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CANONICAL FORMS OF UNBOUNDED

UNITARY OPERATORS IN KREIN SPACES

by Aurelian GHEONDEA

§ 0. INTRODUCTION

Unbounded unitary operators in Krein spaces have been con-
sidered in [13] in connection with maximal extensions of iso-
vmetric operators and in [14] in connection with unbounded
selfpolar norms. (however, the definition in fa] oA unitary
operator is too large for our setting). On the other hand,
bounded unitary bperatOrs in Krein spaces have certain canonical
forms with respect to fundamental decompositions (cf. [8] :

Bad %, 1] . [2) )athe ainiot this paper it to ohew that
these kind of canonical forms can be carried over, with appro-
priate modificationé, to this general setting (see Theorem 5.5
and Corellary 5.6). Let s briefly present our approach.:

First, by reformulating the Cartan decompositions of a
unitary operator [14] one can reduce the problem. to find ca-
nonical forms of unbounded positive Sy mmetries. S0, a study of
tﬁese unbounded symmetries is needed. Further, from these we
reach unbounded selfad}oint projections in a Krein space (these
operators were formally introduced in ([14] ).

This article is divided in five sections. Apart from re-
sults Concerning the geometry of Selfédjoint projections, posi-
tive symmetries and unitary operators, which we need in order
to solve our problem, we have considered in the third section a
characterization of the non-degeneracy of the closed linear

span of a non-decreasing sequence of non-degenerate subspaces



of a Krein space in terms of the convergence of the correspon-
ding sequence of selfadjoint projections. Alsa, in thie fipst sece

tion there is a specification of notation and terminology of Krein

spaces used in this paper.

§ 1. NOTATION AND TERMINOLOGY

Leit 3¢ be a Krein space and denote by {.,.] -the inner
pReguctar I o« If stands for the orthogonality with res-
pect to this inner product then a fundamental decomposition (in
briet f.d.) of X is 3 decomposition

K = HoE G

where 3(+, J~ are. linear submanifolds of X such that

BRI O e B e e 3 aré Hilbert
spaces. Usually we write

K= Lieg U _
in order to mark the orthogénality of the components.’

Nisa  ~cone.denotes W 0K ) = din Xt and n(H ) = din X
The cardinal number % (J{ ) = min( % (X Yo b HEEE o
called the rank of indefiniteness of the Krein space

A fundamental symmetry (in bfief s ) ot 3{ lisla i near
operator J on J{ sueh: thako J z I and the identity

: (x,y)J =[Jx,y3 : x,y € K
defines a positive definite inner product on 3{ such that
(X ,(.,.% ) is a Hilbert space. The corresponding norm is cal-
led a unitary norm. Any two unitary norms on X are equivalent.

If we denote by € ( H ) the algebra of bounded 1inear
operators in J{ then uniform, strong operator and weak operator
topologies have the usual meaning, with respect to an arbitrary
unitary norm on 3{ <

A subspace of 3( is a closed linear submanifold of Jﬂ .
A subspace L ot K is lon=negative (positived it fx x] 28 0. ee



irnt

@oc > D, xe N0y & it unifonmly positiyve if for
some (equivalently for any) unitary norm }I-# there exists o« >0
such that
Biodl o chiflche e
et U0 - X Tpa e bea £.d0f I . Then the associa-
Eed s osiands = = J+— J ~ where Jf is the projection of 3{,
onto 3{,i along J{,'}-’ tilee Aot ol deneitier the corresponding
unitary norm. If.i is a non-negative subspace of 3{, then
i+ = J+£;C is a subspace of 3(,+, the linear mapping
g s iy x € L
disewellandefined, K is.a-comtraction, i.e.
WKxl) € Wxh , x € EC+,
and 36 iis: Lhie sgraph of K ‘
L = G(K) =3 x+kx | x € $6+3
K is called the angular operator of i with respect to the f.d.
3(,‘ = 3C+£+] gl Moreover, o is a positive subspace if and
only if K is a strict contraction, i.e.
WKx <' i, XE RS {03.
;f is a uniformly positive subspace if and only if K is a uniform contraction

i.e. IKI1< 1. &£ is a maximal non-negative subspace if and only if 3%f=".
L
If o is an arbitrary subspace of X then o4 :{xe:}{ Ix LM}

denotes its orthogonal companion and v%o - MnN CI(’CL its ispirepic
subspace. M is non-degenerate if M= {0}. M is regular if K = M+ M-,
Let J-(l and '3(2 be Krein spaces. If T is a densely defined operator
DT H, and R(TIE X, then we et TT denote its adjoint
[Tx,y] = [x, V1, e (D we At
If J;isatf.s.on X, i=1,2, then T" denotes the (J;, J,)-adjoint

operator of T, i.e.

