl] , p=0, n-1.

!
The terms in which P is empty are vanishing, so that,
applying Lemma 4.4, it follows that modulo terms of null
trace, we have :

[az,a,Xl; ¢ oo pXZn—-Z]z

=(n+l) Zj 2; {- & 1j?arsﬁzp Wlarxill FH [ e F%j arxyl

1*]
[ % 1) ¢ Wﬁll%;*even s EE, {8 §lﬁ5}partzslon of {lovaai2n-21\

\{irjrrls}}“

i

1

=(n+l) Zij E: "E(lj?dr‘pQP a,xil ;%}Txr,v xald fp ,xj 5

ﬁj!r 5
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| ! i 7 ' i s ;
ﬁﬂ\nghlﬁleven, {8 B P Ipartition of {1,2,...,20=21)
Sli geeesh)
where the Second sum runs over all dilstinct

i,j,r;S:l,z,e..,vzn"z.
The last identity follows from Jacobi identity:

[al[xrlxs]]=[xrf[alxs]]—'[XSI[aIXr]]'

taking into account that:

gxij@rs@g")— 1qur%f5)
Sinces
[xp,lar,xgll=xrla,xgl-la,xglxy

and using again Lemma 4.6. we obtain that, modulo terms of
null trace, the following identity holds:

[az,a,Xl, e e o ,in_z]:‘

=(n+1) ? 24{— e(ij Brspap p Jxrla,xgllpllarxy10p" 1a,xil:
,J,VS

:Iﬁgmélghwm;{ﬁ)ﬁgff Ipartition of {1 om0, 2020000 o 5,0 )

~(n+1) 2”“’2:‘ (-etiipyrsppxc (gl La xgl(pllarxi (gl la,xs) :
L35
ijﬂﬁi)ﬁ>)even {f@ﬁz,p }partition of {1,...,2n-2)\{i,j,r,s}}

where the sum runs over all distinct i Ers D {1,2,.,,2n~2}
With Lemma 4.3., we group together the terms in
which appears[ g lxy(respectively xr[ﬁﬁll) in the first sum
(respectively the second sum). Therefore, by changing the
indices of sumation in a suitable way, and since:
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W

(33 pyrsp pl)=-e(ids pirgy =" S(LIsEapp")

one finds that,modulo terms of null trace:
2 £
[a ,Xl,X2,o.e,X2n-2]-
\
=(n+1) 2 o{e(issya o) M larxgllo]a,xs]llarxsi] 2

i}]}“.‘s :
'\%ﬂodd;\dedﬁeven;{urxyd5}partition of {l,...,2n~2}\{i,jfs}}~

L4

-(n+l)%:5§:{ E(ijsey oty oty ) o) [arxgllix ) larxillg)larxg]
fﬂdﬂodd,wzhhgeven;{quuu5}partition of {1,....2n=2N0i 3,5}

where as before, 1i,j,s take only distinct values. Since the

signature of ‘the permutation:

je 4, it follows that this two last terms cancell, so that:

x| azrarxer21°"IX2n“2]=O‘

27



5. The index of certain essentialy
commuting n-tuples '

Let A be a cryptointegral algebra of dimension n,
generated by the operators Ti,T2,...,Tn ih f(H). Then the
essential joint spectrum Ug(Ty,T2...,Tp) is a compact subset
B of @l If 0 ‘has. the decompoéition Xt 1% with
selfadjoint Xk,YkefA,k=ITE then Xji,Y3i, i=l;n ,are
essentialy commuting and the essential spectrum  of
Rl iy vt Xninln: was, axsubset of RN coincides with E if one
identifies R?D with €X.

If Tp is the 2n-linear functional associeted to
the real and imaginary parts Xj,Y1reeorXnr¥n Of TireeerTny
then by Theorem 3.1, there is a continuos linear functional
Ip on c (A(Rr21) which vanishes on g " (R2P-E) such that for
anyafy o pnton in c’te), one has

er(lep(EL)s...rep(f2n)1=Tp(E1s o E2n)=lr(dE1A. . LAdED)

where by ep we denote the Helton and Howe Cc % functional
calculus associated with the selfadjoint operators
Xl,Yl,eo.,Xn,Yn in A,
S & am n 5

