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APPROXIMATION AND EXISTENCE OF PERIODIC SOLUTIONS
FOR CONTROLLED DIFFUSION EQUATION
by

L2
C. Varsan

&1. INTRODUCTION

The existence of periodic solution in prebability for dif-
fusion equations

m
dx=f (t,x)dt+ 3, g, (£,x)dw, (t), X€R, £,
=1

1=

where w(-) is a standard m-dimensional Wiener process over the

g, and f,qg. are periodic with
£ Sl

respect to the variable t, is obeying the same general scheme

probability space {53,35, 122508

as it is done for the existence of stationary.disﬁributions;
sufficient conditions of the stabilityv type as in 5], [2] and
[31 could be used to achieve the goal.

Generally, the»existence of a moment function g:RQ~>{p,3ﬁ)

t) such that sup EBg{X(t))<{M<® ensures the existence of
t20

a periodic solution but a nondegeneracy condition on the diffu-

e
sion part makes it difficult and requires & strongi dissipativity
propexrty for the drift part f£(t,x). Under some nondegelneracy
condition on the diffusion part we prove*'the existsnce of bounded
periodic controls ui(t,x), i=l,..0.m, atting inthe same direcs

tions as the Wiener process such that the following equation



Vig

Ry dxe [f(t x) }“ (t,x)g, (t, x]du gl de e 50
i=1 i= 1 = : 2

has a periodic solution in distribution.

The main tool is an approximation theQrem for solutions in
(%) whiech gives tlie ad&antage to check sufficient stability con=

“ ditions on a more suitable differential equation.

Roughly speaking it can be stated as follows. We are given
a finite set of smooth functions gi:[O,T]x R R it
and denote,(kg1,...,gm) the Lie alogebra over reals generated by
them, where f@ o ](t x) (Bg /%) g, bg /2%) g, Yk, ) - Take

h hle%CkM,...,g ) and denote y(*) the solution in

1t m

() ay=[e(e,yre Xy ey (ev)]dee S G (e nan (o), teloal
i=1 - k=1 % :

y(0)=x_¢g L, (52 ,P) ,

where £, GL:[@,T}X quﬂRn are fixed.

Along with (#%) we consider
m : d
(x*%) dx= [f(t,x)+2v. (t,x)q. (t,x)]dt+ 370, (t,x)dwy (t) ,
, ' s > k=1 ° :

sipl=pio), - eefaanl

where fz g 0;.are the given functions.

The first two theorems we give here state the existence of

a seguence of solutions in-(**%) which approximate the solution

9 £
ol

i1 (*%) using the usnal metric dixl+),y(-))=IE. max xﬁj—v(
tel, Tj

This result is connected with the controllability properties of de-

terministic control systems as it appears in [4] and 25] but the
technique used in {}T to treat the case f(t,x)#0, cannot be

_ useful here because of the perturbation generated by the diffusioen



@

part. The procedure we use here originate in {62 and in stechase
tic case it completes the results in gjj.

A similar but somehow weaker result than that given.here
regarding the approximation wiil appear in l?], The result in
Theorems 1 and 2 remains the same in the case the Wiener process
’w(-) in (**) and (***) is replaced by a continuous square inte-
grable martinéale for which the quadratic variation matrix
V(t)=<§(t),M(t):> has the form V(t)= fH(s,w)ds with H a bounded
measurable matrix valued process. Theoexistence of periodic solu=
tions in distribution for (*) is stated in Theorem 3 and Theorem 4
contains the existence of periodic solutions for controlled dif-
fuclonsequat ions dn (FEE)

ITn Theorem 4 we disregard specific properties of the dif fu=

sion part in (***) and give the result for any Cz fulfilling

some linear growth condition.

2'.7 FORMULATION OF THE APPROXIMATE PROBLEM AND MAIN RESULTS

Denote Cb’p(LO,f%Rn) the spece consisting of real functions
which are continuously differentiable up to order {?with respect
to it é,&hiq, up to order p with .respect to xeRn and are bounded
along with all their derivatives; £ wthe poundedness condition is

omitted we denote it by C p T]KP . We are given f,gi,CT

k
1

:[Q T]quuaRn which are continuous and gi€C ([Q,T]XRH),

£,676c 2 (0, T]xR™), 21,00 ,m k=1 .. 0, de FOr 1,4, £l

= 1 i 1 x’ :" 3 :F
I—{lo,l1§ define lI[ e gI(t,x) Lgi 194 }(C,A , where Lq ,g}
denote the Lie bracket with respect to x€ﬂn, generally for 1
§ ! ol :
i1,.. ﬁﬁj,...,m /and 1—\lo, 11""’lL ¢, define {I}=L+1