(Tx,y) = (x,T*y , x € (), yéo’D(T*)-
Jo )\31 4
Then
%
Tﬁk: JlT 32_:_

also holds. As a rule, positive operators, selfadjoint operators etc. on a



A
Krein space X are understood with respect to the indefinite inner product

of I If D isa f.s. on J fhen J-positive operators, J-celfiadjoint

operators etc. are referring to the positive definite inner product (.,.)J :

§2, SELFADJOINT PROJECTIONS

Let 3{ be a Krein space. A linear operator P in 3{ is called a

selfadjoint projection if it is selfadjoint and idempotent, i.e.

Observe that with this definition a selfadjoint projection can be unbounded

(the meaning of the equality PZ - P is as follows: RP)S L (P) and

2

P“x = Px for all x € o) (P)).

2.1. PROPOSITION. A subspace L of the Kreim space XK is the range

of a selfadjoint projection if and only if L ica non-degenerate subspace.

Proof. Let £ be a non-degenerate subspace of J( . Then QL+ O‘(‘L

is a dense linear manifold in :x We define a linear operator P in 3(: as

follows: @ Ry =L +il and

P(xl+x2) = Xq5 xlch ,  Xo€ &L

2

Then P is correbtly defined, ? (P)= &L and P~ = P. Observing that

[P(X1+X2),yl+y2] = [‘Xl’yl+y2] = [Xl’yl] = [X1+X23yl] :[(X1+X2)’ P(yl+3’2)3 ’

1
R S o
it follows P& P# . In order to prove the converse inclusion let y be a

vector in & (P#). Then
[px,yl = Y_X,P#yj : x €D (P)

Taking x € £ it follows y—P#y G?ﬁl while letting x Eéﬁl we get P#yé; f :

Therefore

o= (y—P#y)+P#y X+ = D).
Conversly, let P be a selfadjoint projection in 3{: . Then I-P is

also a selfadjoint projection and R (P) = ker(I-P), in particular R (P)

is closed. In order to prove that & (P) is non-degenerate let




x € RP)°. Then x € R(P) and
0=kl [P yl=Fcyl y €D (),
hence x = 0 follows since o) (P) is dense in X . &

2.2 REMARKS. a) Considering the fbllowing correspondence: to each self-
adjoint projection we let correspond the subspace determined by its range,
then this is a bijective correspondence between non-degenerate subspaces

and selfadjoint projections. Also, by the closed graph principle, it follows
' that in this correspondence the regular spaces are precisely the ranges of
bounded selfadjoint projections. -

b) If ;f is a non-degenerate subspace of J and P denotes the cor
responding selfadjoint projection onto Et then I -P is the selfadjoint
projectioh onto &*. £ is a positive (negative) subspace if and only if
P is a positive (negative) operator. L is maximal positive if and only
if P is positive and I - P is negative.

c) The existence of unboupded selfadjoint projections in 3{ depends
on wether x(JX) is finite or not, more presisely x(X) is finite (i.e. X
is a Pontryagin space) if and only if any selfadjoint projection in 3{ is
bounded. This follows from the well-known fact that Pontryagin spaces are
characterized within Krein spaces by the condition that any non-degenerate
subspace is regular (see e.g. {23 , L3] )

d) Let us assume that %( J{) is infinite. Then, it was proved in {107
that there exist two subspaces M and obﬂ in 3{ such that A is positive,

cbf is negative, c/(.Lcﬁf and the linear manifold cé(-+obp is dense in
J , but neither M is maximal positive nor 900 is maximal negative. If
we let Q denote the linear operator in 3( defined as follows: ;D (= o“-+vV°‘
and ‘
Q(x1+x2) =Xy X1 e M, Xo & Al ;
then Q is a positive,closed,densely defined projection in ﬂ{ which is
not selfadjoint.

e) Let P be an unbounded selfadjoint projection in X(ETOM™ ¢) we neces-
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sarlly need x( X ) = co ). Then U}KP) =10,15 and G (P ¢ Bl

in particular @ (P) covers the whole complex plane. i

For a maximal uniformly definite subspace L of the Krein space ﬁ(
there is an explicit formula of the corresponding bounded selfajoint projec-
tion onto & in terms of its angular operator with respect to a certain f.d.
aie i Geb. 51, sec also Eand 2] ). ghe followingvreéult is a genera-
lization of this fact to the case of maximal definite subspace, dropping the

assumption on uniformity.