Since any form in [l (R“"™) is closed,and by the
" canonical identification of Q¥ (®R2M) with CSO(RZH)

gdxllkdylA...Adandyn 2> gg;CSo(Rzn)
it follows that 1p corresponds to a distribution up on

c§°(m2n) (or on Cgﬁﬁn)),(when n=1,up is a measure absolutely
continuous with respect to the Lesbegue measure, ([ 31, 9 1))
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with the properties stated in the following lemma:

Lemma 5.1. If A,T1,...,Tn and Tp,lq,ur are as
before, then:

(5a).If F1,...,E2n€CO7(CN) and dfg A\ .. .Ndf2p =
=g dxy/\dyiA dzy Adya...Adxp/\dyp, then :

e eT(fl)r‘-'reT(EZn)]zTT(fll-°'if2n)=uT(g)'

(5b).If U is any open set in €%, with UAE=D
then up Icg°(U)=C/qU,where F,is the Lesbegue measure oOn ¢
and ¢ 1is a constant.

(5¢).If O :€%——>c", © = (91,92/.../9n)is a ¢
map, then,let S$i=gi(T1s...,Tn) be the operators obtained by
the Helton and Howe C% functional calculus :

Si=replgi)).

By regarding gj as a function in X1,YlrecsrXnr¥ns Wwith the
identification zp= xx+tiyks k=1,2,0c0,0y > For
any £ in Cg° (€") one has :

ug(£)= up(fet Jac(p )).

where by  Jac( © ) we denote the jacobian of the
e naforation Do strem. R inke R20, :

(5d). With the notations in (5¢), if U is an
open set in c?. such ‘that up|cge | QJ(U))= CH - uslcngj) =cvu
and § is a diffeomorphism from eﬂ(U) onto U then c=c¢’

Proof. (5a).This 1is an easy consequence ©f = the

definition of ug.

(5b).This is a consequence of the fact that:

1p E(}Zn(@n”E)=0.

(5d) .Follows from (5c).
(5¢) .By Proposition 3.6 in [10] Tg=TreB , hence,
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for any functions £3,£2,...,f2n in Cf° > (82"), one has

1g(dfy AdEg. . AdE2n)=1p(A(£10 )A d(£200 )..-Ad(£2n°0)) .

After rather easy computations,ifﬁ
dfy A dfp ...Adfpn = gdx3 Adyy ... dxpAdyn s
then:
A(£120)Aeeee NA(E2pB )= (g2 )( Jac @ Jdxi A o« A d¥n.

Since the space ()20(R28) is the linear span
of forms of the type dfjA ... A dfpp, it follows that (5¢)
holds.

For the rest of this section we shall be mainly
concerned with <the determination of the constant (e
appearing in (5b). If n=l, Helton and Howe proved in [9]
that c¢=(-1/2 ®i)Ind (A -T1),for any X in U.As expected,this

sesult s is gtill true . for +a general n, and the index
of a single operator |is replaced by the index of the
essentially commuting n-tuple T1,T2se..rTne We refer to
[ 44 ] or [#] for definitions and results involving Fredholm
n~tuples. :

Proposition 5.5. Let (T1,T2s«+++Tn) Yo LB be a
system of operators generating a crypt01ntegral algebra B of
dimension n and suppose that (T1T1+ . +Tn®1) ~-1€ Aj+Cy(H)

If up is the distribution associeted to (T1,T2,...,Tp) then:

4

ug CSO(BZH)=(W€W) ind (TI'TZ'”"TH)N[BZ""
B21  ig the unit ball in R21,  and vol(B2M)is the
Lesbegue measure of B20,

Proof .Remark that,since 2 Tj Tl_lé;Al+ff
it follows that <G(T1,T2ree+r DR e 8<1 be
fixed, and e€<min (8 pl= s Lk f be a function in € )
such that € ¢ (r)= z/§  1if r<h-¢ and fg}r) =1 ifr>5+€
From the developement in Taylor series one obtaines :

where
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fg(r)— f.(1)= (r-1)h (1)
for some hgé.qu[O,OO)), Hence:
£ () = (r2-1)g_(r) el

for some gaeC k0 ysoy )
Moreover, if 0g r <§ g€<1l, then:

g lr)= (5.2)

Let ¥ lz)y= A1 for  lal = 0, 2 e ¢ (where ([l is the
izl

euclidian norm on €%), and:

. :
P = B L el e lE)
Viz)= iz 1) Yil2)

The definition of fg and (5.2) shows that

€ s
¥3°¥3€C (c¢?) and from (5.1), by multiplication with Yi we
deduce that: Sh : e el e

€ £
wh pmyegi= (. Fh(alf o) W L2k
Therefore, by the properties Gi)p (it Of tiEe
Helton and Howe functional calculus, recalled in paragraph
2,0one obtaines that :

¢ * £
($§ )-my = (DTiTi-1) el Ti)

modulo terms from Aj.By hypothesis and since Aj; and

£l



éaﬁH) are ideals,one gets:
&
ep( i )- Ti€at Cy(H).

Hence by lemma 2.4(b), by property i) of the
Helton and Howe c® functional calculus, and by corrolary
3.4:

ind (Tl,Tz,o..,Tn)=("l)nTr[T§,T1,.cq, o, Ty )=

o 4 s
B T Rl by sl e
=(-1)" 1p(d '];f/\dL/’f/\..../\dfg AdPEY=

=(-1)0 1T(J¢(ff,ﬁﬁ.”,ﬁﬁ;f§)d£1/\dzlﬂy.»,dzh/\dzn ))=

LRz uelle T TS o T T
=(-21)" ¢ B0 he
B2 (0,5+2)

. : Fo B 0l
where by Jg¢ we denote the Jacobian with respect to 3’723’ ‘o2,

5

92
and ¢ is the constant defined by ur | g o BAD(0, 1) 95 /49q¢
(where we denote - B2(0, a )={xeR2“:”xg<cL}}

By approximating the function f defined by f(r)=§ g are§

and SElr)=n if r>%,with e
sequence of the derivatives is uniformely bounded so that

.
gam Xp2m(g 6)

functions fg such that the

JR(ff)Aﬁ.”]%ﬁ;ﬁf) converges uniformely bounded to

and since Jg(Z1/,21/s++¢r2nr2n)=ls it follows that:

: | s .\n 4 n

ind (DT e iDL 57 $7¢on
where cy, is the volume of the unit ball in R2D,

Therefore:
1
o= ——=—=———— ind (T1+,T2¢+.+Tn)
(=21 )eon

(Qg«xsual,{ér‘a cu bset HQC&:m@ Aenoielvkg Ng hie chavacteristic

{undhom)
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Theorem 5.6. Let  T1,T:..+1Tn genetate a
cryptointegral algebra A of dimension n. Let E & €M be the
essential joint spectrum of T31,T2¢..«/sTns let U ~be a
connected open set such that UNE=( ,and let up be the
distribution associated to Tj,T2s..++Tn. If (ki;kzrﬂ,kn) is
any point in U, then: :

ur |u=

: — ind (xﬁaTl""')Man)fJ\U
(-2i)" can :

Proof. The ideea of proof is to reduce the problem to
the foregoing case.The proof is an easy extension of that
given in [9 },section I.7,in the case n=1.We assume that 0e¢
€ U and that Xj =0,i=I;n.

Peb S 0 b suichthakb the elosed s ball | B8l & i
radius 5 is contained in U. As observed in Lemma 5.1:

uT‘C?(U) =C }qU (523
where ¢ is a constant.

Let f be a pesitive c® function such that f(r)=1 for <
€G.and  firj=r for r> 5-and such that ~rf(r) is monotone
increasing.

Let g:C%-—> €" be defined by :

gi(z)= £((2])21s,9= (g1rec+rGn)
S 0 2
Then on B(0, %) one has that g(z)=z,2¢B(0,2) andjzngi(zﬂ =1
in a neighbourhood of E. Let 5ji= ep(gi) e By properties 1i,ii,of

the functional calculus, we obtain that: Z;S Si-1€hy.
In particular c%(sl,.,.,sn)g:szn 1.gince :

g(z)=£([|z])z

and f(r)r is monotone increasing, it follows that:
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3
2 (5.4)