and qI(t x)=|

i i Lok ach
ui 19y ] (t,x), where 11 {11,...,1L§, LEN. For e



-

i r——

il

@i n . iy ) s n
uiécb’ ({b,zjR Ve e quCb’.([O,I]XR o 2&lTlCnsl . we

consider the following stochastic differential equation

m L+1 d

A —
dy= £ (t,y)+ 2> u (t,y)q. (t, o (e () dt*u_wc‘(t,y dw, (t) (1)
- i=1 : 11{2u1 ke -

yo)y=x_ , t&fo,1],

where w(t), t{ﬂb,T}, is a standard Wiener process over the fiitered
. e e g QB e
probability spacezJU,f}P;ft ~and XoeLz(“ ,P) is independent of

e
J% 720, Ve assoeiate with (1) the following stechastic difife-

rential equation .

m m
dx=[%( jf ) 9, (ti;x) +Z:v ﬁ.xhr 2 x]dt+C%.x dw (t) {(2)
i=1 i=1

x(0)=xO : té{b,Tj,

1 Qé f,gi,G;,ui are ‘gs in 1) ane viec;’1(@LT]m§H

Denote G= (g1,.. g ). He need the: following conditions to be

where O"

fulfilled
C{) 0/ dxy. IG - fox rcb TR, ch;'LJ“z([o,zjR”)

. 2 :
c,) LA, QoG (0-RY), O gi/?x;}xj)Aijf‘Cb([O,zjRn)

for any Té[I[éL, k:1,...,d,i,jé{1,.,.,n}, where A:g@?% e e
transposed of v, and a vector or a matrix belongs to Cé&p if el
their components fulfil it.

THEOREM 1. Assume that (C1) and (C2) are fulfilled fer (1)

2

A

and:let () be the solution in (1) correspondibig £o u, uI, <hlg
e {511
L4, Jand y(O):xo. Then there exists a seguence 1V - Cy ;

e 2 o o s
h)o, suchithat the ‘corresponding sollutions X 18 (2 = faadloeial

E max {xh(t)"y(t)I%:Ch, uniformly with respect Lo

tef0, 1]



!

Xgr Uy and u; in bounded sets, where C)0 is a constant.

In addition if u (0,y)=u (T,v), lnl=2,-. . 1%l i), then
h h '

.vi(O,x)=vi(T,x), =S e o e (D)

3

If we relax the hypotheses in the Theorem by neglecting

delibd

(C b

and replacing GE&C ([O,ﬁszn) in (C1) by

5)
Lo ] e s
b (£O,T]XR 7 j=1,...,m,then using a standard argument

of truncation it follows that there exists a sequence {xh(‘[}h>o
of solutiens in-(2) such that

lim E max Kxh(t)—y(t)gzzo

h90 tgf0,T]

uniformly with respect to xj in bounded' sets.
It can be stated more precisely as follows.

We replace (C1) and (Cz) by the following

= S 2 il TheRIEE S
Cy) @L/-ij .7%/9xj€cb (gl ?xj ec.
L+1
o~
G u.é(§L1, u éc1'2 and 9(;2 u.g )/?:{4&3 o =1 v,y
2 5 I ‘Ibﬁ i ey g) b

F=l eyl

I
THEOREM 2. Assume that (C{) and (6;) dre falfilled for (1)
and let y(+) be the solution in (1) corresponding to U U and

: h h :
¥ . Then there exist sequences (ui, Vi)h>0’ Ji=glienee o,

o
h 041 h o] : : h
{uié;cb . {Viggcb , such that the corresponding solution x ¢( )
dna2 i afu ke il
. : h }2_
lim E max {x (t) =y (E)] =05
hoos - telo 1]

uniformly with respect to X in. bounded. sets.



<+

In addition: if uI(O,y)=uI(T,y), [I§=1,...,L+1, in (1) Ehen

(s el e (2

h e : h cn
gi(O,x)-ui(l,x) and vi(O,x)~V_i

REMARK 1. Since v? and uy in (2) are continuous the theorems
have an analogous version for the corresponding backward parabolic

rs

equations associated with (1) and (2).