255 PROPOSITIDN.‘EEE ;i be a maximal positive subspace of 5{ and

K its angular operator with respect to a f.d. 3{ = J(+[+]-J(—. We denote

(2.1) 3 2o et - D - Rawdic i

+
where I+ is the identity operator on :K i

. Then the selfadjoint projection

onto Sﬁ is the closure of the following linear operator

PR

o

- (I+—K*K)_l —-K*(I_-KK*)—I
B L. wirt. B (Podee d p‘oD_ ’

K(I+-K*K)‘1 —KK*(I_-KK*)'l |

b

Pronf. 1f &L is a maximal positive subspace of K then &£* is a
maximal negative subspace, hence K andl<* are strict contractions, equi-

valently I+—K*K and I - KK%'are one-to-one. So the block—mafrix»operator

PO makes sense.
& Let z be an arbitrary vector in ;D (PO), i.e.
z = (I_-K*K)x + (I_-KK*ﬁy
for certain x € K " and y € X 7. Observing
7z = (xK YKk Ty )+ (y—k )k (ykx) € L+ L = D (),
where P denotes the selfadjoint projection onto Qﬂ, it follows
oz (x-K*y) + K(x—K*y)': Bz,
hence POC—'_ P. Therefore "P—OE P helds,

In order to prove the converse inclusion let z denote an arbitrary



B

vector in &) (P). Then z = x+y for some x € £ and vy € ;f'L hence the

representation 5 .
Z = x++Kx++y +K*y ;
for certain x* € " and y" € ¥~ , follows. We consider now the operator
= %7
1] -K
+
T= w.E. b, J{,: J{+[+] J{._ :
-K I
& el
Then T is bounded and J-selfadjoint, where J denotes the f.s. determined

by the considered f.d.. Making use of the well-known factorization
o - -4 o

X
I el B . 0 1 0

+ + +

0 I 0 I -K il

o o

oo - s

and observing that the extremal operators in the right side are invertible,
it follows that T has dense range in 3{ . In particular there exist two
sequences (x )¢ y & K " and (yn)nemCK"such that

¥ 2} 7

=) So—— = i —> GO
X K yn B Kxn >y Calggers ‘).

~Then take the sequence (zn)ne e D (PO) 5

z - (LK K)xn + (I_-KK )yn < né 01
and notice that

* ¥ * o
Zecs (xn—K yn) + K(xn—K yn) + (yn—Kxn) + K (yn—Kxn) >

S R e Y (n—>00 )
and
Pz =xa= K*y ) + K(x_ - K*y Vit i (n=>e2 ) ,
0“n mea I n n
therefore P& ?% also holds. =

§ 3 MONOTONE SEQUENCES OF SELFADJOINT PROJECTIONS

Let (Qf,n)ne N be a non-decreasing (i.e. Ing xml’ né N)

sequence of subspaces of the Krein space J{ and let ;f denote the subspace

spanned by 20 S n& IN. The problem is to decide wether Zﬁ is non-degenerate



or regular. (Also, 1ét‘us observe that if the . sequence of subspaces

( o ) is non-increasing, the problem of wether (W ;f is a non-
el neiN

~degenerate or a regular subspace can be reducéd to the above case by con-
sidering the orthogonal companions). It can be shown by examples that even
when all the subspaces éfn are , regular (or, more restictively, &fn are all
non-degenerate and &L is a Pontryagin space) the subspace P4 can be degene-
e e 20 ] i)

In this section we will give an equivalent characterization Eoptihe
non-degeneracy of Sf when all the subspaces an are assumed non-degenerate.
In order to do this we recall first the definitions of strong and weak graph
convergences (cf. (61 , see also 1121 ).