S
g(z) <3 2<

Let ug be the distribution associeted to the
operators S B0 Sy which  still generate a
cryptointegral algebra of dimension n. Since an(o,l)/\
[\ CE(Sl,...,Sn) = Qﬁit follows that:

ug 1 an(O,%p = C\%den(Ofé);us B2n(0,4) =C\ﬁ432n(0,4) (5451

g

B soiie donatant oh. . Sincesby (SAA36E an(o,z))=32“(o,g)

it follows by lemma 5.1 (d), that g=,

The only thing that remains to be proved is that ind T=ind S

(because - of the previous proposition). But one easily

constructs a homotopy of Fredholm operators between S and T.
Consider gt(z)=z((l~t)+tg(HzU). Then:

5 :
Si= ep(gt,i)r 1=1l,1.

is a Fredholm n-tuple, and gives a path of Fredholm n-tuples
connecting S and T. Hence by [ #1]:

ind 8= ind T.
3 *
Therefore by Proposition S,S(Fince SISl+...+SnSn~1€%Aﬁ,and by

comparing equalities (5.3),(5.5) and c=c' with the preceding
pquality, the Theorem follows . ‘
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Appendix

Lemma. Let A be a ring. Let aj,azr...r@2m+1r WM21
be elements of B . Let Sy be the set of permutations of
2, i 2mEl)  wikh o1y < 4(2) ;let S3 be the =6k oF
permutations with o7¥(1) <s1(2) <s74(3);let S7 be the set of
permutations with :

ety wslioy e i3y vl

and let Sz be the set of permutations withe

)

iy ao i <t

(4) <5743).
Let:
Zi:: L‘\ el ) acy(l)e a g(2m+l) - 1228
TgeS:

and:

2i4= ) elc)a (1) -ag(2mtl) 'an(@)aﬁ(l)“"a@(m*l)
0@5¢ GES;

Then,modulo elements from Ap ( the m-th ideal of ‘the

commutator filtration of A defined in paragraph 2):

(i) Z2=m alaz[a:—},ano,azrn.i-l]

(ii) If aj=a3 then J.3= majazlazs...razm+ll



(iii) If aj=az,az=ayg then §:4=ma1a2[a3,a4,..a2m+l],m>2

Proof. The proof will be done by induction,
simultaneously.We abreviate by (mod Bj),after an equality,
the fact that this equality is only valid modulo terms from

Ay. If m=1, then (i),(ii) are trivial, and there is no
meaning for (diil).  The general induction step shows that
(iii), for m=2, follows from (i),(ii) in step m=1. Hence, we
can start our induction.Assume (i),(ii),(respectively (iii))
are proved for k=1,m-1, (respectively EZETE:E for @ (id1)) <As
already mentioned before - ., uwel use- the  Fellowing
conventions :if the integers J1,Jj2¢--+rjom+1 define a
permutation of 1,2,...,2mtl, then gl 315 e ssriom+l)milil be the
sign of this permutation. The proof will be divided into
three parts,corresponding to (Eyitid)zando (il :

proof of (i).The terms appearing in 2,3 can be
grouped into :

(a). Terms starting with arag, where r,s &{1,2}.
By the induction hypothesis for 2.2r these terms may be
grouped in order to give terms of the form:

(m‘l)[arras]alaz[ajdr°°-raihwi5(ff511r2rjlr'-'rj2m~3)=

= (m—l)E(r}s,i,z,ja,.,.)alaz[ar,asl[aj4,..., ajlmug(mod Ap) s
where r<s and Ji <o <iom=3 are defined by

{r,’S,ﬂ.,z,j{L,..u,jzm_.?)}: {}.].,2,..‘.,21'11“*'1}.
Performing the sum after all r,s ¢{1,2}, r<s, we obtain:

(m-1)ajazlazre«.raom+ll.

(b). Terms starting with ajag or agaj with s¥2.
These terms are directly groupped into: ’

A
lag,aglla,, 258, 1 €& Bn
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(c). Terms starting with ajap. Obviously they are
grouped into ajazlaze...raomttl.