§3%. SOME AUXILIARY RESULTS AND PROOF OF THE THEOREMS

We associate with (1) the maximal number i ©f the Lie bracs
kets contained in (1) and eall it the order of thewsystem, TO DrOve
Theoremj we need to approximate the solution in (1) by one deter-
mined by a system which has an order less than L.

it is done in the next Lemma by using the following approxi-

mate equation.

L
o -
et E (e ket e X, (Eaylapte,wie 2 kel (8
i=1 VI =2
and (1) is rewritten as
~'
; m m ,
- ;
dy={f(t,y)+§: o ) q.,b.j(t,y)jdt+@(t,y)dW(t) ' (3]
o e

y(0)=xO ; t.élp,Tl, where the Sécopd term in the right hand side

of (3 is the-sanme with the third term in i

ILet N:be a natural number. We_consider a partition 32 of

'Ib,T] determined by the intervals [kh, (k+1)h),k=0,1,...,N—1,
; e i 3 iy : b k B
w;th {J% == /N gor each kci0,1,...,N—1j, let Aij A

§=1,..‘,% beia partition of &dh (k+1)h) with [Aij\=h1=h/mﬁi

=y

o ; : - . 5
Denote P~ the space consisting oI scalar polynomial functions

1
domiacion b0 and fadsiiling c(e(tlde=0. 1ok B, {*), p, (+)&P°
' o)

peisuch that pi(O):pi(1):0, dp{/dt(O):dpi/dt(1)=O and



1 - £
Sp?(t)gk(t)dt:T, where p(t)=§‘p(s)ds. These functions will be
o e}

fixed in the sequel and theycould be chosen as polynomials of
gixth and fifth degree respectively. Let p?(t,h):[kh,(k+1)h}»¢R,

Ji=des 25 be udie fined-oy

L =
p} (£,h) =p, (t-kh/h,) tEal, [kh ] o

k A . k
p¥ (t,h) =p, (t= (kh+ (nfi=1)h )n ), tealg=[kn, (ke1in)
k=0,1, ... ,N-1.

Obviously p (- )CC ([khi(k+1)h];R) and p?(kh)=p?((k+1)h)=0. With

(3) and partition 7% we associate the following differential equa-

tion of order L=

s
m
o~
x={f(t,x)+2ﬁ zi<ﬂ9ui./Bx), b-}(t,X)gi(t,X)+ , (4)
i=1 j=1 J J
m W
+Z o 5 mm/\/'l:l [p Lt h( g)(t x)+
k=0 i=1 j=

+pS (b, (6l Gk (8 ) dtéUE;qmu ey, . withes o el
:] MQAJ J O

where CA( =0 t%A, and CA(t)=l, bz B

Let xh(t ,1:6'&)T , be the solution in (4) and denote

m o m ,
{”@’s o~ )~Cls,y(s)+ = 5‘[3\; (s,h) (2/2%) (uijgi) (s,xh(S)) (5
i=1 j=

M) =

O\t

_.-\

+p, (5,h) <?b /3x)6(s ,x [S JJZ (s3y =@l

/
Let w(r) be a random or a deterministic vector fulfilling (E/7(r)/2)1’2

ECr for some. fixed constant C 0.

LEMMA 1. Assume that (C,) and (C,) are fulfilled. Let Pl

1
be tlhe selution in (4) and vi(-). fulfils (3). Then there exists a



martingale Mh(t), té{b,T} (gee (5)) sueh:that

ey =P (£4) =y (£ =y (£7) +20® (£%) =" () + (€7t O (VR
TR %O,h,Zh,...,(N~1)h=T}, L Yy MileEe
. =
» @t e P e 1128 Vet BT

uniformly with respect of X0 ui('), uI(°), ZgﬁI{$L+1 in bounded

sets.
Proof
: m ?n/ ’2,2
Denote f1(’l:,x)=f(t,x)Jrj;}':_.1 %é% <<—7?§L ; bj>bt,x)gi(t,x)

By definition
h h

1 2 1 =
h h o
x* () =x_+ i £, (£, (£))ae+ an/ {hy) S et mru  (0gy (k" @)
ot
+p§(t,h)b1 (t,xh(t)]dt+ SO G(t,xh(t))dw(t)=XO+T1+T2+T3 .

o
By hypothesis £ and @ are Lipschitz continuous with respect

to x€ R" and computation shows

\ 1

(B max .xh(t)—y(t)

12,1/2,
telo bl

2 (3=Ch) ~ v)(y"‘h) (6)

<«

o
where C»0 is the Lipschitz constant for: i and Cr. Using (6) we get

1 h1 h

£ (t,y(t))dt‘+§o Pettm 48) )= E it ile )] | d (7)

=3
]
o~

1
1

i
o-mty

£1(t,y(t))derhy )



3

Ty= FCT (£,y(£)) &vt)+/[€“t ey)= T,y )] dwig)= . (8)

h1 :
= % ¢,y (t))dw(t) +D-’11‘ (}11) , where Exmi (h1)[2§ h1 ﬂ'l ().