Let (Cn)r1€ N be a sequence of linear operators in 3{ . Then one can
define two linear submanifolds G ((C )n6 U\l) and GW((Cn)ne UV) of
H x 3{ as follow: a pair of vectors (x,y) € 3{ xzj{ belongs to
G ((C )né ﬂu) (respectively to G ((Cn)ne Uﬂ)) if there exists a squence
(x )né [Nc']{ such that for any n€ NN, X (4 ,D(C) and

Xy Gl y (n—>09)
strongly (weakly). In general these linear manifolds are not graphs of
operators. If there exists an operator C in X such that GS((Cn)ne Uﬂ):
=6(C) - the graph of the operator C - (respectively,\Gw((Cn)ne U\l) — e
one says that the seguence (Cn)neiN converges in the strong graph sense
(in the weak graph sense, respectively) to the operator C. Clearly, if the
strong graph 1limit (or the weak graph 1limit) of the sequence (Cn)né o
exists then it is uniguely determined.

In the following we shall consider the order relation on selfadjoint
projections in 3{ determined by the inclusion of ranges, more precisely

if P and Q are two selfadjoint projections in H then PL Q if

2P R ().
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3.1. LEMMA. let (P ) be = non—deereasing sequence of selfad-

ne IN
joint projections in K and ot the subspace generated by 0 (Pn), ne N,
Y- \/’}3<P)
" néN

Then

GG D B R D) = G yox) | el R

Proof. It is sufficient to prove the inclusions

Gs(@n)neﬁﬂgswapn)né N & S(<X +y, 0] xed yed lj “(;“-G'S((Pn)ﬂ&ﬁ‘ﬁ'

The first inclusion is obvious. For the second, let (z,x) E,G (CP )né Uﬂ)
hence there exists a sequence of vectors (Znhwé N such that znfi ) (Pn),
n € [N, and the weak convergences
Ze o 2, Pnzn =3 (n=>c0)
fiold dn particular x € = m& N is fixed then for any t € 3{ (Pm)
[z - Pnzn,t] —> [z - x,t] (h—=>°0).

But considering only n > m we have

i e sle e e Erl-n, SERIG
hence
B sl =00, t € ji(Pm).

Sinke m € N is arbitrary we get

7 xe 1) 3?.(P e
me&N

i.e. z=x+y for some y€ X'
In order to prove the last inclusion let x € ;f and yfe;aﬁl.
Th;n

ye 0 R = M ker(p ).
el = ne M

Also, there exists a sequence of vectors (xn)ne N Xn e E{ (Pn)’ né€ N

such that X = X (hese0)

strongly, hence the strong convergences
s, = = e, = O0)
co U o GO R SRR e SR

hold, i.e (x +y, X)€G ((P )ne !N) ]




SR

3.2. PROPOSITION. Let the assumption of Lemma 3.1 hold. The following

aosertlon are equ1va1ent

(i) The subspace & is non-degenerate.

(ii) The sequence (P ) . o converges in the strong graph sense.

(i11) The sequence (P ) =\ converges in the weak graph sense.
Moreover, if one (hence all) of these assertions holds then the limits from
(1) and (i1) coincide with the selfadjoint projection onto the non-

—degenerate subspace oﬁ

Praof, (1) =y (ii) It &L is non-degenerate let P be the selfadjoint

projection onto <L . Then
G ={x+y, x| xed , ye Bﬁllj

hence, by Lemma 3.1, the sequence (P )rlé [y Converges in the strong graph

to P. \
(ii)=y(iii). Obvious, alsoc by Lemma 3.1.

(iii)=>(i). If (Pn)ne.ﬂﬂ converges in the weak graph sense then

Lemma 3.1 says that the linear manifold
{(x s deee B o g e Qf'LS

is the graph of an operator, i.e. x +y = 0, x € L and Vi & ;f'l implies

x = 0, hence ;ﬁo =t éfl = {DS Sl e Lis a non-degenerate subspace. i
3.3. COROLLARY. Let (P ) .
eelfedje}nﬁmpyejeet%ons hﬂ 3{ and denote
g/ R,
. ne N

Then ;f is regular 1f and only the sequence converges 1n the strong graph

(equ1valent1y, in the weak graph) to an every_ where deflned linear operator

a
\\jwe~en(jthis section by showing that in the situation from Corollary 3.3 one

be a non-decreasing sequence of bounded

cannot use, in general, either the strong operator or the weak operator

.topology.