Therefore, the sum of all terms in a,b,c is equal
(mod Ap) to majaglazs... ya2m+l]e
Proof of (ii). The terms may be grouped into:

(a‘).Terms starting with ajap.As in ¢ their sum

is:
alaz[a3fc o & ’a2m+l] °

(b').Terms starting with arag Or asar with r,s¢
¢ {1,2} (and a priori 1,s 4+ 3 ,gince the associated permutations 1ie in 63),7<S.
By the (m-1) induction step for $13, for fixed r<s, the sum
of these terms is:

A A ~ A
e(r,s,1,2,3°..,r.o.,s...)(m—l)[ar,aslalag[a3,.,.,ar,...,as,..a2m+1]

for all r<s.
Further, this last terms are equal (mod Ap):

A A o AN
‘8(1,2,]:,5,3,“9,1'...,Se”)(m"l)alaz[ar,as][a3,...,ar...asybo.azm.ﬂ‘]

X . {
(c').Terns starting with a,ag or agaj with s + 2(and

therefore, . .. s#% 3).By the induction hypothesis on
749 these berms together give :
: A A
5(1,8,2,3,4,...,5,..,)(m—l){ai,as]a2a3[a4,..,,as°..](mod Ap)
g 2
Since aj=a3 and the permutation (i 2.3 s)is even,
for fixed s we obtain: =

: A 2
Q(Q,Z,B,s,d,...,s,...)(mnl)alaz[a3,asl[a4,...as,...]

By reasoning as in Lemma 4.3, the sum of the terms in
(b*),(c") is (mod Ap):

(m-1)atazlazs...ra2m+1l.
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Adding the terms from a’ we obtain (the coefficient) m.

Proof of (iii). The terms in 234 are grouped into:

a''. Terms starting with ajag or agag with s ¢
¢{2,3,4} (these are terms in SZ).W@ will say that a term is
in Sﬁ if the associeted permutation 1is §2.Since az=al,by
the (m-1) induction step for S.3,for a fixed s,the sum of
these terms is( mod Bp):

A N
(m-1) 8(4,5,2,3,4,...8,...)[ai,aslagag[a4,..vas,...]=

A

A
=(m~l)2(1,2,3,5,4,.._.S,...)ala2[83,as][a4,..aas,...](mOd Arﬂ.)'

b''. Terms starting with ajar or arap with r &
¢{1,2,3,4}. These terms are in S4 . By m-1 induction step
for S"3 they can be grouped, modulo terms in Ap in p

A

A\
= 8(2,r,1,4,3,5,..,r,...)[ag,ar]a1a4[a3,a5,°..ar,o..,a2m+1].
gince the signature of the permutation:

2143 56..,9...>
Soi SR

is negative, and since az=a4s modulo terms from Ap, Wwe

obtain:

"~ AN
(In.'"l) (0.,2’4,r[3,5’o-c,r'o--)alaz[a4]ar][a3fa5,oanfaro.n]

S

¢ . Terms starting with arag,ot  @gér r<s,r,s¢;
¢ {1,2,3,4}. By the induction step for 7.4 , it follows that
(mod Ay ) they are equal to : '
A A A

A
Q(Y,S,1,2r3,eu.r,...S,..)(m"l)[arraslalaz[ag,,...ar,...,as;o«azm+l]=

. ; A A A A
e(i,z,rrs,Bp‘coo,rfboas,cnc)(m-l)alaz[aryas][a3fnooarlon'aS’cne’azm-‘ni]
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: . : o+
dy. Terms starting with ajap in Sg;

dy. Terms starting with anay in S4.
Summing all the terms of .the type dg and using the identity

A3

asar=lag,ay] tagaz,we obtain:
i 48(2;’1, d\)[az,al] D('*'Zg(l;z;o( )alaZ&J (6nl)
& o

where O runs over all permutations of the set
{3,4,...,2m+1}, with the property rhatockd) <o 13y, ané for
such an o, & is the product a,(4)«.-ax(2m+l):

By- the (m=1) induction step for J.osthe first sum in 6. 1) 12
equal (mod Ap) o

-(m—l)8(2,1,4,3,5,5.2m+l)[a2,al]a4a3[a5,...azm+l]e

Since 62,14, 3,50 2k l)=1 and since aj=a3,ap=a4 we obtain
further

(m-1)ajazlaz,agllas,e..raom+1]

Reasoning as in Lemma 4.3 the sum of the terms in
a ' ,b',c ' with thig last term is equal (mod Ap) with:

(m«l)alaz[a3,..°,a2m+1]

The remaining terms from 734 are those from the gsecond sum
in (6.1) and those of type dy. By the definitien of (he
antisymmetric commutator, the sum of all terms of this type
is:

alaz[ag,..b,a2m+l].

This ends the proof of the lemma.
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