Denote QKS)=Xh(Sh1), sé EO,T], A=0¢> ,
g[; (t,x)= ((B/m, +‘f> i (£, (2/;/& )+1/2 Z A] (t,x) (2 /ax?x ] (t,28)
i=1 i,j=1

With these notations and using pi(°)éPO, i=1,2 we get

(k) 1 I ar
T, = yh, é[m (s)u, g, (shy,xX(s)) +p, (s)by (shy /%(s)) ds= (9)

a3 2
=mmh1 [Jép1(s)dsuz,zwui1g1) s1h1,x(s1))ds1+
1 S 7 -
g&pz(s)ds.éc”b1)(S1h1'x(51))dSJ +

=~ 1 s :
aih, [ [py(s)ds [ (P (s9) (2/0%) (uyq9,) (s, h, Xisi))+
O O

+p, (54) ) @ %) (uy494)b, (s h1,Y(s )))ds, +

1 S %
+ fopz(S)deo(p1 (s,) PDb R x) (w19, (s4hy,X(sy))
+p, (s,) @b /%) by (s,hy Fis)) )dsﬂ+

e/ B B0 e ©2x) g9 Gt 0048 80 (b /) Kt 0) T (e

] ot 1

=T2+T2$M1(h1)-

By hypothesis (see (Cz)) we have

| Lo, ya,0 e en)] « Loy e 00, eefo.r] (10

where C1> 0 is a constant which doesn't depend on h, and using

EEO ) am (9] e obtain

JERTMEEEHURIEEE O ~ oo



Since / B, (s )D (u)dc~f p1 p?(Q)ds 1 ~and

1
Ja. oE : -
/épi s) L S ds=0, 1 9=1,2 Ve get
"o &/, & o A =
lzwmmhjﬁdq1g1,b1}(0,xo)Fh1ﬁ({7h ; (129
> hr e
: :f6£91191,b1](t,y(t))dt+h{7wIU
Using (11) and (12)=dm {9) it follows
.= Plu, g, b, J(E,y (&) )derh s (Th) +u5 (By) (13)
L 1 e :
ancsfrem (1) (8) and {13) we get
h Y s = : :
X (h1)_xo+»/1o f»] (th(L))dt+‘);[u11g1 ID»]] (tIY(t))dt+ (14)

h1
+ [ Ole,y(£))aw(e) +h ) (/h) +¥, (hy)

2

)+mi (h,) fulfils E [:@1 (h)[ < b7 (h)

On <Ehe next interval Iﬁ1, Zh{] we repeat the computations for
lo,n,]. By @efinition
2hi

% (?h)—yhh)+/ £, (e, (£) ) dte () / [q)j[p1 (£, h)u 2g1(t,xh(t))+ (1
b

+p§(tlh)b2( (t) ydt+ ./ 16JL X Yaw (t) = xh(h )+T +¥; A;
1
and we get easily
o J £ (e,yenaer [ [E, (k,x(£))-Fq (e, () )] de= (16)
1
2h1 2
= f, f,(t,y(t))dt+h, MOR)

1



2h :
T,= ,@f@” v (£) ) (€] /%l[OTt,xh(t))~GYt;y(t)ﬂ dplit)- ()
2h .
j‘ O(t t))dw () +14] (hy)
where
o o 2h
E |1} (h )1 4n %) (h) 115 (hy) = [g (£, x™ (1)) =0,y (£) ] aw (¢

similarly, repeating the computations in (9)=(11)we get

’:/ -.Nl iy aeit
EZ—T2+12+Az(h1) : (18)
where
T,=h, 7(h) (19)
‘u o, e 2h1 L5l@) O" h
MZ(hT)z(mm)/(Uh1) J£1[P1(t,h)(3/ax)(u11g1) e () )+
+B5 (£/h) B, /2307 (k% B ey yaw (x)
and
E|us (hy)] “gny 0
Also, we have
T" mmh g ] Xh(h Y)+h. ¥ (\"r};_): (20)
2 fugp9, 0 Byl Ry 1 o