3.4. LEMMA, Let (P ) - INbe a non-decreasing sequence of bounded self-

adjoint prOJectlons 1n 3{ The following assertions are equivalent:

(1) (Pn)

ne IN is uniformly bounded.




s e

@it)idp )n € i converges 1n the strong ‘operator topology.
) (P )r1€  converges in the weak opeoatoqtopology.
Proof. (1) =» (ii) Let Y-} denote a unitary norm on X and assume

M = sup}anN < +00,
n €N

We prove first that the Sequence(Pn)n ¢ converges in the strong graph. Let
(xn)l16 N be a sequence of vectors in 3 such that
So=d = > =2
I le=> 1D, “ann yll 0 (n=2),
for some y & T Then, for any n&€ N we have
Byl £ ly - P X0 N+ !P X, <y - annﬂ + Mﬂxnﬂ,
and letting n—>°0 we get y = 0. Hence, by Proposition 3.2 it follows that

the subspace \/ PnJ{ is non-degenerate, in particular the linear manifold

net
- UPJ{ N a-rHX
nét neny

is dense im 3{ . Observing that for any x G;QD the sequence of vectors
<an)n€[N converges and taking account of the uniform boundedness of (Pn)nélN
it follows that (Pn>n€ [ converges in the strong operator topology.

(ii)=> (iii) Obvious.

(iii)=>(i) This is a consequence of the uniform boundedness principle

in Hilbert space. B

3.5 REMARK. The proof of the implication (i)=>(ii) in Lemma 3.4
can be done also by means of Alaocglu Theorem but we prefered this very ele-

mentary way. ' @

by

3.6. EXAMPLE. Let 0 be a separable, infinite dimensional Hilbert
space and {gkske N an orthogonal basis of H . Take jf ZfCDJK. and the
symmetry J defined as follows:
Ixy ®xy) = X3 & - %y, X1:%y € X
. Then, defining the inner product
el = ey x,y € I
(X y[.,.]) .is a Krein space and J a f.s.on J{. We consider two sequences

of vectors of




s

1

Kk
ot e e el

1

e
o 9 o kel
and the non-degenerate subspaces
Qfl:<el>)
&fk :<:el"'"ek-3fl""’fk—l> ; k€ IN.

It is easy to see that the linear manifold

is dense 1in 3{ , hence, if we let Pk denote the selfadjoint projection onto

Sf;<,l<6 N, <Pk)kE.HV converges in the strong graph ( and in the weak graph,
too) to the identity operator on J{ . Let us remark that the subspaces ka
are all regular’heﬂce the operators Pk are bounded.

On the other hand, it is easy to see that
k+1)(( il -
(erL MGt x = ky) B € ot kedh

P (xg, + yg) =

el K
hence
Pk(ngr)— gk) = (k+1)ek S K€ N,
therefore
WP (g ®- gl
K™7K K = 2o, licsen —> ©O
i Pk” b2 g, ®- 5,1 Kotk — (k )

By means of Lemma 3.4 this means that (Pk)ké N cannot converge in the

weak operator topology. &

Z -4 . POSITIVE SYMMETRY OPERATORS

A densely defined linear operator U fr0n|‘3<l into 3('2, where
3{1 and 5(2 are Krein spaces, is called unitary if it is one-to-one and
v =u -l
Ceh: ClB] and [14] ). A unitary operator is always closed but in general

unbounded.
A linear operator S in a Krein space 3( is called a symmetry operator

if it is selfadjoint and unitary, i.e.




4.1. REMARKS a) A linear operator S in the Krein space :K,is a symmetry

operator if and only if the operator

P= 3 (5+D
is a selfadjoint projection. In this case
. Sz 2P |
also holds and this relation defines a bijective correspondence between sym-
metry operators and éélfadjoint projections. Moreover, denoting &f =rQ (2)
o e R s and»
S(Xl + x2) = X] = X9, xlex ity € T

Also we have
L = ken(s-T)s, Lt = ker(s5+I)

b) The symmetry S is bounded if and only if the subspace ker(5-1) is
regular .

c) The symmetry S is positive if and only if the subspace ker(S-I) is
maximal positive.

d) A linear operator is a fundamental symmetry of the Krein space :RC
if and only if it is a bounded positive symmeTty operator in X.

e) Let 3( be a Krein space. The following statements are equivalent:

(1) x( I ) is finite.

(ii) each symmetry operator in :K,is bounded.

(iii) each positive symmetry operator in I is bounded.

£) Assume x(JL) infinte and let S be an unbounded symmetry in ok
Then @ (S) = Sl end (@ 6) - ENLTY @
Positive symmetries were also considered in [14] (in that paper they are
introduced under the name of +#-positive #-unitary operators) in connection
with some other geometrial aspectsof K rein spaces (see also {71 for related
ideas).

In the remaining part of this section we focus on producing some cano-

nical forms of positive symmetries in terms of angular operators.
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4.2. LEMVA Let- & be a maximal positjve subspace of X K its angular
operator with respect to a f.d: X = 3(+{+J X and the linear manifolds

;D_+ and QD_ q§f}n¢q_b¥ G2 1 Tpen’the positive symmgiiy S whighhcorres—

ponds to of (i.e. such that of = ker(S-I)) is the closure of the following

linear operator

B Vs T woa %, -1 ‘
(5 (1. 250 JoK*(T kK : i
Qo o . o s w.r.t.éD(SO):;a+'P;am :
2K(T, )L ' (1K (1 Kkt |

Proof. Let P denote the positive selfadjoint projection onto Sﬁ ;

By Proposition 2.3 P is the closure of the operator P detined at (L)
It remains to notice that § = 2P -I. a

4.3. LEMMA [et S be a positiye symmetry‘in the Krein spacq‘3< .
Then, for any maximal uniformly positive (maximal uniformly negative) sub—

space oM of X, D ()Nl is dense in ol and the subspace  SCD (SIK)

is maximal positive (maximal megative, respectively).

Rreof. Let uﬁ be a maximal uniformly positive subspace of gé and
demater 37 = ol and M o= o L. Tiveh W B0 bl o e o
3{ . Taking éf = ker(S -I) it follows that Eﬁ 15 a maximal positive sub-
space of 3{. Let K be its angular operator with respect to the f.d.

3( = j(+fkj j{'ﬂ Then K is a strict contraction. According to lLemma 4.2

S is the closure of the operator SO defined in (4.1). Since
Jemicis Deony =D,

(recall that Q)+ =21, - K'K) is dense in K *) the first part of the

lemma is proved.

Further, it is easy to see that
5, ={x+xI + 0o | xe D, ¥
and ;
Qa2 s( D@ ) = §:§>+ :{x &2 K'X'Kle) l xé%ﬂ s

T + . v
i.e. the regular operator of the subspace s (8)N I, )  is the eperator

2K(T .+ K%K)_l. It remains to prove that this operator is a strict contrac-
+

BlER.E1LE.




el

(4.3) B 2kx < J (T, + K 0% I S e e
( #-1 is the unitary norm associated to the £.d. ¥ = 337, It
is easy to see that this is equivalent with

(4.4) nu+—|fmxn> 0, x € ™ {0f

which is evidently true since K is a strict contraction. 2

4.4. REMARK It will be proved in Lemma 5.4 that the above fact holds for

any unitary operator.

4.5. PROPOSITION Lgﬁ o be‘q“maximalwpositiye subspace of the Krein
space J{ and T its angular operators with respect to the f.d., N d

Then there exists a unique positive symmetry § in J{ such that

S(D ()N 3™ =¥ and this is the closure of the following linear

operator: 1

1
G ) Sl =T

== i i
(5) S e = T T ) 2

I ool =
where we have denoted ;Z)+ = j{(IJr — T%T)'?) C J{Jr and @,:R((I_ e J

WJ¢1@0%>=@++D_

Proof. Let S be a positive symmetry in X such that SCIRG ) aE ot
holds. Then, representing S as the closure of the operator SO defined in
(4.1) with a strict contraction K, it follows from (4.2) that
(4.6) e g o L '
5o we are led to prove that there exists a unique strict contraction K which
satisfies (4.6). To this end we first observe that if K satisfies (4.6) then

IT1 = 2iK[(T, + 1K|2)"1,

it

—

where, as usually, T = (T*T) 2 . Considering the function e {0,1]'*>[0,l]

”-—‘Zk;—é—_—-S ké[U,]‘] b
1 +k

7’(k)

JEL = PGl

(e.g. by continuous functional calculus). But 70 is invertible, more preci-

" we have

i

sely, \f L is continuous and



=6t =

: r.,.__.—__:.
—'L—;t-l_i;_ ) t € (D;l—l )

%

" e
1, Oee, =0

hence, also by continuous functional calculus, we have,
[kl = e
On the other hand, (4.6) implies that kerT = kerK and DD :'Q (K)
hence it is easy to see that the partial isometries which correspond by left
polar decompositions to T and K respectiﬁely must coincide. If X denotes this

partial isometry then

K = X‘f"l(lTl>
is the unigue strict contraction which satisfies (4.6). Indeed, K is clearly
a contraction and it is strict since (4.3) is equivalent to (4.4).