=

s~ Ly § P
=mmh1[p12g1, b,7}(0, xo)+h1?(y b=

h
=4;[u1291, sz(t,y(t))dt+h1n(yh)

Denote Mz(h1):Mé(h1)+M5(h1) and using. (16)-(20) in (15) we get

2h 2
h = el e PR :
% (2h1)»xo+ Jh1r1(t,g(b))dt+§§1 Jbl?quWJ bj](t,y(t))dt+ 21
2h1 5 :
£ th,y(t>)dw(t)+2h1q(vh)+m1(h1)+m2(h1)

where M1(h1) ig+ defined dn (14)s. and



& 2h1»}(h) : (22)

- . N
Finally, for t=h, we get Mi(h1)’ fiefi i L suchitemat

1§ B4y 1
xl(h)fx 1nM1 = Jrf dt+£§ §§1 ﬁ;bﬂ] Iy j(t,y( ) Ydt (23)
; ¢ fG (e y (€)Y au () +hY TR+t (h) =y (B) +h7R) #14, (1)
o ;
X where
n X n
| £ i = E' (u 94 bj t,y)= ﬁ[z}j) } .ZQz i-[‘qi,b}(td)
W 1= i=1 3=1 7 3
; and
-
M, (h) = (h,) /[:; £,xM(0)) -Gty (€))] aw(e)+ (24)
1=1
¢35 /iR, 8760 @Rx) (a;59,)0(E,x0) (€))+
i=1 3=1 -

+'£5§ (k) @bj/}} )0,z (&) ] aw (t)

and E Y, ()] %¢nojn) .
_Lemma was proved for t'=h, t'=0.

'Fdr the next interval {h,ZH] we have to repeat the computa-

tions done on {p,h]. Hedng (23) we iget

o

(r mx JPo-yeld i (Elxh(h>—~y<h>]2)”2+7~I<{E)(1—<:h>'1£ (25)

t¢lh,2h] : :
| : MU (i) (1-c) "]
where C»0 is the Lipschitz constant for ?Jand(y.

For t=2h we get a similar representation as in t=h. Namely



h . 2h m“ i 2h
x(2h)=x"(h)+ [ £ (&, y(t) ez 5 /h[u b, Tl ,y(t))dL+ (26)
h S :

(h) +M, (h)

A
_Q,{O“(t,y(t )dw (£) +h(rh Fh)+M,, (h) :y(2h)+2h;[<;“ﬂ>+m .

2 1

where M. (h) is defined in (24) and

1 {

M, (W)= [°[0Te,x7 (£)) =01ty (£))]dw(t)+ (27)

9 o i 2 2
E{Mz(h)} —h’?(h) /E M, (h) fMZ(h)X =E[M, (h){ +E ( —2h77 (28)
By using an induction argumeﬁt we get (see (25), (26))

(E  max J{xh(t)"y(t)rz 12 7(,,h)(1+kh+ﬁy‘) (1-cn) = TN
) h '

tglkh, (k+1

and M1(h),...,M (h) such that

k

ﬁx‘

™ (kh) =y (kh) b ( VR)+ 2. M, (h)=y (kh RV V). e ] ey
: . i=1 :

where Mh(t) is defined by

5 t m m M
M (t):fo[’ﬂq"{ (s))-0(sy (5))]&\«7(5%2 >, mEnigsln i (31)
f ==
e n g
./()£E>] (s,h) (3/:7\‘ <) (ul]gj)'} (s Hs) )+v>2 (e,h) (b, /wlde x (s)ﬁ)J(dw (=15

and fulfil



k" et
E\Mh(k"h)~mh(k'h)!2:E = M.(h)§2=_§: E}M.(hﬂ = (31%)
e hio L

= 0=k )BT, kK", K k%KOJ,.”,N}

Erom (30)=(31') we get the conclusion. The proof is complete.

7 The approximation eguation (4) has some coefficients u?(t,x)

depending on h being unbounded with respcet to h. These functions

h

uI(t,x) are of class C1 and with respect to h thezafulfil the fol=

.

lowing condition

I
ok

hu?(t,x)=7({5)u ) 0% (2ul/2e) (£, MRV (e %)

h e
where u., v

T are uniformly bounded with respect to h.