It remains to show that if (4.6) holds then the operator Sj has the

block - matrix representation (4.5). Indeed

-k dioE = - doa i i) ~2

+ +
hence 1
¥oN—m # e
(I+ S s = (I+ + K K)(I+ =)
and then

o
e el - - Ko

Similary we get
* = * *y -1
@ = P T - K

and 1
Pa-ma e W

therefore SO has the representation (4.5) in terms of T.

C. 12

5. UNITARY OPERATORS

In this section we let DQl and 3%32 denoteerein spaces.

At the beginning of the preceding section we have specified what
we mean by a unitary operator in Krein spaces.

We state first, for the readers' convenience, a result which was

proved essentially in [14] (the so-called Cartan decompositions).



s

5.1. THEOREM Let U be a unitary operator fron ¥, into K, and

o o 0, E sl 20 adnits the following representations

U= VA = A,

where V, A, A, are uniquely determined by the following properties:

PRSI Ak

Vv

(a) V is a unitary and (J;, J,) - unitary operator from J, into

X, (in particular V is bounded).
(b) A, is a J; - positive,J; -selfadjoint,.. unitary operatar in
Ve

Hilbert space ( 3{1,(.,.)3 ) into the Hilbert space ( 3(2,(.,.)J e
1

2
We factor U according to the polar decompositions
, U= VA, = AV
where . il &.l
Al =R =Z A2 = (U2

and -V s a ]]) 32) - unitary operator. Since Ll is unitary,
S X%
e J,u Jos
it is easy to verify the following equalities

5 * 1 -1% _ mL#l _ gfl
U 0 DUy = D = U = (Ut

i.e. JlAi 31 = (Ail)Z. Therefore, since

e e )

holds and lelj.l is Jl- positive :}l - selfadjoint, from the unigueness
~of the square root operator property we infer Ail = lel:]l TLGE

A1 is a unitary operator in 3(1.'Similary one shows that A2 is a unitary
operator in j<2. Then: Lot aphitrary x;y € j{ 1 e have

| CApGAYT = Dxy] = Luxuyl =Ly« sl

hence V\S{(Al) is isometric. But 3{(A1) is dense in 3(1 and V is bounded

invertible (since it is (3:1,:]2) - unitary operator) hence V is also unitary .

For our purposes it is convenient to reformulate this theorem as fol-

lows:
it

)ﬁb



e

5.2. LEMMA Let U, 3, and J, be as in Theorem 5.1. Then U has_the
representations

U = WSl = 82W

where W, S, S, are uniquely determined by the following properties:
() W is a unitary and (J;, Jy) - unitary operator fron X, into Xy
(B §; is a positive symetry operator in i, 1= 1,2
Proof. We consider the representations of {} obtained in Theorem 5.1
and define
W=yJ, =JN 5= by s 5y = Aoy
Then W is unitary and (J l’:}2> ~ unitary. Also, it is easy to verify
Dyt = 3090701 = 313y = Ik

1"

and .
e ol . -1
hence S1 is' a symmetry operator in J(l' Moreover

EjiAix,_X] = (Alx,x)31>/ B aed (Al)

therefore Sl is a positive symmetry operator. Similary one proves that 82 is

B

a positive symmetry operator in 3(2.

5.3. REMARKS a) In order to exist unitary operators from 3{1 into
i}{z it is necessary aﬁd sufficient that ' ( j{l> = %' ( 3{2) and % (K 1) =
odtl ). '

b) Let J{ denote a Krein space. Then x(X ) is finite if and only if
any unitary operator in j{is bounded.

¢) A linear submanifold ;D of a Krein space 3{ is the domain (equiva-
lently, the range) of some unitary operator if and only if‘;D WL e
£

for some maximal positive subspace 56 of X .

5.4. LEMMA Let U be a unitary operator from Xy into K, and o

D Wn M is dense in M and U(CD WN M ) is a maximal positive

(maximal negative, respective}y) subspace of 3{2.