1
These properties are essential in order to reduce the order
of a system which has unbounded coefficients with respect to the

parameter h. Now we consider the following stochastic eguation
£,y)+ > b = i
§)  dy=[f(E,y)+ 2 v (ty)g; t,y)+ & ult £,y) | de+0 (£,y) dw (t)

Y(O):XO ’ té[OrTlr

051 2

~ where Xo’f’gi’ dresas ans (1) and . (C v Iéc1? . With respeec Eo
the ‘parameter h we assume. that there exist r(h)jolz h)—i( }) and

aspartition )g of [O T} with intervals of the length r such that

h

Chkex)y 14lzlera,

a) ru?(t,x)=q((g)v

b) r2(2u?/2t)(t,x)=7({ﬁ)§?(t,x), 24|1|4L+1 where v!

are uniformly bounded with respect to h.



DEFINITION. A system S of order L for which there exists

r{h)p 0o cueh chat al =) 1§§ﬂélL+1, fulfil. (a) andib) is called

&

o f: andese (Ji )

LEMMA 2. Assume (C1) and (C2) fulfilled. Let ) be a system
6f index  (L,r), where rrV(h). Then there exists a system (S4) of

4, M=card {I:]I[=L+1}, R=T Ay s sueh thiats

index {(L=1, r1) with r1=T/MK
the corresponding solutions y(-) in (S8) and y1(~) in (S1) with

y{0)=y (0)=x_ , fulfil

B vt vl oy ot (e b )pﬁ)mh(t")—nh(t')
As Ar P, L‘&M.
—er ek, t',t"é{O,r1,2?},...,K%%,..”2K3LV..7KI1dP},

~ 4
r1=T/K =r

1

h

**)V Mh(t) is a martingale and Elﬁh(t")—M (t')lzz(t"~t')7(h)

*%%) coefficients uI(') in (51) fulfil (a) and- by with r replacecsd

by /e -

The proof of Lemma 2 repeats the same general scheme as in

Lemma 1 and it is omitted.

Proof of the Theorem 1

Suppose L=1. By hypothesis the conditions initemma 1 are ful=
filled and denote xh(-) the solution in the approximate system (4).

By definition we have



m Vi
whiere Flt =) =f(t, 2yt = uj(t,x)gi(t,x), and
.‘:___'] ni
ol h U s h L h h |
= o a(eE il == 5 5,3 (s))ds+ o e )is 5
“t,_;:a'ﬁﬁvigi)("‘ (s))ds EQT,[; (vig;) (s, (8))d 1?21 Jﬁ1r1(vlq1” = B))ds

where mj?} ig the nearest node to t which is smallier than £t in the
partition 7l .
Using Lemma 1 we get
0 m, T
el g 17 1= ~h i e h s
o =% ) =X ~~é s (s))ds~Jg Golsipt i) Jdwls)»

' m
+4F{%):y(m12;> -xo+m1r1’}](?h)—vé1 1f(s,xh(s))ds—

(o n %
";15@m($kﬂwﬂﬁwaso11?@n(&%€@mﬁﬂﬂdy

it foliows

'
E max{xh(t)—y(t)i%{CjﬁE(max{xh&ﬂ~y(sﬂ2)$§hﬁﬂfﬁ)
tev st 2
- ( h " '2/“‘ = (o . = +
and E max X (t)~y(t)‘ £ 1h for some constant C1}O.
tgLO,T}

Generally, for L21, applying Lemma 1 to {1). we get a system (S)

)
<

of Fdndex: izl h/ﬂ), where h=T/N, M=card LI:[I{=L+1§.

In order to finish the proof we need to know that the previous
estimate holds true in the case (1) is replaced by (S). It is

enough to consider only the case when the order of the system



(s) is egual to one.
By hypothesis (8) fulfils the conditions in Lemma 2, and
applying Lemma 2 we get y?(°) the solution of a system of order

gero..such “that
A A OVALRCR AT =P (s P o))] ase st ot R (60) =618, 5™ ) aw )+

t
b h h h
+Z Soti9,) (844 (S))ds-~i1~7~;250(u191)(s,y (s))ds

where yh(') is the solution in (S), SQ.Qégijﬁaﬂ

M
1 h b,

Am
=> & (o

o veg.) (o,y1 (s] has=

’EMB

m !
£ h h - ;
+£§11m1?1(vigi)(s,y1(Q))ds, where m1r1§t is as before, fulfll$4
U =yl (m, T, )=x_+m,T Hf-'”ﬁ)—? 1ﬂh(s higyyas-
o7 et B e ey =

m m
1 h
-/ e s P enaEN R= /! [ ey )£ e (s))] ds

m, T =
+fo1 1[(T(s,y (s GJ-J/]1 =) wav(s)+ o fO UIg ) (s, v SPdSH”'{ (1)

5 [1]=2
It follows
\yﬁ‘(twyh(t)lz {jm > [, (o)) - jm“j"/fbf.
vt p iy I2 2
e | [[61s 7 ())-00s v () J ()] )
%Lt

for some constant C)O. ; '
o] h h %
Since té&d m r , (m 1+1)r1> and r1;f (s,y1)—f (s,y)} |

ﬂ(ﬁh)zy1~yz for any SQEQ,T], y1,yéRn , we obtain

Med. 2034



E max _{y?(t)~yh(t) %‘C n, for some constant C,3}0 and
s | L 2 2
fCJ)J‘

the proof is complete.

Bgoof of the Theorem 2

By hypothesis there is a unlque strong selution y{:) in
; S : n 3 II +
(1) MolEip Ly U9y in (1) by a C (R } function (5&) i
[Ixzi,.,,,L+1there fN:RHW${p,1j has its compact support in

\ n
= WA ° d: = o S
the ball B, ix{R ; [x}NZN} and f&(x) 1, for xeBy Denote

o o (\/
Walniae i \,g

tion and YN the corresponding solution in (TN). Each

Pl o,me benote by (1N) the modified equas

12} 1 : . . oo :

(fN) ngI gan-be r;wrltten in the form U 9y plus some terms

containing Lie brackets of lower degree than {Ilmultiplied by
&0 E o ; : e

Cb functions, where g; 1s defined as Iy using g, - d=die s e M

Therefore the equation (TN) can be written in a form satisfying

the conditions (CT) and (C2) in Theorem 1, and for each N Fixed

£3
we get {X‘E solutdons in (2 ) such that E max 1,5( ~¥y h
N - celo,d N CN

Oon the other hand the coefficients in (1) ands (¢ ) agree on

LO {\x B.. and they are global LlpSChltZ with respect to KéiR

N

which gives by a direct computation that lim E max bft) ywﬁj' :
‘ N »w el 01}

uniformly with respect to J% in bounded setse.
This allow one . to substract a subsequence in {ngh A
, B

also denoted by gthhéo such . that limek “Indx \x@(t)—y(t)gzzo
ndo telo,r]

which complete the proof.



- §§» THE EXISTENCE OF PERIODIC SOLUTIONS

The controlled diffusion equation wé are adressing here
is defined in (*) (see §1) and we assume that f,g have a common
perjod T wmth 1o;pect to Lhe variable t. We are looking for
bounded and periodic controls Uy (t+T,x)= =U (0t th, xm;Rn
such that (*) has a periodic solution in distribution which
Fequire the existence of xoé'Lz(ﬁﬁP) independent of fi B0
éﬁch that the measure =) - on Rrl generated by the solution x(t)
in (%) fulfil p(kT)=p(0), k=1,2,.-. . A4part from the conditions

e o~
(CT) and (C2) in Theorem 2 we need to assune the following

- 142 B0 a = 1,50
¢} fcliygec ' ad ch/()xjecb : agi/,?xjecb'

C4)' there exist h1,.o.,ha&£}g1,c..,qm) and >0 such that

Yo (e s (LKA ) Qe tefo,z], xer®

where H(t,x);(h1(t,x)...hn(t,x));

THEOREM 3. Assume that (C3) and (C4) are fulfilled for
f,gi Sn {*). Then there exist ui€3C3’1 and periodic
(ui(t+T,x):ui(t,xv, auch that (*) has a periodic solution in

distribution with the period T.

Proof

tr et

The controlled eguation in (*) is a particular case of
the equation (2) where Q;=gi . demesand the coefficients are

periodic with respect to the variable 't Using (C4) we associate

to (*) the corresponding enlarged system (1) including the given



degd,.u.fgm), among the vector fields g;.

o S
: ()

111 ’
By’hypotheses qi £141f1i1 a linear growth condition and

as a consequence we have

: ’ 5

Etrace A(t,y)%qc(1+{yl ), where A=GG*, Gz(g1,..,.,gm)
we look for Ur 11{z1,,nn,L+1, such that uI(t+T,y):uI(t,y),
and

Lt

lm..‘

Ili=

(ngI)(t,y)wa(t,'y)-:"Ky, (%) t;O, yé R"
where K)C, K a constant.

By definitionr?(ZngIygxé}Cb and the conditions in Theoreml
care fukbdlled.