Proof. Considering the representations obtained in Lemma 5.2 we

maximal uniformly positive (maximal uniformly negative) subspace of J;. Then



o

notice that QW) =D (5,) and

Then use Lemma 4.3 and take account that W is bounded unitary operator. &

: ; : + =
5 THEOREM Assume 1= ( J\/@) =5-( J,)and consider. two £.d. ‘j{r = ’j'{/c (+] J{C

A

i = Let c\,zf be a maximal~ p_gsitive subspac__ga of 3{2, i i.._E?MEDQE.}EE

operator with respect to the f.d. I, = K7 @1X; and denote

A ]
0 G e - J = @ - mIE e

Then, the following assertions are equivalent:

(i) The unitary operator U from XK. inte K.  satisfies

WeD i 5L ) = L
(ii) U is the closure of the linear operator Uj

1 1
a a0 et e

-

Ho 1 | e D) = v;lo’D+ +v:1§0__

.x- S
T<I+ o T T) 2 V+ (I_ —TT%}M? V_

=

v, € L6 I,J(;) N Sl (1,3{5) unitary operators.

f’ﬁggﬁ. If U is an arbitrary unitary operator from 3{ 1 into j{ 2

let 21
U= 52W
be the representation obtained in Lemma 5.2. Since W is unitary and (31,32)-‘

- unitary operator it follows

bow ekl R o
ik 1 1
0 W_y

Define V,_ = W, and V_ =-W. Observing that UCD (WN 3{{) =ik

if and only if 52(;/3 (82) A er) S remains only to apply
| B

Proposition 4.5.




00
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5.6 COROLLARY Assume mi(Jéi): ni(d/;) and consider two f.d. 3{«“ 3{-fﬁ}j{;

i=1,2. Let oi be a maximal positive subspace of J{l’ b _angular

opurator with Iespect to Bl dead f% 1{ vﬂi and. denote
2 -Dart yhey D. [ )Z e

?
Then the following assertions are equivalent:

(1) The unitary operator U from K, into X, satisfies

v win & ) =33

(ii) U is the C%QSUFB of the 1inear operator

el ; 1 |
VEEE T Nt e 3 |
e | = . g wer b S N
VNI, -T2 YAT. - T
e € ( }{,I, 'J( I 5) are unitary operators.

5.7 REMARK The canonical forms obtained in Theorem 5.5 and Corollary
5.6 can be also regarded as parametrizing the class of unitary operators
from j’(.g into D{'L , when x,f(f}{,l) = x,t( 3(2) are assumed
(in [8] this was the original motivation to obtain them when only
Pontryagin spaces are considered,;later it was observed that they hold
for arbitrary bounded unitary opefators in Krein spaces and their geometric
interpretation was also added, [4] ). If instead of uéing the canonical
form of a positive symmetry in (4.5) we use (4.1) then different
parémetrization formulae of the class of unitary operators from
3{ 1 in 3{ o can be obtained (we leave to the reader to write down
explicitely these statement). But the geometric interpretation is less
clear in this case.

We end by some simple observations concering spectra of unitary
operators.

5.8 REMARKS a) The symmetry of the spectrum of a bounded unitary

(e.g.see [3] ) is preserved also for unbounded unitary operators, i.e. if

-

i




SO

" is a Krein space, U is a unitary operator in K. N £0is a

el
complex number and N = 7;— then:

N e(TD(U) implies }?(EQ“D(U)kI G"r(U).
N €5, () implies i gl O8
Nev (W) implies X €T (V).
NE Q) implies A €§(U).
b) ket J be a Krein space, U and A linear operators in X
E,7 € € _such that 1€l = 1 and it ?.. Then the following relations
are equivalent (e.g. see (3] ):
e 3D =ty U e EIDw D DRG]
Giiken(d- ET= 405 k= (310 SeDU- EDTLDM)=R U-€D).

Assuming these relations satisfied it follows that U is unitary and
E gk#LD if and only if A is selfadjoint and Ze VC(A)LJ f(A).

c) In [3] it is constructed a bounded selfadjoint operator

A in a Krein space such that it possesses a value 7 &(TC(A), S0

Then we let U denote the Cayley transformation of A corresponding to

Z and & = 1, conform item b). Taking account of the behaviour of spectra
under the Cayley'transformation (see also [3]1) it follows that U is
an unbounded unitary operator in J{ with non-void resolvenf set

(compare with Remark 2.2.e) and Remark 4.1.f)).
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