Denote %(t):Efy(t)lz, where y is the corresponding solution:

in (1). Using Ito's differential rule we get a%f( g )+C and
it follows that an £0 will exist such that for any %2=Eixoi%gro ;

with =K (r /2) ECX 0 Sﬁ( )4* = g for sl

Using Theorenm 2. we approximate the solution y on [O TI by

M,f‘

the solutions xh( Yo dm (2)ianc: it gives that}h suff1c1cntly

1 h

3nall there exist u?é Cb' such that ub(O x) =u, (R 2] and

E max {x (t)—y(t)l%;g/2, E{xﬁ(T)lagr
tef0,T] . \

uniformly with respect to the indtial condition y(0)=xh(0) f gl

1ling f (r . Using xh(T) 45 the new initialisondition tor

r
{4} on the interval [ﬁ, Zf], we rgﬁéﬁl& the above approximation

ey Syt 1’~.', h
“f using the same controls ug determined on AO,LJ and vt follows
=boh

W (2

"
b

2 ; : o E
e )I gro , uniformly with respect to X(O)—XO, EEXOE é“o ¢ Ak



: = 9 o
u?(t+T,x):u2(t,x), t:éIO,Tl, e R

Finally we get u} F , ) {ﬂwy R bounded and vexg{yww

Ulil(t"‘T,X)::U?(trx)r (V) ta’ol x € Rn v

such that the corresponding solutiondin (2) fulfil

Bl )] Kr, o (9) k20,142, 0

if the initial condition is taken such that xO&Rn,;ij{%gro.
It shows that the sequence of the probability measured

N
j> Ph(kT G X ), N»1, is weakly compact, where Ph(kT,O,xo)(A)=

o

h e
N N k=1

K

:P{Xh(kT)GA/Xh(O)EXO}; it is eguivalent with the existence of

the periodic solution for (Z)a(see i?j) and the proef is complete.

{

REMARK 2. Assuming that the Wiener process wle ) ine (5 )

(**).and (¥**) is replaced by a continuous sguare integrable

mattingale for which the guadratic variation matrix V(t)=<ﬁ(t),%(t2
T

has: the form V(t)=J"H(s,w)ds, with H a bounded measurable matrix

valued process, then the resu]t in Theorem 3 is not anymore

true but we get ‘that there exlst u, €C0 ! and periodic such that
1t :
(*¥*) has a bounded solution in the mean squar fEl { {bi ;

(¥) t30, for each x &L, (P).

In the following we need to combine (8}) in Theorem 2

with (C,) in Theorem. 3.

4

A
THEOREM. 4. Assume that (C.) nd (C4) are fulfilled forE

e : ; ol
f;gi,Gk fm A (F*) . Then there exist V. aCb’

e

and periocdic



(Vi(t$$}x)=vi(t,x)) which do not depend on Gz and such that
(***) has a periodic solution in distribution with the fixed
»period T

The proof of this theorem repeats the same argumnents

as in Theorem 3 and it is omitted.

REFERENCES

.1) VimEi: Beneg, Finite regular invariant measures EoNE Fellef
processes, Journal of Applied Probability, Ere 208009
(1°968 ).

-2)‘ 'R.7. Khasminskii, Stability of System of Differential
Equations with Random Perturbations pp. Ll9=124, 1969
(in Russian).

39 M;:Zakai, A Lyapunov criterion fer the existence of
stationary probability distributions for systems pertlrs
bed by noise, SIAM Journal on centrol énd Optimization,
Vol . 3, 2 90=297 ({1069

4) H. Kunita, Su@ports of biffusion Processes and: centrol=
lability Problems, Intern. Symp. S.D.E. Kyoto, pp. a1
{1976

50) H.W. Knobloch, K. Wagner, On Local Contreollabilityiof
Non-Linear Systems, Dynamical Systems and Microphisics
Control Theory and Mechanics, pp. 243-285 (1984).

6) €. VArean, On Local Eontrollability for Non—Linear_Control
Systems, Rev. Roum. Math. PUres dmple, wol. =23, neL 10,

pp. 907-919 (1984).



1)

8

- 2 3 -

C. VMaxzsan, Continuous Dependénce and Rime Chapge for
Tto-Haguat ions, L. DIEEL  Rep o Vode 58, .2 spn. 2090 106,
1985. ‘

o Varéan, Continuous Dependence for Ito Equations with
¥espect to the delift involving Lie ﬁraokets, Proceedings
of F;fth IFIP Working Conference on Stochastic Differen-

£ Systems, Risenach GDR, Epril 6-~13, 4986,



